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Abstract: Few-shot fine-grained image classification (FSFGIC) methods refer to the classification of
images (e.g., birds, flowers, and airplanes) belonging to different subclasses of the same species by a
small number of labeled samples. Through feature representation learning, FSFGIC methods can
make better use of limited sample information, learn more discriminative feature representations,
greatly improve the classification accuracy and generalization ability, and thus achieve better results
in FSFGIC tasks. In this paper, starting from the definition of FSFGIC, a taxonomy of feature
representation learning for FSFGIC is proposed. According to this taxonomy, we discuss key issues
on FSFGIC (including data augmentation, local and/or global deep feature representation learning,
class representation learning, and task-specific feature representation learning). In addition, the
existing popular datasets, current challenges and future development trends of feature representation
learning on FSFGIC are also described.

Keywords: few-shot fine-grained image classification; feature representation learning; meta-learning;
metric-learning

1. Introduction

Few-shot fine-grained image classification (FSFGIC) methods [1] refer to the classifica-
tion of images (e.g., birds [2], flowers [3], and airplanes [4]) belonging to different subclasses
of the same species by a small number of labeled samples. As illustrated in Figure 1, image
classification tasks can be divided into coarse-grained image classification (CGIC) and
fine-grained image classification (FGIC) according to different classification granularity.
CGIC is a task of cross-species classification, and these classes usually have obvious differ-
ences in appearance characteristics, with the characteristics of large inter-class differences
and small intra-class differences. FGIC is a classification task of different subclasses of
the same species, and the differences between these classes may be very small, with the
characteristics of small inter-class differences and large intra-class differences.

The researchers found that two-year-old children can classify objects into different
categories after viewing just a few images, but the child may be confused about fine-grained
image classification with a limited number of samples [5,6], due to the following reasons:
(1) Objects for FSFGIC are obtained from sub-categories of one category, making them
visually very similar. Some images may differ only in subtle visual features, requiring
experts in the field to distinguish between specific categories; (2) Samples are affected
by factors such as background, pose, occlusion, light intensity, and shooting angle, the
differences between different subclasses may be small, and the differences within the same
subclass may be greater, resulting in a classification problem of small inter-class differences
and large intra-class differences.
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Fine-grained image datasets usually have a small number of samples and need domain
experts to label the datasets. However, the traditional image classification algorithm
requires a large amount of labeled data for model training, which is obviously not suitable
for FGIC tasks. Therefore, how to use few-shot learning to complete FGIC tasks is a
research hotspot in this field. Since the objects in different sub-categories of the same
entry-level category are very similar to each other, a key consideration in FSFGIC is how to
effectively learn discriminative features from extremely limited training samples, which
makes FSFGIC a very challenging research problem.

Bird

Lion

Fox

Orange

CGIC FGIC
Least AukletCrested Auklet

Parakeet Auklet Rhinoceros Auklet

Figure 1. Comparison of coarse-grained image classification (CGIC) and fine-grained image classifi-
cation (FGIC).

Recently, with the growing attention on FSFGIC, various FSFGIC methods have been
proposed. Many few-shot learning methods have also been applied to handle FSFGIC tasks
with impressive results. Currently, there is no survey about FSFGIC. This paper aims to
fill this gap. It is worth noting that the quality of feature representation learning directly
affects the classification performance on FSFGIC. The reason is that the quality of feature
representation learning determines whether the FSFGIC methods can make better use of the
limited sample information and learn more discriminant feature representations, thus greatly
improving the classification accuracy and generalization ability of the FSFGIC methods. In
this way, a taxonomy of feature representation learning for FSFGIC is proposed. According
to this classification, we discuss different types of FSFGIC methods in depth. It is worth to
note that those few-shot image classification algorithms (e.g., [7,8]) that have achieved good
classification performance in some FSFGIC datasets are also introduced in this survey.

The contributions of this survey comprise the following aspects. This is the first work
to review FSFGIC under a taxonomy of feature representation learning. Subsequently,
different types of feature representation learning techniques for FSFGIC are reviewed. Ad-
ditionally, the relationships among different FSFGIC methods are presented. Furthermore,
combining with representative existing FSFGIC techniques, the main unresolved issues on
FSFGIC are discussed.

2. Problem, Datasets, and Categorization of FSFGIC Methods

In this section, the problem formulation of FSFGIC, categorization of FSFGIC methods,
and representative benchmark datasets for FSFGIC are presented.
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2.1. Problem Formulation

For an FSFGIC task, the dataset D is typically divided into a training set Dtrain, a
validation set Dval, and a test set Dtest. The Dtrain is used to train the parameters of the model,
the Dval is used to verify and tune the model, and the Dtest is used to finally evaluate the
accuracy of the FSFGIC method. That is, the three stages of training, validation, and testing of
the model. Each stage consists of many epochs, each containing thousands of episodes.

D = {Dtrain ∪Dval ∪Dtest}, (1)

where Dtrain ∩Dval = ∅, Dtrain ∩Dtest = ∅, and Dval ∩Dtest = ∅.
The FSFGIC task is denoted as a C-way K-shot task, which means that C categories

are selected in each episode, K samples in each category are selected as support samples,
and part of the remaining samples in the C categories are selected as query samples. Each
episode’s dataset Depisode consists of a support set S consisting of C × K labeled support
samples and a query set Q consisting of C × J unlabeled query samples.

Depisode = {S = {(xi, yi)
C×K
i=1 } ∪Q = {(xj)

C×J
j=1 }}, (2)

where xi ∩ xj = ∅, xi and xj denote fine-grained samples and (xi, xj) ∈ C, and yi ∈ C
represents the ground truth label of xi.

The purpose of the FSFGIC method is to successfully predict the category of xj using
xi and yi. The evaluation criterion of FSFGIC method is classification accuracy, which is
calculated by dividing the number of successfully predicted query samples by the total
number of query samples.

2.2. A Taxonomy of the Existing Feature Representation Learning for FSFGIC

According to the difference of contents and representations of learned features, the
existing feature representation learning techniques for FSFGIC can be divided into three
categories: local and/or global deep feature representation learning based FSFGIC meth-
ods [9,10], class representation learning based FSFGIC methods [11,12], and task-specific
feature representation learning based FSFGIC methods [13,14]. According to different types
of feature representation learning paradigms, a taxonomy of feature representation learning
for FSFGIC methods is illustrated in Figure 2.

