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Abstract: Spiro-oxindoles are important heterocyclic motifs found in various alkaloids, many of which
exhibit pharmacological properties. Due to the remarkable biological activity of spiro-oxindoles,
significant effort has been made towards the synthesis of substituted spiro-oxindoles. In this paper,
preliminary results regarding the synthesis of 3,3′-spiro pentacyclo-oxindole derivatives via the
ring-closing metathesis of 3,3-diallyl oxindoles are reported. The ring-closing metathesis reaction
proceeded smoothly with Grubb’s catalyst-I (2 mol%) in toluene at room temperature. The desired
products, 3,3′-spiro pentacyclo-oxindoles, were obtained in good to excellent yields under standard
reaction conditions.
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1. Introduction

Indoles and their annulated derivatives are very important heterocyclic compounds
found in a variety of natural products [1,2], several of which exhibit remarkable biological
activities, including antimalarial, anti-inflammatory, antiasthmatic, antibacterial, antihy-
pertensive, anti-cancer, and tyrosine kinase-inhibiting agents [3,4]. Spirocycloxindoles also
have wide applications in medicinal chemistry and pharmacological fields [5–11]. Several
functionalized spirocycloalkyloxindoles have been used as an active intermediate for the
preparation of complex molecules of biological interest [12]. This core moiety is the basic
skeleton of various natural alkaloids, including coerulescine, horsfiline, welwitindolinone
A, spirotryprostatin A, elacomine, alstonisine, surugatoxin, etc. [13–17]. Due to the re-
markable biological activity of spiro-oxindoles significant effort has been paid towards the
synthesis of substituted spiro-oxindole derivatives [12,18,19]. However, the application of
ring-closing metathesis [20–22] for the synthesis of spirocyclo-oxindole derivatives has not
been reported.

During the last decades, ring-closing metathesis (RCM) reactions have been widely
used as a synthetic tool for the construction of a great variety of carbo- and heterocyclic
systems [23–29]. RCM has been considered a highly effective and practical method in or-
ganic synthesis. In our previous study [30,31], we reported the synthesis of some annulated
heterocycles via RCM using ruthenium carbene catalyst-I and II (Figure 1) [32,33]. In this
paper, we report the preliminary results of the ring-closing metathesis reaction involving
the indole moiety. The ring-closing metathesis reaction of 3,3-diallyl oxindoles leads to
3,3′-spiro pentacyclo-oxindole derivatives with 2 mol% of Grubb’s catalyst-I in toluene
solvent. The required starting materials, 3,3-diallyl oxindoles, were prepared by the simple
alkylation of oxindoles with allyl bromide in the presence of NaH at room temperature.
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Figure 1. Structure of Grubb’s catalysts.

2. Result and Discussion

We chose 3,3-diallyl oxindoles (2) as starting materials for the preparation of 3,3′-spiro
pentacyclo-oxindoles. The simple alkylation of oxindoles with allyl bromide in the presence
of NaH at room temperature gives the requisite starting materials, 3,3′-diallyl oxindoles
(Scheme 1).

Chem. Proc. 2023, 14, 14  2 of 5 
 

 

 

Figure 1. Structure of Grubb’s catalysts. 

2. Result and Discussion 

We chose 3,3-diallyl oxindoles (2) as starting materials for the preparation of 

3,3/-spiro pentacyclo-oxindoles. The simple alkylation of oxindoles with allyl bromide in 

the presence of NaH at room temperature gives the requisite starting materials, 

3,3/-diallyl oxindoles (Scheme 1).  

 

Scheme 1. Preparation of 3,3-diallyl N-substituted 2-oxindoles. 

To examine the feasibility of the metathesis approach, we attempted the ring-closing 

metathesis (RCM) reaction of diene 2a with 2 mol% of catalyst-I. RCM on diene 2a with 2 

mol% of catalyst-I in CH2Cl2 at room temperature under a nitrogen atmosphere led to 

3,3/-spiro pentacyclo-oxindole (3a) in poor yield (37%). The use of 5 mol% of catalyst did 

not improve the yield of the product to any appreciable extent. However, the yield of the 

product was found to be raised to 92% by conducting the reaction in toluene at room 

temperature (Scheme 2). Heating the reaction at 60 °C led to considerable decomposition 

of the starting materials. The ring-closing metathesis reactions with compounds 2b and 

2c also proceeded smoothly with 2 mol% of Grubb’s catalyst-I in toluene solvent at room 

temperature. All the reactions were completed in 5h and provided a high yield of spi-

ro-oxindole derivatives. 

 

Scheme 2. Ring-closing metathesis of diallyl indoles. 

Scheme 1. Preparation of 3,3-diallyl N-substituted 2-oxindoles.

