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Abstract: Thiazolyl–pyrimidine hybrid plays significant roles in the biological activities and SAR of
thiazolylpyrimidines (Tzpd), thiazolopyrimidines, and thienopyrimidines due to the combination
of the thiazole and pyrimidine pharmacophores. The study developed regression-based models for
the prediction of antiplasmodial activity of 43 Tzpd hybrid obtained from the ChEMBL database.
The molecular descriptors (145 features) were scaled down to 6 using the recursive feature elim-
ination. The X- and Y-matrix were split into 34 train and 9 test sets using a split ratio of 0.20.
Regression models were built using scikit-learn algorithms: multiple linear regression (MLR), k-
Nearest Neighbors (kNN), Support Vector Regressor (SVR), and Random Forest Regressor (RFR)
to predict the pIC50 of the test set. The models were evaluated using R2, mean squared error
(MSE), mean absolute error (MAE), root mean squared error (RMSE), p-values, F-statistic, and vari-
ance inflation factor (VIF). Of the 145 features calculated for the 43 Tzpd, 6 molecular features,
FCASA-, MNDO_LUMO, E_str, vsurf_HB1, vsurf_G, and vsurf_DD12 (p < 0.05; VIF < 5), were
found to significantly influence the antiplasmodial activity. Fivefold cross-validation performance
scores of MLR, kNN, SVR, and RFR showed that the performance metrics of MLR (MSE = 0.1453;
R2 = 0.680; MAE = 0.290; RMSE = 0.381; pIC50(predicted) = 8.06 − 0.45vsurf_G + 0.37FCASA- −
0.42MNDO_LUMO − 0.20E_str + 0.30vsurf_HB1 − 0.38vsurf_DD12) outperformed other models.
The study developed predictive models and provided insights into the chemical features necessary
for the optimization of thiazolyl–pyrimidine to enhance antiplasmodial activity.

Keywords: machine learning; Plasmodium falciparum; QSAR; regression; thiazolylpyrimidines

1. Introduction

Malaria is a disease caused by the parasite of the genus Plasmodium and transmitted
through the saliva of female anopheles mosquitoes [1]. Sub-Saharan Africa is currently
overwhelmed by P. falciparum. Several heterocyclic compounds and their derivatives are
important chemotherapeutic classes and are still useful singly and in combinations for the
treatment of malaria [2]. Various structural modification of heterocycles with improved ac-
tivities has been reported and translated into to useful drugs [3]. To date, artemisinin-based
combination therapy has remained the most potent first-line treatment for P. falciparum. The
emergence and rapid spread of artemisinin-resistant strains of P. falciparum are indications
that a continuous search for a more efficacious remedy for malaria is imperative [2]. The
combined safety, favorable physicochemical properties, and cost-effectiveness of hybrid
designs make them good candidates for structural modifications to overcome resistance
and declining efficacy.
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Different strategies have been put forth to design new chemical entities with optimum
pharmacokinetic and pharmacodynamic properties [4]. The QSAR method uses computa-
tion modeling to unravel associations between the biological activities and physicochemical
properties of chemical substances to create a robust statistical model to predict the biolog-
ical activities of novel chemical entities [5]. Pyrimidines are important substances in the
synthesis of various active molecules that are extensively used in the intermediate skeleton
of antiplasmodial activity and have attracted more attention due to their extensive biolog-
ical activities including antiviral, antibacterial, antifungal, and insecticidal activities [5].
For example, pyrimidine derivatives bearing a dithioacetal moiety as effective antiviral
agents have been reported [6]. Thiazolyl–pyrimidine hybrid plays significant roles in the
biological activities and SAR of thiazolylpyrimidines (Tzpd), thiazolopyrimidines, and
thienopyrimidines due to the combination of the thiazole and pyrimidine pharmacophores.

This study, therefore, developed a robust model using regression and classification
such as k-nearest neighbors, kNN classifier, support vector classifier (SVC), and Random
Forest Regressor (RFR) algorithms to: (i) develop a model to predict the pIC50 of any
untested Tzpd analogues or similar derivatives against P. falciparum strains; and (ii) explain
SARs of Tzpd derivatives against P. falciparum strains.

2. Methods
2.1. Chemical Data Set

The chemical data set comprises 43 derivatives of thiazolyl–pyrimidine hybrids ob-
tained from the ChEMBL database of compounds with antimalarial activity against Plas-
modium falciparum. The detailed chemical structures and pIC50 of the compounds used in
this study are shown in the Supplementary Materials (Figure S1).

2.2. Preparation of Data Set

The SMILES were initially converted to structures to form a molecular database and
converted to 3D by energy minimization using the MMFF94x force field. The energy-
minimized compounds were subjected to conformational search using LM dynamics [5].
The molecules were then subjected to further energy minimization using the Hamilto-
nian semi-empirical AM1 MOPAC modules, and the resulting conformers were used for
further studies.