Local and/or global deep feature representation learning based FSFGIC methods uti-
lize the degree of difference of the local and/or global deep feature representations between
query and support samples for performing FSFGIC tasks. Class representation learning
based FSFGIC methods utilize deep feature representations from all training samples in a
class to construct a class feature representation (e.g., class-level graph [15] or class-level
local deep feature representation [7]) for this class. And then class feature representation is
used to perform FSFGIC tasks. Task-specific feature representation learning based FSFGIC
methods utilize deep feature representations from all training images in a task (i.e., one
training episode) to construct a task-specific feature representation (e.g., task-level graph
relationship representation [16] or task-level local deep feature representation [8]) for this
task and to perform FSFGIC tasks.

It is worth noting that after feature representation is learned, most meta-learning based
techniques, which can be divided into two branches (i.e., optimization-based techniques
and metric-based techniques), are utilized for performing FSFGIC tasks. Optimization-
based techniques aim to converge the model to novel tasks, which learns how to update
the parameters of a given initial model with only a few training samples for each category.
Metric-based techniques aim to learn a transferable feature knowledge and obtain a distri-
bution based on similarity metrics between different samples. In this way, for each type of
feature representation learning, both optimization-based and metric-based techniques used
for FSFGIC will be reviewed in detail.
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Metric-based

Attention mechanism (e.g., Jiang et al. 2020; Song et al. 2022; Huang & Choi 2020 )

Metric strategy (e.g., Zhang et al. 2020; Wu et al. 2021; Liu et al. 2023)

Multimodel learning (e.g., Zhao et al. 2020)

Feature distribution (e.g., Sun et al. 2020)

Semantic alignment (e.g., Huang et al. 2019; Zheng et al. 2023)

Multi-scale representation (e.g., Ruan et al. 2021; Chen et al. 2022)

Attention mechanism (e.g., He et al. 2020; Doersch et al. 2020; Huang et al. 2021)

Metric strategy (e.g., Li et al. 2020; Zhu et al. 2020)

Semantic alignment (e.g., Hao et al. 2019; Huang et al. 2020; Li et al. 2021)

Class representation learning

Metric-based

Feature distribution (e.g., Karlinsky  et al. 2019; Wertheimer et al. 2021; Zhang et al. 2023)

Multimodel learning (e.g., Pahde et al. 2021; Wang et al. 2023)

Task-specific feature representation learning

Metric-based

Optimization-based

Learning to fine-tune (e.g., Qi et al. 2018; Hu et al. 2021)

Learning a model (e.g., Wei et al. 2019; Park et al. 2020; Yang et al. 2020)

Optimization-based

Learning to fine-tune (e.g., Zhang et al. 2018; Peng et al. 2020; Perrett et al. 2020)

 Learning a model (e.g., Achille et al. 2019; Lee et al. 2019; He et al. 2022)

Attention mechanism (e.g., Dong et al. 2021; Guo et al. 2021)

Metric strategy (e.g., Xue et al. 2020; Liu et al. 2022)

 Feature distribution (e.g., Li et al. 2019; Tseng et al. 2020; Lee & Chung 2021)

Figure 2. Classification of feature representation learning techniques in existing FSFGIC methods
[1,6–8,16–62].

2.3. Benchmark Datasets

Datasets have become one of the most critical roles in the development of FSFGIC,
not only as a means for evaluating the classification accuracy of different FSFGIC methods,
but also for greatly promoting the development of the field of FSFGIC (e.g., solving more
complex, practical, and challenging problems). Currently, the representative datasets for
training and evaluation on FSFGIC are CUB-200-2010 [63], CUB-200-2011 [2], Stanford
Dogs [64], Stanford Cars [65], FGVC-Aircraft [4], NABirds [66], SUN397 [67], and Oxford
102 Flowers [3]. The number of images and the number of categories corresponding to
these datasets are shown in Table 1.

A detailed description of the datasets available on FSFGIC can be accessed at
https://paperswithcode.com/task/fine-grained-image-classification (accessed on 1 March
2024). In addition, several ultra-fine-grained image datasets (such as Cottons and Soy-
beams [68]) exist in this field. Compared with the current widely used FSFGIC datasets
(e.g., CUB-200-2011 [2]), the inter-class differences among ultra-fine-grained images are
much smaller, which put forward greater requirements on the design of FSFGIC algorithms.

https://paperswithcode.com/task/fine-grained-image-classification
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Table 1. Representative benchmark datasets for FSFGIC.

Dataset Name Class Images Categories

CUB-200-2010 [63] Birds 6033 200
CUB-200-2011 [2] Birds 11,788 200

Stanford Dogs [64] Dogs 20,580 120
Stanford Cars [65] Cars 16,185 196
FGVC-Aircraft [4] Aircrafts 10,000 100

NABirds [66] Birds 48,562 555
SUN397 [67] Scenes 108,754 397

Oxford 102 Flowers [3] Flowers 8189 102

3. Methods on FSFGIC

In this section, we first review the data augmentation techniques for FSFGIC. Then,
local and/or global deep feature representation learning based FSFGIC methods, class repre-
sentation learning based FSFGIC methods, and task-specific feature representation learning
based FSFGIC methods are introduced in detail. Furthermore, the relationships among the
classification methods for different types of FSFGIC techniques are also introduced.

3.1. Data Augmentation Techniques for FSFGIC

Data augmentation techniques aim to enhance both the quantity and diversity of
training data, thus alleviating overfitting and improving generalization ability. Currently,
two types of data augmentation techniques are widely used on FSFGIC. The first type
of data augmentation techniques (e.g., random horizontal flipping [50,69], jittering [39,44],
scaling [1], random cropping [6], translation [70], zooming [70], and random rotation [56,71])
are used as a basic image manipulation in FSFGIC methods.

The second type of data augmentation techniques [33,72–74] are based on deep learn-
ing mechanisms which aim to mimic the characteristics of real data. For example, in [72],
generative adversarial networks (GAN) were utilized to generate realistic samples from
a given dataset. In [75], a feature encoder–decoder was used to augment the dataset
by generating feature representations. In [76], a pre-trained GAN without discriminator
was applied to generate subtle features of fine-grained images. And in [77], GAN was
used to generate hallucination images. In [45], a self-training strategy was developed
with unlabeled data for augmenting data, and in [78], they applied a self-taught learning
strategy to measure the credibility of each pseudo-labeled instance. In [27], a fully anno-
tated auxiliary dataset which has similar distribution with the target dataset was used to
train a meta learner, which can transfer knowledge from an auxiliary dataset to a target
dataset. In [79] a diversity transfer network (DTN) was proposed to learn to transfer latent
diversities from training data to testing data. Xu et al. [74] first proposed a variational
autoencoder (VAE)-based feature disentanglement method on FSL problems to generate
images. ∆-encoder [80] utilized an autoencoder to find deformations between different
samples of the same category, then generated new samples for the other categories. Ref. [81]
proposed a method of foreground extraction and posture transformation, which can extract
the foreground from base classes and generate additional samples for novel sub-classes to
realize data expansion. Inspired by the hypothesis that language can help learn new visual
objects [82], auxiliary semantic modalities (e.g., attribute annotations [50,83]) were applied
for the support set while ignoring the query set. In addition, other data augmentation
techniques will be described in detail in the following review of FSFGIC methods.