To examine the feasibility of the metathesis approach, we attempted the ring-closing
metathesis (RCM) reaction of diene 2a with 2 mol% of catalyst-I. RCM on diene 2a with
2 mol% of catalyst-I in CH2Cl2 at room temperature under a nitrogen atmosphere led to
3,3′-spiro pentacyclo-oxindole (3a) in poor yield (37%). The use of 5 mol% of catalyst did
not improve the yield of the product to any appreciable extent. However, the yield of
the product was found to be raised to 92% by conducting the reaction in toluene at room
temperature (Scheme 2). Heating the reaction at 60 ◦C led to considerable decomposition
of the starting materials. The ring-closing metathesis reactions with compounds 2b and
2c also proceeded smoothly with 2 mol% of Grubb’s catalyst-I in toluene solvent at room
temperature. All the reactions were completed in 5h and provided a high yield of spiro-
oxindole derivatives.
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3. Conclusions

In conclusion, we carried out the ring-closing metathesis of 3,3-diallyl oxindoles with
Grubb’s first-generation catalyst for the synthesis of 3,3′-spirocyclic oxindoles. The reaction
occurred smoothly at room temperature in a short amount of time.
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4. Experimental

The melting points of the newly synthesized compounds were determined in open
capillaries and are uncorrected. 1H NMR (400 MHz) spectra were recorded on a Bruker
DPX-400 spectrometer in CDCl3 solvent with TMS as an internal standard. Silica gel
[(60–120 mesh), Spectrochem, India] was used for chromatographic separation. Pre-coated
aluminum plates [Merck (India)] were used for thin-layer chromatography.

4.1. Procedure for the Preparation of Compound 2a

A mixture of N-methyl 2-oxyindole 1 (0.500 gm, 3.40 mmol), allyl bromide (2.5 eq.,
8.5 mmol), and NaH was stirred in dry THF (20 mL) for 7 h at room temperature. The
reaction mixture was quenched with water, and the resulting mixture was extracted with
CH2Cl2 (3 × 10 mL). The combined CH2Cl2 extract was washed with water and dried
(MgSO4). The residual mass after removal of CH2Cl2 was subjected to column chromatog-
raphy over silica gel (60–120 mesh) using petroleum ether/ethyl acetate (9:1) as eluent to
give compounds 2a.

4.1.1. Compound 2a

Yield: 71%; colorless solid; 1H NMR (CDCl3, 400 MHz): δH = 2.51–2.62 (m, 4H), 3.74 (s,
3H), 4.83 (d, J = 10.1 Hz, 2H), 4.99 (d, J = 17.0 Hz, 2H)), 5.30–5.41 (m, 2H), 6.79 (d, J = 7.7 Hz,
1H), 7.17 (t, J = 7.1 Hz, 1H), 7.16–7.26 (m, 2H) ppm; MS: m/z for C15H17NO: 227 [M+].

4.1.2. Compound 2b

Yield: 69%; colorless solid; 1H NMR (CDCl3, 400 MHz): δH = 1.19 (t, J = 7.2 Hz, 3H),
2.49–260 (m, 4H), 3.71 (q, J = 7.2 Hz, 2H), 4.86 (d, J = 10.2 Hz, 2H), 4.97 (d, J = 16.9 Hz, 2H),
5.32–5.42 (m, 2H), 6.81 (d, J = 7.76 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.3 Hz, 1H),
7.22–7.24 (m, 1H) ppm; MS: m/z for C16H19NO: 241 [M+].

4.1.3. Compound 2c

Yield: 56%; colorless solid; 1H NMR (CDCl3, 400 MHz): δH = 2.49–2.60 (m, 4H),
4.81 (d, J = 10.1 Hz, 2H), 4.98 (d, J = 17.0 Hz, 2H), 5.29–5.40 (m, 2H), 6.70 (d, J = 7.2 Hz,
1H), 7.13–7.18 (m, 3H), 7.77–7.33 (m, 3H), 7.41–7.43 (m, 1H) ppm; MS: m/z for C20H19NO:
289 [M+].

4.2. Typical Procedure for the Enyne RCM

Grubb’s catalyst-I (2 mol%) was added to a magnetically stirred solution of 2a (114 mg,
0.5 mmol) in dry toluene (2 mL) under an N2 atmosphere. The reaction mixture was stirred
at room temperature for 5 h. After completion, the solvent was removed under reduced
pressure, and the residue was subjected to column chromatography over silica gel using
petroleum ether-ethyl acetate (4:1) as the eluent to give 3a in 92% yield. Similar treatments
of compounds 2b and 2c provided 3b and 3c in 90% and 84% yields, respectively.

4.2.1. Compound 3a

Yield: 92%; solid; 1H NMR (CDCl3, 400 MHz): δH = 2.58 (d, J = 14.4 Hz, 2H), 2.98 (d,
J = 14.9 Hz, 2H), 3.22 (s, 3H), 5.83 (s, 2H), 6.81 (d, J = 8.0 Hz, 1H), 7.01 (t, J = 7.44 Hz, 1H),
7.22–7.25 (m, 2H) ppm; MS: m/z for C13H13NO: 199.0987 [M+].

4.2.2. Compound 3b

Yield: 90%; solid; 1H NMR (CDCl3, 400 MHz): δH = 1.27 (t, J = 7.3 Hz, 3H), 2.57 (d,
J = 14.6 Hz, 2H), 2.98 (d, J = 14.8 Hz, 2H), 3.76 (q, J = 7.2 Hz, 2H), 5.82 (s, 2H), 6.83 (d,
J = 7.7 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 7.21–7.25 (m, 2H) ppm; MS: m/z for C14H15NO:
213.1172 [M+].



Chem. Proc. 2023, 14, 14 4 of 5

4.2.3. Compound 3c

Yield: 84%; solid; 1H NMR (CDCl3, 400 MHz): δH = 2.58 (d, J = 14.7 Hz, 2H), 2.99 (d,
J = 14.7 Hz, 2H), 5.83 (s, 2H), 6.82 (d, J = 7.7 Hz, 1H), 7.01 (t, J = 7.3 Hz, 2H), 7.21–7.25 (m,
4H), 7.28–7.31 (m, 2H) ppm; MS: m/z for C18H15NO: 261.1160 [M+].
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