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Abstract: Variant annotation is an important step in deciphering the functional impact of genomic
variants and their association with diseases. In this study, we analyzed 80 pan-cancer cases that
underwent comprehensive genomic testing and compared the auto-classified variant tiers among
four globally-available software solutions for variant interpretation from Roche, SOPHiA GENETICS,
QIAGEN, and Genoox. The results revealed striking differences in tier classifications, which are
believed to be a result of several factors, including subjectivity in the AMP/ASCO/CAP guidelines,
threshold settings for variant allele frequencies and population allele frequencies, as well as variation
in disease ontologies. Although the software tools described here provide a time-saving and repeat-
able process for interpretation of genomic data, it is crucial to understand the nuances and various
settings for these solutions, as they can strongly influence variant tier classifications and downstream
management.

Keywords: next generation sequencing (NGS); genomic analysis; variant annotation; bioinformatics;
tier classification; tertiary analysis software; positive percent agreement (PPA); negative percent
agreement (NPA)

1. Introduction

Next generation sequencing (NGS) has globally revolutionized the field of genomics
and bioinformatics. Whether addressing whole genomes, whole exomes, or targeted re-
gions, the ability to sequence millions of DNA fragments in a single run at a relatively
low cost per base has harbored great appeal to clinicians and researchers. NGS has been
transformative by providing a more comprehensive and efficient way to analyze genetic
information, leading to new insights and applications across various disciplines. Targeted
panels, specifically, have generated interest due to quicker turnaround time, cost effec-
tiveness, and increased coverage depth compared to whole exome sequencing (WES) and
whole genome sequencing (WGS) [1]. This allows for querying specific genes of significance
with high accuracy in variant detection. Although WES and WGS have their own select
advantages depending on the application, targeted panels have practical implications in
specific areas of disease management.

The results of NGS are designed to output a multitude of variants from the genes of
interest, with a common goal of understanding the significance of each variant with respect
to disease. To achieve this goal, steps are needed to ensure accurate and comprehensive
variant annotation. Bioinformatic analysis and interpretation of variants have been proven
to be non-trivial based on multiple factors, including number and complexity of variants,
conflicting literature, and varying classification methods. In an effort to mitigate these
complexities and standardize these processes, several international professional societies
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have published classification guidelines for the interpretation and reporting of genomic
variants [2]. For classification of variants, the most notable international guidelines include
AMP/ASCO/CAP (Association for Molecular Pathology/American Society of Clinical On-
cology/College of American Pathologists), ESCAT (ESMO Scale of Clinical Actionability for
molecular Targets), and ACMG/AMP (American College of Medical Genetics/Association
for Molecular Pathology) guidelines [3–5]. All of these guidelines employ different evi-
dence frameworks to answer different questions. In the AMP/ASCO/CAP guidelines, a
tiering system (Tiers I-IV) is employed to categorize variants by the evidence supporting
their “diagnostic, prognostic, or therapeutic significance” [3]. In the ESCAT guidelines, a
tiering system of 6 tiers ranks variants by evidence supporting “clinical actionability” [4].
In the ACMG/AMP guidelines, variants are classified across five categories of functional
pathogenicity [5]. Oftentimes, one or more of these classification frameworks are imple-
mented in laboratories running NGS, as well as in some commercial and non-commercial
variant annotator software solutions.

In this study, we analyzed and compared variant classification differences among
four different variant annotator software tools: navify® Mutation Profiler (Roche; Santa
Clara, CA, USA; RUO*), SOPHIA DDMTM (SOPHiA GENETICS; Boston, MA, USA; RUO
in the USA), QIAGEN® (Hilden, Germany) Clinical Insights Interpret (QIAGEN; RUO),
and Franklin (Genoox, Tel Aviv, Israel), a free, publicly-available annotator. By examining
the differences in variant tier assignments and the underlying criteria employed by these
tools, we aim to show the nuances of somatic variant interpretation and offer potential
reasons for tier classification differences across the solutions, which, in turn, may help
researchers select the most appropriate tertiary analysis software solution for their specific
needs.