3.2. Local and/or Global Deep Feature Representation Learning Based FSFGIC Methods

In the field of FSFGIC, some scholars consider that local deep feature representations
have the ability to recognize the discriminative regions for distinguishing subtle differences
of fine-grained features. Some scholars argue that combining global and local deep feature
representation learning can effectively improve the capability of deep feature representation.
Currently, there are two main research directions (i.e., optimization-based techniques and
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metric-based techniques) which utilize local and/or global deep feature representations for
performing FSFGIC tasks as illustrated in the following.

3.2.1. Optimization-Based Local and/or Global Deep Feature Representation Learning

The existing optimization-based methods for local and/or global deep feature repre-
sentation learning mainly focus on learning fine-tuning techniques. These methods aim
to improve the model’s performance with limited training samples by integrating the
fine-tuning process during the meta-training stage.

Learning to fine-tune. By using multiple attention mechanisms, a multi-attention
meta-learning (MattML) method [6] applied attention mechanisms to both the basic learner
and the task learner to capture the feature information of subtle and local parts of an image.
It was indicated in [17] that some knowledge in the base data may be biased against the
new class, so transferring the entire knowledge in the base data to the new class may not
obtain a good meta learner or classifier. An evolutionary search strategy was proposed
for transferring partial knowledge by fine-tuning particular layers in the base model after
obtaining deep feature representations through feature extractor. First, several fine-tuning
strategies were randomly generated and their corresponding classification accuracies on
the validation set are obtained. K strategies with the highest accuracy were selected as
parents. Second, with the help of gene mutation and gene crossover as in an evolutionary
algorithm, offspring vectors were obtained and their corresponding classification accuracies
were calculated. By repeating this process in iterations, the best fine-tuning strategy can be
obtained. This proposed evolutionary search strategy can be embedded into a metric-based
method [84] and an optimization-based method [85] for performing FSFGIC tasks. By
introducing enhancement methods that combine global and local perception features into
the feature space and adding semantic orthogonality constraints, ref. [18] achieved a more
comprehensive and accurate representation of image feature information.

3.2.2. Metric-Based Local and/or Global Deep Feature Representation Learning

Metric-based local and/or global deep feature representation learning methods can be
classified into six categories: attention mechanism, metric strategy, multimodel learning,
feature distribution, semantic alignment, and multi-scale representation.

Attention mechanism. Following the idea that a self-attention mechanism has the abil-
ity to indicate the discriminative regions in an image [46], a novel network architecture [86]
that incorporated saliency information as input was designed. Local deep feature represen-
tations from training samples and their corresponding saliency maps obtained from [87]
were combined for improving the classification performance on FSFGIC. Following the
idea of object localization strategy [88], a meta-reweighting strategy [19] was designed to
extract and exploit local deep feature representations of support samples. Furthermore,
an adaptive attention mechanism based on the meta-reweighting model was designed to
localize the region of interest in query samples. The aim of the designed adaptive attention
mechanism was to match query images and support images to highlight relevant regions
of interest for obtaining more discriminative local deep feature representations. A trilinear
spatial-awareness network (S3Net) [23] was proposed to strengthen the spatial represen-
tation of each local descriptor by adding a global relationship feature with self-attention.
They construct the multi-scale features to enhance rich representation in global features.
Finally, a local loss and a global loss were combined to learn the discriminative features.
In [29], they proposed an attention-based pyramid structure to weight the different areas of
the feature maps and produce multi-scaled features. Ref. [20] proposed a fusion spatial
attention method that performs spatial attention simultaneously in both the image and
the embedded space. Ref. [21] proposed a self-attention based prototype enhancement
network (SAPENet) to obtain a more representative prototype for each class. In [89], they
proposed an automatic salient region selection network without the use of a bounding box
or part annotation mechanism for locating salient regions from images.
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Metric strategy. The DeepEMD method [22] formalized the problem of image classifi-
cation as an optimal image matching problem. And then earth mover’s distance (EMD) was
applied to select local discriminative feature representations for finding optimal matching
between query samples and support samples. In [90], a two-stage comparison strategy was
proposed to mine hard examples which correspond to the top two relation scores outputted
by the first relation network and then were inputted into a second relation network to
distinguish similar classes. A subtle difference module [23] was proposed to classify con-
fused or near-duplicated samples based on the cooperation of local and global similarities
between query image and the prototype of each class. Ref. [24] used the Sinkhorn distance
to find an optimal matching between images, mitigating the object mismatch caused by
misaligned position. Meanwhile, they proposed the intraimage and interimage attentions
as the bilateral normalization on the Sinkhorn distance to suppress the object mismatch
caused by background clutter.

Multimodel learning. In [25], Zhao et al. argued that cross-modal external knowledge
will help improve the classification performance on FSFGIC. In this way, a mirror mapping
network (MMN) was designed to map multimodal features (i.e., external knowledge
and global and local feature representations) into the same semantic space. The external
knowledge which was extracted from textual descriptions and knowledge graph was
utilized to generate global and local features for training samples. Finally, global and
local feature representations from samples and external knowledge were combined for
performing FSFGIC tasks.

Feature distribution. Sun et al. [26] proposed a domain-specific FSFGIC task of marine
organisms. They designed a feature fusion model to focus on the key regions. Specifically,
the framework consisted of a ConvNet-based feature extractor, a feature fusion model,
and a classifier. As the key component, the feature fusion model utilized the focus-area
location and high-order integration to generate feature representations which contained
more identifiable information.

Semantic alignment. Huang et al. [27] proposed a novel pairwise bilinear pooling to
recognize the subtle difference of fine-grained images. Specifically, they designed a fine-
grained features extractor which contained an alignment loss regularization and a pair-wise
bilinear pooling layer. The alignment loss aimed to match the features of the same position
and the pair-wise bilinear pooling layer was able to capture comparative features from
pairs of images. The bi-directional local alignment strategy [28] was proposed to encode
image features using shared embedding networks, construct bi-directional distances to
align similar semantic information, and optimize the network for FSFGIC tasks. Traditional
feature generation networks failed to capture the subtle difference between fine-grained
categories; to address this problem, a feature composition framework was proposed in [91]
to generate fine-grained features for novel classes. In the training stage, they proposed a
dense attribute-based attention to compute attention features for all attributes and then
aligned them with attribute semantic vectors to obtain a similarity score. After that, they
applied these attribute features to construct features of novel classes.

