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Abstract: This paper presents RGen, a parallel data generator for benchmarking Big Data workloads,
which integrates existing features and new functionalities in a standalone tool. The main function-
alities developed in this work were the generation of text and graphs that meet the characteristics
defined by the 4 Vs of Big Data. On the one hand, the LDA model has been used for text genera-
tion, which extracts topics or themes covered in a series of documents. On the other hand, graph
generation is based on the Kronecker model. The experimental evaluation carried out on a 16-node
cluster has shown that RGen provides very good weak and strong scalability results. RGen is publicly
available to download at https:/ /github.com/rubenperez98/RGen, accessed on 30 September 2021.
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1. Introduction

One of the main problems that arise in those fields where huge amounts of data are
managed is the necessity of having datasets that settle all the requirements in terms of
volume, type and truthfulness. Overall, this kind of data can be extracted from preprocessed
sources or generated synthetically. Specifically, the benchmark suites used to characterize
the performance of Big Data frameworks and workloads generally rely on third-party tools
for generating each type of input data that is needed, as there is no other option providing
all of them. In this context, RGen has been developed as a parallel data generator for
benchmarking Big Data workloads. RGen brings together a twofold task of integrating
existing features and developing new functionalities in a standalone generator tool. The
initial requirements for developing such tool are those specified by the data generation
necessities of the Big Data Evaluator (BDEv) benchmark suite [1], which provides support
for multiple representative Big Data workloads.

The main objective is the development of a parallel and scalable tool that gathers the
necessary functionalities for BDEv without having to depend on third-party software to
generate data for a great variety of workloads. Additionally, the performance evaluation
and scalability of the data generator has been carried out both in a local environment and
in a high-performance cluster. Different configurations have been evaluated considering
both the number of nodes used and the amount of data to be generated in parallel.

2. Design and Implementation

RGen was developed under the MapReduce programming paradigm [2], more specif-
ically on top of the Apache Hadoop framework [3], supporting the generation of data
directly on the Hadoop Distributed File System (HDEFS) [4].

The first step was the study of the state of the art regarding data generation topic. This
research concluded with the choice of DataGen, the data generator tool integrated in the
HiBench suite [5], as the base platform for our tool. The next step consisted in integrating
some existing generation features not provided by DataGen from native classes of the
Hadoop and Mahout frameworks.
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The following phases were the development of two new generation methods, being
the first one the text generation. To create new text that can preserve the characteristics of
existing realistic data, the Latent Dirichlet Allocation (LDA) model [6] was selected, as it is
one of the most widespread topic models. The implementation in RGen is able to generate
text taking an LDA model as an input parameter, keeping the original characteristics of a
pre-analyzed set of documents. Similarly to the previous method, the graph generation
was tackled by using the Kronecker model [7], which allows keeping the most important
characteristics of a set of nodes and vertexes and generating from such information new
graphs that preserve its original constitution.

3. Experimental Evaluation

To analyze the scalability of the tool when generating data in a parallel way, multiple
experiments were carried out, focused on evaluating the new features implemented in
RGen: the text and graph generation based on the LDA and Kronecker models, respectively.
Along with them, the experiments were also executed for random text generation and
using PageRank for graph generation as baseline for comparison purposes.

Scalability is the capability of a parallel code to keep its performance when the compu-
tational resources and/or the problem size are increased. There are two ways of measuring
this metric: (1) weak scalability, where the number of CPU cores is increased while keeping
constant the workload per core (i.e., both the number of cores and the problem size are
increased); and strong scalability, where the resources are increased while the total work-
load remains the same (i.e., the workload per core is reduced). Weak scalability tests the
capability of addressing larger problems in the same time by increasing the resources in a
proportional way. On the other hand, strong scalability focuses on minimizing the runtime
needed for solving the same problem by adding more resources.

Table 1 shows the configuration of the experiments conducted to analyze weak and
strong scalability. The experiments were executed on the Pluton cluster of the Computer
Architecture Group, where each node provides 16 physical CPU cores, 64 GB of memory
and 1 TB local disk intended for HDFS storage. Additionally, all the nodes are intercon-
nected via InfiniBand FDR (56 Gbps). As can be seen in Table 1, the experiments were
conducted varying the number of nodes from two up to 16.

Table 1. Configuration of the experiments carried out on a high-performance cluster.

#Nod Text Data Volume Graph Data Volume
odes
Weak Scalability Strong Scalability Weak Scalability Strong Scalability
2 40 GB 320 GB 67 M nodes 536 M nodes
4 80 GB 320 GB 134 M nodes 536 M nodes
8 160 GB 320 GB 268 M nodes 536 M nodes
16 320 GB 320 GB 536 M nodes 536 M nodes

4. Results and Conclusions

Figures 1 and 2 show the results for text and graph generation, respectively. Each
plot presents both weak and strong scalability for the new generation methods (single
lines) and for those used as baseline (marked lines). The runtimes for weak scalability are
shown in green lines against the left axis, while the red lines present the runtimes for strong
scalability against the right axis. The first conclusion that can be drawn is that the new
generation methods take more time to execute for the same experiment than those used as
baseline. This is an expected behavior as the computational complexity of these methods
for generating data based on the LDA and Kronecker models is significantly higher than
generating text randomly or using PageRank for graph generation.

When analyzing these results further, it can be concluded that RGen provides good
scalability overall. In the case of text generation (see Figure 1), almost constant runtimes
are obtained for weak scalability, which means that RGen provides similar runtimes when
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the number of resources and the workload are increased proportionally. Regarding strong
scalability, it can be seen a significant reduction in runtime when generating text using
the LDA model. This means that the same amount of text (320 GB) is generated much
faster when increasing the computational resources. The results show almost linear strong
scalability for LDA-based text generation, powered by combining MapReduce with HDFS
(only Map tasks are executed in this case).
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Figure 1. Scalability results for text.
GRAPH GENERATION SCALABILITY
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Figure 2. Scalability results for graphs.

The results for graph generation show a similar trend (see Figure 2). On the one hand,
weak scalability presents a more irregular pattern for both data generation methods when
compared to text generation. However, these results can be explained taking into account
that the Kronecker method executes two MapReduce jobs instead of only one, and they
also require to execute Reduce tasks. Both facts can hinder scalability as the cluster network
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performance now plays a key role, especially when using 16 nodes. On the other hand, the
strong scalability provided by the Kronecker model is even more noticeable than in the
PageRank implementation.
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