2. Materials and Methods
2.1. Data Generation and Processing

Formalin fixed paraffin embedded (FFPE) tumor samples were obtained from 80 pan-
cancer cases. These were consecutive cases collected over a 12-month period, selected based
on high-quality data passing standard quality control (QC) metrics, with no preference for
specific cancer types. Tumor specimens underwent processing using the TruSight Oncology
500 (TSO500) assay [6], a targeted panel comprising 523 DNA genes and 55 RNA genes
with relevance in cancer. The resulting sequencing files from TSO500 were analyzed using
four different commercial software annotators: navify® Mutation Profiler (v. 2.3.2.c090e09),
SOPHIA DDM™ (v. 5.10.42.1—h275027-1c0c57f), QIAGEN® Clinical Insight Interpret
(v. 9.2.1.20231012), and Franklin (v. 2023.7), a freely available annotator. These software
annotators will hereafter be referred to as “navify MP”, “SOPHIA”, “QCI”, and “Franklin”,
respectively.

Each of the four annotators in this study had specific requirements for input data, all
of which represented the hg19 genome build. Table 1 outlines the different input features
for each annotator. navify MP, QCI, and Franklin utilized variant call format (VCF) files
containing predefined quality metrics from TSO500. Franklin used VCF files as input,
while navify MP utilized VCF files plus a combined variant output file (providing gene
copy number amplification data and tumor mutational burden). QCI employed a VCF
file, copy number variants file, fusions file, and splice variants file. SOPHIA serves as
both secondary and tertiary analysis software, taking processed FASTQ files as input and
generating its own quality metrics. Alterations including microsatellite instability (MSI)
status, tumor mutation burden (TMB) levels, amplifications, fusions, exon skipping, and
combinations were considered in this study to be “complex” variants. As outlined in
Table 1, TMB, MSI, Fusions, and CNVs were not supported by the Franklin free annotator.
Thus, tier classification comparisons for these alteration types were only made in navify
MP, SOPHIA, and QCI. In addition, the annotators all had filter settings that appeared to be
either user-defined at the outset or pre-defined for the Illumina TSO500 assay (Table 1). In
the cases of pre-defined settings, the user had the ability to modify such settings inside the
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user interface. To ensure consistency between SOPHIA and TSO500 variant calls, a Python
script was employed for variant comparison. SOPHIA achieved a per-case SNP match rate
average of 93.604% with minimal exon variant misses, as the majority of missed variants
were intronic. Only matched variants were included for subsequent comparisons.

Table 1. Input data and default filter settings across annotators. SNV—Single Nucleotide Variant;
INDEL—Insertion/Deletion; TMB—Tumor Mutation Burden; MSI—Microsatellite Instability; CNV—
Copy Number Variation; VAF—Variant Allele Frequency; RD—Read Depth; MAF—Minor Allele
Frequency; UD—User-defined; X—indicates that the file input type is supported.

Features Navify MP SOPHIA QCI Franklin

File Input
VCF,

Combined
Variant File

FASTQ
VCF, Combined Variant File,

CNVs, Fusions, Splice
Variants

VCF

SNVs X X X X

INDELs X X X X

TMB X X X

MSI X X X

Fusions X X X

CNVs X X X

Select Default Filter Settings (for inclusion)

VAF UD ≥2% ≥5% ≥5%

RD UD UD ≥10 UD

MAF UD UD ≤1% ≤1%

2.2. Software Comparison

The aim of this comparative analysis was to assess genomic alterations across various
annotation tools, all of which adhere at some level to the tier and evidence classification
framework outlined in the AMP/ASCO/CAP guidelines [3]. These guidelines delineate
four recommended tiers, with Tiers I and II being of highest relevance, while Tiers III and
IV denote variants of uncertain and benign significance, respectively. The focus of our
investigation was on Tiers I and II. Tier I comprises two evidence subgroups, denoted as A
and B, while Tier II comprises two evidence subgroups, denoted as C and D, all of which
can pertain to “therapeutic, prognostic, or diagnostic significance”. Tier IA designates
variants associated with “FDA-approved therapies or inclusion in professional guidelines
for a specific cancer type”. Tier IB pertains to variants linked to “well-powered studies
with consensus from experts in the field”. Tier IIC designates variants associated with
“FDA-approved therapies for different tumor types, investigational therapies, or multiple
small, published studies with some consensus”. Tier IID encompasses variants associated
with “preclinical trials or a few case reports without consensus”.