Multi-scale representation. Different from the single-scale representation, multi-scale
enhances the representation of global features because the large-scale with larger receptive
fields contains richer information [92–99]. In [23], a structural-pyramid descriptor was
constructed by exploiting the pyramid pooling of the global feature with different scales.
Then, multi-scale features were magnified to the same size and fused together by bilinear
interpolations. Ruan et al. [29] proposed a spatial attentive comparison network (SACN)
for the FSFGIC task. They constructed a selective-comparison similarity module (SCSM)
based on pyramid structure and attention mechanism to assign different weights to the
background and target, aiming to produce multi-scaled feature maps for classification.
In [30], they were the first to attempt integrating the idea of multi-scale representation into
the cross-domain few-shot classification problem by proposing a new hierarchical residual-
like block applicable to lightweight ResNet structures such as ResNet-10. In [31], Zhang
et al. proposed a multi-scale second-order relation network (MsSoSN), which equipped
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second-order pooling and a scale selector to create multi-scale second-order representations.
They proposed a scale and discrepancy discriminator to reweight multi-scale features,
which were trained using a self-supervision method.

3.3. Class Representation Learning Based FSFGIC Methods

The authors of class representation learning based methods argue that local and/or
global deep feature representations learned from extremely limited training samples cannot
effectively represent a novel class, and class representations (e.g., class-level graph [15] or
class-level local deep feature representation [7]) can be used to alleviate the phenomenon
of overfitting and effectively represent a novel class.

3.3.1. Optimization-Based Class Representation Learning

The existing optimization-based class representation learning can be divided into two
categories: (1) learning a model-based method, which aims to design network architectures
to efficiently adapt to target tasks through only several gradient descent steps; (2) learning
fine-tune-based methods.

Learning a model. In [32], an optimization-based FSFGIC method was proposed,
which included a bilinear feature learning module and a classifier mapping module that
encoded discriminative information and mapped features to decision boundaries using
a “piecewise mappings” function. The meta variance transfer method [33] was proposed
to transfer factors of variations between classes to improve classification performance on
unseen examples, allowing deep learning models to generalize better with scarce data
instances and enhance robustness against various factors of variations. In order to combine
distribution-level and instance-level relation, Yang et al. [34] proposed a distribution propa-
gation graph network (DPGN). The features of support images and query images were fed
into a dual complete graph network, where a point-to-distribution aggregation strategy
was applied to aggregate instance similarities to construct distribution representations.
Additionally, a distribution-to-point aggregation strategy was applied to calculate similarity
with both distribution-level and instance-level relations. Few-shot image classification
methods faced challenges in capturing diverse context and intraclass variations with lim-
ited labeled images, leading to object and scale mismatch issues, which were addressed by
the bilaterally normalized scale-consistent Sinkhorn distance (BSSD) method proposed by
He et al. [100] for improved performance on few-shot benchmarks.

Learning to fine-tune. A weight imprinting strategy was proposed in [35], which
aimed to set weights directly of a ConvNet classifier for new categories. They applied a
normalization layer with a scaling factor in the classifier which aimed to transform the
features of new category samples into activation vectors as the weights of the normalization
layer. In [36], a transfer-based method was proposed to generate class representations. They
applied a power transform mechanism to preprocess support features to make them closer
to the Gaussian distribution. According to the Gaussian-like distribution, they applied
maximum a posteriori probability to find the estimates of each class center, which is
similar to the minimization of Wasserstein distance. Then an iterative algorithm based on a
Wasserstein distance was used to estimate the optimal transport from the initial distribution
of the features to the Gaussian distribution in order to update the center. In [37], they
proposed an adaptive distribution calibration (ADC) method, which addressed distribution
bias in few-shot learning by adaptively transferring and calibrating information from base
classes to improve classification performance on novel classes.

3.3.2. Metric-Based Class Representation Learning

Many techniques have been put forward for effective metric-based class representa-
tions, which can be broadly divided into five categories: feature distribution, attention
mechanism, metric strategy, semantic alignment, and multimodel learning.

Feature distribution. In [101], it was demonstrated that the GANs-based feature
generator [102] suffered from the issue of mode collapse. To address this problem, varia-
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tional autoencoder (VAE) [103] and GANs were combined together to form a conditional
feature generation model [73], which aimed to learn the conditional distribution of image
features on the labeled class data and the marginal distribution of image features on the
unlabeled class data. Alternatively, a multi-mixed feature distribution could be learned
to represent each category in RepMet [38] and perform FSFGIC tasks. Davis et al. [39] ex-
tended the DeepEMD method [22] by reconstructing each query sample as a weighted sum
of components from the same class for obtaining class-level feature distribution. In [40],
a re-abstraction and perturbing support pair network (RaPSPNet) was proposed to im-
prove the performance of FSFGIC by enhancing feature discrimination through a feature
re-abstraction embedding (FRaE) module and a novel perturbing support pair (PSP)-based
similarity measure module.

Afrasiyabi [69] proposed two distribution alignment strategies to align the novel
categories to the related base categories, aiming to obtain better class representations. A
centroid alignment strategy and an adversarial alignment strategy based on Wasserstein
distance were designed to enforce intra-class compactness. Das et al. proposed a non-
parametric approach [104] to address the problem that only base-class prototypes were
available. They considered that all class prototype distributions were arranged on a
manifold. They first estimated the novel-class prototypes by calculating the mean of the
prototypes, which were near the novel samples. A graph was structured with all the
class prototypes, and an induced absorbing Markov chain was applied to complete the
classification task. Ref. [105] proposed compositional prototypical networks (CPN) to
learn transferable component prototypes for improved feature reusability, which could be
adaptively fused with visual prototypes using a learnable weight generator for recognizing
novel classes based on human-annotated attributes.

In order to learn fine-grained structure in the feature space, Luo et al. [106] proposed a
two-path network to adaptively learn the views. One path was label-guided classification,
where the support features belonging to the same class were aggregated into a prototype
and the similarities were calculated between the prototypes and query images. Another
path was instance-level classification, which aimed to produce different views for an image,
then map them into feature space to construct a better fine-grained semantic structure.
Ref. [107] proposed to combine the frequency features with routine features. In addition
to a regular CNN module, a discrete cosine transformation was applied to generate fre-
quency feature representations. Then, the two kinds of features were concatenated as
the final features. Current approaches overlooked intra-class distribution details while
focusing on learning a generalized class-level metric. Ref. [108] proposed improved pro-
totypical networks (IPN) to address the issue by using an attention-analogous strategy
with varied sample weights based on representativeness and a distance-scaling strategy to
enhance class-distribution exploration and discriminative information across classes. To
gain Gaussian-like distributions, ref. [109] proposed a transfer-based method to process
features belonging to the same class. They introduced transforms to adjust the distribution
of features, and a Wasserstein distance-based iterative algorithm to calculate the prototype
for each class. Similarly, ref. [110] proposed an optimal-transport algorithm to transform
features into Gaussian-like distributions and estimate the best class centers.