2.3. Computation of Molecular Descriptors

The molecular fragments of the AM1 energy-minimized Tzpd were subjected to both
2D and 3D molecular descriptor calculation using the default settings of the molecular
operating environment (MOE v 2014.0901) software [7].

2.4. Data Pretreatment

One hundred and forty-five chemical features/descriptors were computed for the
compounds, and the pIC50 was calculated from the negative decadic logarithm of the
IC50. The pIC50 column (the values to be predicted) formed the Y-matrix, while the rest
of the data set formed the X-matrix. Standardization of the X-matrix was done using the
StandardScaler function [8]. It is important to standardize the variables so that they will all
have a comparable scale.

2.5. Selection of Relevant Descriptors

Recursive feature elimination (RFE) was used to select significant features using the
linear regression function from Skearn for RFE [8]. The number of features considered to
build the model was placed at 25 using m > n2, where m is the number of molecules, and n
is the number of features.
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2.6. Data Splitting

The X- and Y-matrices were split into the train (34 molecules) and test (9 molecules)
sets using a split ratio of 0.2, where 80% is assigned to the train set and 20% is assigned
to the test set. The size of the training data set was denoted as X-train, Y-train, while the
size of the test data set was X-test and Y-test. The training set was used to train the model
using a fit method, while 9 molecules belonging to the test set were used to validate the
models. The hyperparameters of the models were adjusted on the test data set to obtain the
best hyperparameter configuration using a random search because their hyperparameters
were continuous.

2.7. Regression Modeling

The Statsmodel package of the Python software v. 3.12 was used to obtain the detailed
statistics and summary of the model [8,9]. The machine learning scikit-learn algorithms,
multiple linear regressor (MLR), k-Nearest Neighbors (kNN), Support Vector Regressor
(SVR), and Random Forest Regressor (RFR), were deployed to predict the pIC50 values of
the test set compounds. The goal was to discover the best algorithm capable of predicting
the activity of untested compounds.

2.8. Model Evaluation

Different evaluation metrics such as the coefficient of determination (R2), mean
squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE)
were deployed to assess the performance of the models. The p-values, F-statistic, and
variance inflation factor (VIF) were also used [10].

3. Results and Discussion
3.1. Chemical Data Set

The 43 congeners of the thiazolyl–pyrimidine hybrid (Figure 1) used for the study
were obtained from the ChEMBL. They were selected based on pharmacophore (thiazolyl–
pyrimidine skeleton), the diverse chemical substituents forming the congeners, the in vitro
antiplasmodial activity (against P. falciparum), and the high negative decadic logarithm
values (3.04 units for 5.73 < pIC50 < 8.77).
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3.2. Selection of Significant Features

The number of significant features to be considered to build the model was fixed at
a hypothetical value of 25 out of 145 using the RFE. To further eliminate the insignificant
features, the RFE-selected features were further subjected to the Statsmodelling function
to check the detailed statistics and summary of the model from the selected features. The
result of the analysis showed that there were still features with p-values greater than 0.05 on
assumptions that the covariance matrix of the standard errors (SEs) was correctly specified
and that the smallest eigenvalue of 1.99 × 10−33 might indicate strong multicollinearity
problems or that the design matrix was singular.

Then, the VIF values for each feature of the model were calculated (Table 1). All
the features with VIF > 5 and p > 0.05 were considered insignificant and, as a result,
dropped from the model. Since the p-values and VIF of FCASA-, vsurf_G, vsurf_HB1, E_str,



Chem. Proc. 2023, 14, 52 4 of 7

MNDO_LUMO, and vsurf_DD12 were in the desired range, that means they are significant
features and will be used to build the machine learning models.

Table 1. Results of Statsmodel analysis.

Features Coeff SE T p-Value 0.025–0.875 VIF

Const 8.0584 0.088 91.607 0.000 7.878–8.238 -
vsurf_EDmin3 0.3627 0.271 1.341 0.190 −0.191–0.916 39.46

vsurf_D7 −0.3807 0.266 −1.430 0.163 −0.925–0.164 9.16
vsurf_D8 0.1435 0.255 0.562 0.578 −0.379–0.665 8.42

vsurf_EDmin1 −0.3076 0.252 −1.222 0.232 −0.823–0.207 8.19
FCASA- 0.5262 0.159 3.305 0.003 0.201–0.852 3.28
vsurf_G 0.3665 0.147 2.495 0.019 0.066–0.667 2.79

vsurf_HB1 −0.3665 0.131 −2.808 0.009 −0.633–0.100 2.20
E_str −0.3877 0.127 −3.044 0.005 −0.648–0.127 2.10