Attention mechanism. The attention strategy aims to select discriminative feature
or region from the extracted feature space for effective class-level feature representation.
In [46], an attention mechanism [111] was applied to locate and reweight semantically
relevant local region pairs between query and support samples, which aimed to strengthen
discriminative objects and suppress the background. He et al. [41] indicated that object
localization (using local discriminative regions) could provide great help for FSFGIC. Then
a self-attention-based complementary module, which utilized channel attention and spatial
attention was designed for performing weakly supervised object localization and finding
their corresponding discriminative regions. Ref. [48] utilized channel attention and spatial
attention to find discriminative regions from query and support samples for improving
the classification performance of FSFGIC. A novel transformer-based neural network
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architecture called CrossTransformers [42] was designed which applied a cross-attention
mechanism to find coarse spatial correspondence between the query and support labeled
samples in a class. In [50], an attention mechanism was proposed to mix two modalities
(i.e., semantic and visual modalities) and ensure that the representations of attributes were
in the same space with visual representation. Single prototype-based methods might fail
to capture the subtle information of a class. To address this problem, Huang et al. [43]
proposed a descriptor-based multi-prototype network (LMPNet) to learn multi-prototype.
They designed an attention mechanism to weight all channels in each spatial position of all
samples adaptively to obtain local descriptors, and constructed multiple prototypes based
on these descriptors which contained more complete information of a class.

Metric strategy. To obtain discriminative class representations for FSFGIC, image-to-
class metric strategies were proposed. Deep nearest neighbor neural network (DN4) [7]
aimed to learn optimal class-level local deep feature representation of a class space based
on the designed image-to-class similarity measure strategy in the case of extremely limited
training samples. A discriminative deep nearest neighbor neural network (D2N4) [112] ex-
tended the DN4 method [7] by adding a center loss function [113]. And then class-level local
and global feature representations were learned for improving the quality discriminability
features in the framework of the DN4 method [7]. The Bi-Similarity Network (BSNet) [44]
was proposed to use two different similarity measures to create more discriminative feature
maps from a small number of images, resulting in a significant boost in generalization
performance. In [45], Zhu et al. argued that a large amount of unlabeled data had the high
potential to improve the classification performance in FSFGIC tasks. A progressive point to
set metric learning (PPSML) [45] was presented to improve few-shot classification accuracy
by defining a distance metric and using a self-training strategy. To avoid overfitting and
calculate a robust class representation under the condition of extremely limited training sam-
ples, a deep subspace network (DSN) [114] was introduced to transform class representation
into an adaptive subspace and generate a corresponding classifier.

Triantafillou et al. proposed a mean average precision (mAP) [115], which aimed
to learn a similarity metric based on information retrieval. They extended the work that
optimized for AP in order to account for all possible choices of query among the batch
points. They then used the frameworks of SSVM (Structural Support Vector Machine) and
DLM (Direct Loss Minimization) for optimization of mAP. Liu et al. [116] introduced a
negative margin loss to reduce inter-class variance and generate more efficient decision
boundaries. Hilliard et al. [70] proposed a metric-agnostic conditional embeddings (MACO)
network. MACO contained four stages: the feature stage was used to obtain features, the
relational stage produced a single vector as the class representation of each class. The
conditioning stage connected the class representations to query image features which
aimed to learn the class representation that was more relevant to the query image and the
classifier made the final prediction.

Semantic alignment. It was indicated in [47] that people tended to compare similar
objects thoroughly in a pairwise manner, e.g., comparing the heads of two birds first, then
their wings and feet. In this manner, it was natural to enhance feature information during
the comparison process. A low-rank pairwise bilinear pooling operation network [47]
was designed for obtaining class-level deep feature representation between query and
support samples in terms of the way that people compared similar objects. According
to [46], the main object could be situated anywhere in the image, leading to potential
ambiguity when directly computing the distance between query and support samples. To
address this problem, semantic alignment metric learning (SAML) [46] was proposed to
align the semantically related local regions on samples by a “collect and select” strategy.
On the one hand, the similarities of all local region pairs from query samples and support
class in a relation matrix were calculated and obtained. On the other hand, an attention
mechanism [111] was applied to “select” the semantically relevant pairs. Li et al. [48]
extended the method in [46], and a convolutional block attention module [117] was applied
to capture discriminative regions. To eliminate the influence of noise and improve the
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efficiency of a similarity measure, query-relevant regions from support samples were
selected for semantic alignment. Then, multi-scale class-level feature representations were
utilized to represent discriminative regions of the query, support samples in a class, and
perform FSFGIC tasks. In [69], a centroid associative alignment strategy was proposed to
enforce intra-class compactness and obtain better class representations.

Alternatively, an end-to-end graph-based approach called explicit class knowledge
propagation network (ECKPN) [15] was proposed, which aimed to learn and propagate the
class representations explicitly. First, a comparison module was used to explore the relation-
ship between paired samples for learning sample representations in instance-level graphs.
Secondly, a squeeze strategy was proposed to make the instance-level graph generate the
class-level graph, which helped obtain class-level visual representation. Third, the class-
level visual representations were combined with the instance-level sample representations
for performing FSFGIC tasks.

Multimodel learning. Inspired by the prototypical network [85], a multimodal proto-
typical network [49] was designed for mapping text data into the visual feature space by
using GANs. In [50], Huang et al. indicated that some methods, which applied auxiliary
semantic modalities into a metric learning framework, only augmented the feature represen-
tations of samples with available semantics and ignored the query samples, which might
lose the potential for the improvement of classification performance and could lead to a shift
between the modalities combination and the pure-visual representation. To address this
issue, an attributes-guided attention module (AGAM) was proposed, which aimed to make
more effective use of human-annotated attributes and learn more discriminative class-level
feature representations. An attention alignment mechanism was designed to distill knowl-
edge from attribute guidance to the pure visual feature selection process, so that it could
learn to pay attention to more semantic features without using the restriction of attribute
annotation. To better align the visual and language feature distributions that described
the same object class, a cross-modal distribution alignment module [51] was proposed, in
which a vision-language prototype was introduced for each class to align the distributions,
and the earth mover’s distance (EMD) was adopted to optimize the prototypes.

Gu et al. [118] proposed a two-stream neural network (TSNN), which not only learned
features from RGB images, but also focused on steganalysis features via a steganalysis rich
model filter layer. The RGB stream aimed to distinguish the difference between support
images and query images based on the global-level features and calculated the representa-
tions of each support class; the steganalysis stream extracted steganalysis features to locate
critical regions. An extractor and fusion module was used to fuse the two-stream features
by a general convolutional block. An image-to-class deep metric was applied to produce the
similarity scores. Zhang et al. [119] introduced fine-grained attributes into the prototype net-
work and proposed a prototype completion network (ProtoComNet). In the meta-training
stage, ProtoComNet extracted representative attribute features as priors. They applied an
attention-based aggregator to aggregate the attribute features and prototype to obtain the
completed prototype. In addition, a Gaussian-based prototype fusion strategy was designed
to learn mean-based prototypes from unlabeled samples, and applied Bayesian estimation
to fuse the two kinds of prototypes, aiming to produce more representative prototypes.

3.4. Task-Specific Feature Representation Learning Based FSFGIC Methods

Task-specific feature representation learning based FSFGIC methods aim to overcome
the problem of overfitting and poor generalization and utilize deep feature representation
from all training samples in a task (i.e., one training episode) to construct a task-specific
feature representation (e.g., task-level graph relationship representation [16] or task-level
local deep feature representation [8]) for this task.

3.4.1. Optimization-Based Task-Specific Feature Representation Learning

The existing optimization-based task-specific feature representation learning methods
can be divided into two categories: learning a model and learning to fine-tune.
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Learning a model. In [52], a task embedding network was presented to learn task-
specific feature representations via a Fisher information matrix [120] for exploring the
nature of the target task and its relationship to other tasks. Meanwhile, the learned task-
specific feature representations could also show the similarity between two different tasks.
It was indicated in [53] that the existing optimization-based methods learned to equally
utilize meta-knowledge in each task without considering the diversity of each task. To
address this problem, they extended the model-agnostic meta-learning method [121] to deal
with the imbalance of the number of samples in each task instance and out-of-distribution
tasks, but the encoding of complex datasets and calculation of balance variables for each
task increased the computational complexity of the algorithm.

A meta neural architecture search method called M-NAS [122] was proposed to
effectively obtain a task-specific architecture for each new task. Specifically, an autoencoder
was designed to generate a task-aware model architecture which had the ability to tailor the
globally shared meta-parameters. It was indicated in [123] that meta-learning models were
prone to overfitting in a new task with limited samples. In this way, a gradient dropout
regularization was proposed to efficiently adapt to a new task. The key idea was to impose
uncertainty on the meta-training stage by adding a noise gradient to parameters to improve
the generalization of the model. In [54], new transformers called HCTransformers were
introduced, which enhanced data efficiency for visual recognition by leveraging spectral
token pooling and attribute surrogate learning. They addressed the limitations of vision
transformers with limited data, providing better performance through improved parameter
optimization and image structure utilization.

In order to improve the representation ability of meta-learning methods, a deep meta-
learning (DEML) method [124] was proposed to generate high-level concepts for each
image in a task. These concepts could guide the meta-learner to adapt quickly to new
tasks. Moreover, a concept discriminator was designed to recognize different images.
Tian et al. [125] proposed a new consistent meta-regularization (Con-MetaReg) to enhance
the learning ability of meta-learning models. Specifically, a base learner trained on the
support set, then another learner trained on a novel query set. Con-MetaReg was proposed
to align the two learners by the Frobenius norm of the difference between parameters to
eliminate the data discrepancy for better meta-knowledge. In [126], a label-free loss function
called Self-Critique and Adapt (SCA) was proposed. SCA could be added to a base model to
learn knowledge with an unsupervised loss from a critic loss network. The features learned
from the base model were sent to the critic network to create a loss for the target task.

Learning to fine-tune. In order to overcome overfitting and the poor generalization
ability caused by limited training samples, an effective scheme [1] for selecting samples from
the auxiliary data was proposed. According to a given classifier with shared parameters,
some samples with similar feature distributions to some given target samples were selected
from an auxiliary dataset with rich samples. The selected samples from an auxiliary dataset
and the given target samples were sent into the classifiers to pre-train a weight initialization.
Finally, the remaining target samples were used to fine-tune the parameters corresponding
to the classifiers for quickly adapting to target tasks.

In order to improve the generalization on the novel domain, ref. [55] proposed a
combining domain-specific meta-learners (CosML) method. CosML pre-trained a set of
meta-learners on different domains to learn domain-specific parameters. CosML generated
task and domain prototypes to represent each task and domain in the feature space. For
the novel domain, they initialized a subnetwork with the domain-specific meta-parameters,
which were weighted by the similarity of these domains and the novel domain. In the
optimizing phase, properties in an image that were not related to the target task interfered
with the optimization results. A context-agnostic (CA) [56] method was proposed to
abandon the additional properties in training data. In the training task, they applied a
context-adversarial network to generate another object without extra information to the
base network to initialize context-agnostic weights.
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3.4.2. Metric-Based Task-Specific Feature Representation Learning

The existing metric-based task-specific feature representation learning methods can be
classified into three categories: feature distribution, attention mechanism, and metric strategy.

Feature distribution. In [57], a covariance metric network (CovaMNet) was proposed,
which aimed to obtain task-level covariance representations and a covariance metric between
query and support samples. Furthermore, a novel deep covariance metric was designed to
measure the consistency of distributions between query and support samples for performing
FSFGIC tasks. The metric function might have failed to generalize due to the discrepancy
between the feature distributions of the base and novel domains in a task. To address
this problem, Tseng et al. [58] proposed a cross-domain approach which applied a feature-
wise transformation layer to simulate the feature distributions of different domains. In the
training stage, the feature-wise transformation layer was inserted into the feature encoder
and optimized by two hyper-parameters via a learning-to-learn strategy. Ref. [59] proposed
an unsupervised embedding adaptation mechanism called early-stage feature reconstruction
(ESFR). ESFR contained a feature-level reconstruction training stage and a dimensionality-
driven early stopping stage, which aimed to find out more generalizable features.