MNDO_LUMO −0.3641 0.126 −2.880 0.007 −0.623–0.105 2.07
vsurf_IW1 −0.1351 0.123 −1.101 0.280 −0.386–0.116 1.94
vsurf_IW2 0.0463 0.117 0.396 0.695 −0.193–0.285 1.77

vsurf_DD12 −0.2716 0.108 −2.514 0.018 −0.493–0.051 1.51
vsurf_Wp6 0.0651 0.101 0.647 0.523 −0.141–0.271 1.31

The molecular features are: third-lowest hydrophobic energy (vsurf_EDmin3); hydrophobic volume at −1.4
(vsurf_D7); hydrophobic volume at −1.6 (vsurf_D8); lowest hydrophobic energy (vsurf_EDmin1); fractional
charge-weighted negative surface area (FCASA-); surface globularity (vsurf_G); H-bond donor capacity at −0.2
(vsurf_HB1); hydrophilic integy moment at −0.2 (vsurf_IW1); hydrophilic integy moment at −0.5 (vsurf_IW2);
vsurf_EDmin1, vsurf_EDmin2 distance (vsurf_DD12); polar volume at −4.0 (vsurf_Wp6); LUMO energy, ev
(MNDO_LUMO); bond stretch energy (E_str); lowest unoccupied molecular orbital (LUMO).

3.3. Residual Analysis of the Model

The residue analysis of the error terms was checked to ascertain their normal distribu-
tion, and the error terms of the histogram were plotted (Figure 2). A normal distribution is
one of the major assumptions of multiple linear regression, and since the error terms are
normally distributed, the model can be used to make predictions on the test data set.
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3.4. Model Building

Machine-learning-based algorithms were built from the significant features to predict
the pIC50 values of the test molecules. The predicted pIC50 values for the test compounds
are shown in Table 2.
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Table 2. Predicted pIC50 of the test molecules using the MLR model.

Tzpd Actual pIC50 Predicted pIC50

25 8.37 8.380461
8 8.64 8.667578
27 7.35 6.915064
11 8.64 8.122377
22 8.77 7.905053
14 8.64 7.908562
6 8.77 8.151523
2 7.28 7.760386
7 8.42 8.064295

The details of Tzpd used as a test set can be found in Supplementary Figure S1.

To prove further confidence in our predicted pIC50 values, the predicted pIC50 scores
were plotted against the experimental pIC50 scores for both the train set and the test set,
using different machine learning models (Figure 3). The closeness of the predicted pIC50
scores and the experimental scores for Figure 3A,C shows the robustness of the MLR
and SVR models in predicting the antiplasmodial activity of Tzpd. This showed that the
predictive powers of the models are competent. The correlations of the predicted and
experimental pIC50 values are shown in Figure 3A–D. The R2 indicates how closely the
data resemble the regression line and how well the data fit the regression line.
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3.5. Model Evaluation and Comparison

The summary of the performance of the models is shown in Table 3.
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Table 3. Model prediction statistics.

ML Algorithms kNN SVR RFR MLR

Test MSE 0.00 0.053 0.069 0.1453
5-fold cross-validation 0.59 ± 0.41 0.67 ± 0.45 0.75 ± 0.29 0.091 ± 0.010

Test R2 1.00 0.61 0.36 0.68
5-fold cross-validation 0.36 ± 0.46 0.63 ± 0.62 0.59 ± 2.21 0.745 ± 0.281

Test MAE 0.00 0.174 0.209 0.290
5-fold cross-validation 0.55 ± 0.18 0.58 ± 0.20 0.60 ± 0.60 0.270 ± 0.101

Test RMSE 0.00 0.230 0.262 0.381
5-fold cross-validation 0.72 ± 0.27 0.77 ± 0.27 0.84 ± 0.18 0.302 ± 0.021

Fivefold cross-validation scores of MLR, kNN, SVR, and RFR were plotted on a
boxplot, and their performances were compared (Figure 4). The performance metrics
for each model were plotted as a box. Using the 5-fold cross-validation approach, MLR
and SVR outperform the other models, as the median line was visibly higher in all the
metrics used.
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4. Conclusions

The study demonstrated that MLR and SVR are powerful predictive supervised
learning models with reproducible outcomes and the lowest model errors when com-
pared to kNN and RFR. The multiple linear regression equation, pIC50(predicted) =
8.06 − 0.45vsurf_G + 0.37FCASA- − 0.42MNDO_LUMO − 0.20E_str + 0.30vsurf_HB1
− 0.38vsurf_DD12), allows for the prediction of antiplasmodial activity which can be uti-
lized in the design of new bioactive chemical entities using artificial intelligence qualities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ecsoc-27-16167/s1, Figure S1: Chemical data set.
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