Attention mechanism. In [8], an adaptive episodic attention module was designed
to select and weight key regions among the entire task. Alternatively, attention strategy
was also used in graph neural networks (GNNs) for effectively obtaining task-level relation
representations. Guo et al. indicated in [16] that existing GNN-based FSFGIC methods
focused on the sample-to-sample relations while neglecting task-level relationships. Then,
a GNN based sample-to-task FSFGIC method named attention-based task-level relation
module (ATRM) was proposed to consider the specificity of different tasks. In ATRM,
task-relation representations between the embedding features of a target sample and the
embedding features of all samples in the task were obtained by calculating the absolute
difference between the target sample and all samples in the task. Then, an attention
mechanism was used to learn task-specific relation representations for each task.

Metric strategy. It was indicated in [8] that the existing image-to-image similarity
measure [19] or image-to-class similarity measure [7] could not make full use of local deep
feature representations. To address this problem, an adaptive task-aware local representa-
tions network (ATL-Net) was designed to select local descriptors with learned thresholds
and assign selected local representations different weights based on episodic attention for
improving the local deep feature representations. In [60], a region comparison network
was proposed which aimed to reveal how FSFGIC worked in neural networks. In order to
explore more fine-grained information and find the critical regions, each support sample
was divided into several parts, and task-level local deep feature representations between
each region in a support sample and each query sample were used to calculate their feature
similarities and their corresponding region weights. Then, an explainable network was de-
signed to find the critical regions related to the final classification results. A discriminative
mutual nearest neighbor neural network (DMN4) [61] extended the DN4 method [7] and a
mutual nearest neighbor mechanism [127] was applied to obtain task-level local-feature
representations between query and support samples for performing FSFGIC tasks. Li et al.
extended a triplet network [128] into a deep K-tuplet network [62] for learning a task-level
local deep feature representation by utilizing the relationship among the input samples in a
training episode.

3.5. Comparison of Experimental Results

In Table 2, we select experimental data of some research results for the above three
feature representation learning methods to be shown. It is worth noting that the data in
Table 2 are derived from the corresponding original papers. Different backbone networks
and different feature representation learning methods make the final model performance
different. At present, some researchers [7,46] combine two or more feature representation
learning methods to make the model obtain better classification results. In this paper, we
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classify the above models according to the feature representation learning method, which
occupies the largest proportion in the original method.

Table 2. FSFGIC results of CUB-200-2010, CUB-200-2011, Stanford Dogs, and Stanford Cars.

Methods Published in Backbone

Accuracy

CUB_2010 CUB_2011 Dogs Cars

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

LG 1

O 4
MattML [6] IJCAL 2020 Conv-64F - - 66.29 80.34 54.84 71.34 66.11 82.80

P-Transfer [17] AAAI 2021 ResNet-12 - - 73.88 87.81 - - - -
GLFA [18] PR 2023 ResNet-12 - - 76.52 90.27 - - - -

M 5

PABN [27] ICME 2019 Bilinear CNN - - 66.71 76.81 55.47 66.65 56.80 68.78
DeepEMD [22] CVPR 2020 ResNet-12 - - 75.65 88.69 - - - -

Adaptive
Attention [19] Arxiv 2020 Conv-64F 64.51 78.62 - - 61.74 77.37 70.73 87.72

MMN [25] ICME 2020 ResNet-18 - - 72.5 86.1 - - - -
SACN [29] KBS 2021 Conv-32F - - 71.50 79.77 64.30 71.65 68.23 78.70
S3Net [23] ICME 2021 Conv-64F 64.27 78.02 72.30 84.23 63.56 77.54 71.19 84.40

LCCRN [129] TCSVT 2023 ResNet-12 - - 82.97 93.63 - - 87.04 96.19
SAPENet [21] PR 2023 Conv-64F - - 70.38 84.47 - - - -

CR 2

O
PCM [32] TIP 2019 Bilinear CNN - - 42.10 62.48 28.78 46.92 29.63 52.28

DPGN [34] CVPR 2020 ResNet-12 - - 75.71 91.48 - - - -

ADC [37] Information
Sciences 2022 ResNet-12 - - 80.2 91.42 - - - -

M

MACO [70] Arxiv 2018 Conv-32F - - 60.76 74.96 - - - -
SAML [46] ICCV 2019 Conv-64F - - 69.35 81.37 - - - -

DN4 [7] CVPR 2019 Conv-64F 53.15 81.90 - - 45.73 66.33 61.51 89.60
LRPABN [47] TMM 2020 Bilinear CNN - - 67.97 78.04 54.52 67.12 63.11 72.63
TSNN [118] ECAI 2020 Conv-64F 57.02 70.33 48.62 63.45 - - - -

Centroid [69] ECCV 2020 ResNet-18 - - 74.22 88.65 - - - -
BSNet [44] TIP 2020 Conv-64F - - 62.84 85.39 43.42 71.90 40.89 86.88
CTX [42] NIPS 2020 ResNet-34 - - - 84.06 - - - -

D2N4 [112] TGRS 2020 Conv-64F 56.85 77.78 - - 47.74 70.76 59.46 86.76
FRN [39] Arxiv 2020 ResNet-12 - - 83.55 92.92 - - - -

Neg-Cosine [116] ECCV 2020 ResNet-18 - - 72.66 89.40 - - - -
PPSML [45] ICIP 2020 Conv-64F 63.43 78.76 - - 52.16 72.00 71.71 90.02
AGAM [50] AAAI 2021 ResNet-12 - - 79.58 87.17 - - - -

PN+VLCL [106] ICME 2021 WRN 71.21 85.08 - - - - - -
ECKPN [15] CVPR 2021 ResNet-12 - - 77.43 92.21 - - - -

QPN [48] Arxiv 2021 Conv-64F - - 66.04 82.85 53.69 70.98 63.91 89.27
LMPNet [43] PR 2021 ResNet-12 65.59 68.19 - - 61.89 68.21 68.31 80.27

ProtoComNet [119] CVPR 2021 ResNet-12 - - 93.20 94.90 - - - -
TOAN [130] TCSVT 2021 ResNet-256 - - 67.17 82.09 51.83 69.83 76.62 89.57

EASE+SIAMESE [11] CVPR 2022 WRN - - 91.68 94.12 - - - -
CPN [105] Arxiv 2023 ResNet-12 - - 87.29 92.54 - -

RaPSPNet [40] PR 2023 Conv-64F 67.54 83.73 73.53 91.21 55.77 73.58 71.39 92.60

TR 3

O

DEML+Meta-
SGD [124] Arxiv 2018 ResNet-50 - - 66.95 77.11 - - - -

CosML [55] Arxiv 2020 Conv-64F 46.89 66.15 - - - - 47.74 60.17
ANIL+CM [125] TNNLS 2021 ResNet-12 - - 59.89 74.35 - - - -

CA-MAML++ [56] ACCV 2020 ResNet-18 - - 43.3 57.9 - - - -
M-NAS [122] AAAI 2020 Conv-64F - - 58.76 72.22 - - - -
GNN [131] Sensors 2022 GNN - - 61.1 78.6 49.8 65.3 - -

M

CovaMNet [57] AAAI 2019 Conv-64F 52.42 63.76 - - 49.10 63.04 56.65 71.33
ATL-Net [8] IJCAI 2020 Conv-64F 60.91 77.05 - - 54.49 73.20 67.95 89.16

DPGN+ATRM [16] Arxiv 2021 ResNet-12 - - 77.53 90.39 - - - -
DMN4 [61] Arxiv 2021 Conv-64F - - 78.36 92.16 - - - -

TRSN-T [14] TNNLS 2023 ResNet-12 - - 93.58 95.09 - - - -

1 LG: Local and/or global deep feature representation learning. 2 CR: Class representation learning. 3 TR:
Task-specific feature representation learning. 4 O: Optimization-based. 5 M: Metric-based.

4. Summary and Discussions

Our investigation indicates that the existing FSFGIC methods have made great process
in FSFGIC tasks, but there are still some important challenges to FSFGIC that need to be
dealt with in the future.

Trade-off between the problem of overfitting and the ability of image feature
representation. Our investigation indicates that the existing FSFGIC algorithms are
still at the stage of theoretical exploration and cannot be used in practical applications.
Currently, data augmentation, regularization, and modeling of the feature extraction
process can effectively alleviate the overfitting problem caused by extremely limited
training samples and can also enhance the ability of feature representation, but there is
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still a trade-off between overcoming the overfitting problem and enhancing the ability
of image feature representation. On the one hand, image feature representation is used
not only to represent train samples, but also to construct classifiers for performing
FSFGIC tasks. In this manner, the quality of feature representation directly affects the
classification performance on FSFGIC. On the other hand, due to the extremely limited
number of training samples on FSFGIC, the existing FSFGIC methods utilize a relatively
simple network as a backbone (e.g., Conv-64F [132]) for alleviating the overfitting
problem. Our investigation indicates that the existing simple networks cannot effectively
learn discriminative features from training samples compared with the existing large
networks (e.g., ResNet50 [133]). Therefore, how to balance the problem of overfitting
and the ability of image feature representation is one of the most important challenges
on FSFGIC.

Generalization in FSFGIC. There exist two main challenges on generalization
in FSFGIC methods. On the one hand, an ideal FSFGIC algorithm should have the
ability to handle various learning tasks with different complexity and diversity of data.
Our investigation indicates that, currently, the number of tasks and datasets available
for FSFGIC training is very limited (much less than the number of instances available
in few-shot learning). Most of the existing FSFGIC methods are over-designed for
specific benchmark tasks and data sets which may weaken the applicability of the
existing FSFGIC methods for dealing with more general FSFGIC tasks. On the other
hand, our investigation indicates that most of the existing FSFGIC studies focus on
common application scenarios with small-scale tasks and large-scale labeled auxiliary
data. However, the actual FSFGIC tasks that need to be solved may be dynamic and
the labeled auxiliary data is not available. Therefore, it is necessary to generalize the
technique of feature representation learning to effectively perform cross-domain or
multi-domain FSFGIC tasks.

Theoretical research. In essence, all FSFGIC solutions are designed by specific tech-
niques to obtain feature representations that can be used to accurately represent samples
and to perform FSFGIC tasks. Although the quality of feature representation directly
affects the classification performance of FSFGIC, our investigation indicates that no one
has considered how to establish a theoretical approach to measure whether the feature rep-
resentation learned from training samples can correctly reflect the inherent characteristics
of the training samples. Therefore, constructing a systematic theory for FSFGIC from the
perspective of improving the accuracy of feature representations obtained from training
samples can bring new inspiration to FSFGIC researchers.

Performance and efficiency. As shown in Figure 3, the FSFGIC methods still have
some challenges in terms of performance and efficiency. Researchers still need to make
breakthroughs in the following aspects: (1) how to obtain more discriminating local signifi-
cant features; (2) how to achieve better classifier performance; (3) how to reduce the model
complexity and time complexity, so as to avoid overfitting and strengthen the robustness of
the model.
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Main challenges 

for FSFGIC

Performance

(a) High ability to obtain local feature representation

Efficiency

       Recognizing discriminative local feature is the critical part in FSFGIC task . 

Existing methods learn local features mainly by local and/or global deep feature 

representation (Wertheimer et  al. 2021; Huang et  al. 2020), class representation 

(Karlinsky et al. 2019; Xian et al. 2019), and task- specific feature representation 

(Lee & Chung 2021; Guo et al. 2021).

(b) Classifier performance

       Classifier performance is very important for prediction results. Existing 

methods such as learning a metric measure (Li et al. 2019; Yang et al. 2020), or 

proposing a deep neural network (Wei et al. 2019).

(a) Model complexity

       A simple but efficient algorithm can take less memory space while achieve 

good performance, such as the simple construction of network (Li et al. 2020), or 

reduce data redundancy (Ruan et al. 2021).

(b) Time complexity

       Expediting the convergence rate of the model, some  methods develop more 

efficient gradient descent strategy  (Lee et  al . 2019; Tseng et  al . 2020), other 

methods aim to Initialize better parameters (Jiang et al. 2020; Zhou et al. 2018).

Figure 3. Main challenges for FSFGIC [7,16,19,29,32,34,38,39,44,47,53,59,73,112,123,124].

5. Conclusions

It is obvious that the fine-grained datasets are small in scale, and the samples between
different subclasses often exist only in local subtle regions. Therefore, only the method
that can extract the feature information of the local salient regions of the image without
a large number of labeled samples for model training can achieve better classification
performance of fine-grained datasets. The general few-shot algorithm is not designed for
the fine-grained features of the image, so it cannot effectively extract the subtle differences
in the image, resulting in poor performance [134]. Based on this, many FSFGIC methods
have been proposed by researchers, and satisfactory results have been achieved. The
excellent classification performance of these methods is mainly due to the following two
reasons: (1) focusing on the feature information of the significant region of the image, it
can obtain more distinctive and effective feature representation; (2) the inter-class distance
between different subclasses is increased, and the intra-class distance within the same
subclass is reduced.

In this paper, we presented a comprehensive review on feature representation learning
for FSFGIC. A taxonomy for FSFGIC is proposed. In terms of this taxonomy, different
issues of FSFGIC methods are discussed. The main unresolved problems related to feature
representation learning for FSFGIC are summarized and discussed. We hope that this
survey can help newcomers and practitioners position themselves in this growing field and
work together to keep pushing the field forward.
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