For tier classification comparisons that were made in this study, it is important to
highlight that the different annotators used different strategies for auto-annotating tiers.
navify MP annotated variants as “Tier IA, IB, IIC, IID, III”, and “Unclassified”. SOPHIA
and QCI both annotated variants as “Tier IA, IB, IIC, and IID”, with all other unannotated
variants falling into the “III+” category. Franklin classified variants into “Tiers I-IV,” with a
broad evidence framework employing multiple content sources, thus not including exactly
the AMP/ASCO/CAP “A-D” evidence framework. To ensure robust and fair comparisons,
only the tier classifications (I and II) were captured from Franklin, and Tier I was therefore
compared with Tiers IA + IB from the other annotators, while Tier II was compared with Tier
IIC from the other annotators. The focus of the comparisons performed in this study was
on Tiers IA, IB, and IIC, as these are the most “actionable” tiers. “Tier IID, III, IV” and any
other “non-IA-IB-IIC” categories were therefore excluded from comparison. For example,
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additional response types such as “No benefit”, “Not applicable”, “Not predictive,” and
“Unknown” in the SOPHIA platform were not included in comparisons to ensure accurate
and comparable tier-level annotations with other annotators. In addition, SOPHIA and
Franklin displayed 781 low confidence “LC” variants, which were not included in tier
classification comparisons but can be found in Table S1.

In order to facilitate tier classification comparisons, standardization was required at
the levels of variant selection, variant processing, and tier classification categorization.
To ensure consistency in variant selection and processing, we accounted for variations in
secondary analysis pipelines between SOPHIA and other annotators, differences in input
files (as shown in Table 1) for each annotator, and variations in applied processing filters
(such as thresholds for VAF, RD, MAF, etc.). We only considered variants present in the
outputs of all four annotators for comparisons in tier classifications. Across 80 cases, a total
of 4671 high quality variants were present in all four tools, and of these, 4610 were unique
(Table S1).

2.3. Statistical Analysis

Two critical performance metrics, positive percent agreement (PPA) and negative
percent agreement (NPA), were calculated for each individual tier to facilitate the com-
parative analysis. Due to the fact that a universally-accepted “gold standard” reference
for AMP/ASCO/CAP tier classifications does not exist, PPA and NPA were employed as
surrogate measures to approximate sensitivity and specificity in order to assess agreement
between annotators. It should be noted, however, that in the absence of a gold standard,
PPA and NPA may yield biased estimates of these parameters [7].

In this study, PPA was computed using the formula PPA = [a/(a + c)] × 100, where:

• a represents the number of variants classified as the given tier by both the test software
and comparator software.

• c represents the number of variants classified as the given tier by the comparator
software but not by the test software.

• Similarly, NPA was determined using the formula NPA = [d/(b + d)] × 100, where:
• d corresponds to the number of variants not classified as the given tier by both the test

software and comparator software.
• b signifies the number of variants not classified as the given tier by the comparator

software but classified as such by the test software.

3. Results
3.1. Case Characteristics

Of the 80 cases in this study, colon (n = 23), lung (n = 16), and breast (n = 15) tumor
types accounted for nearly 70% of cases that underwent NGS (Figure 1). The remaining
cases were spread across 13 other solid tumor types with 5 or less counts of each. Across
this set of cases, there were 4610 unique variants present in all annotators and successfully
classified by 1 or more annotators in this study (Table S1).

3.2. Tier I and II Comparisons across All 4 Annotators

In order to obtain an understanding of overall concordance of tier classifications across
the 4 different annotators, we first compared Tier I and Tier II calls, since these have the
highest impact of the four-tier system. 42 variants in total were classified as Tier I in at
least one of the annotators. Of those 42 variants, 10 (23.8%) were in agreement across all
four software solutions, while 15 (35.7%) did not overlap among any of the annotators
(Figure 2a). 251 variants in total were classified as Tier II (Franklin) or Tier IIC (all other
annotators) and, of those, two (0.80%) variants were in agreement across the solutions
(Figure 2b). 132 (52.6%) variants in the Tier II category did not overlap among any of the
annotators.
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To further investigate the classification concordance of the 42 variants within the Tier
I category, the annotators which differentiated between Tier IA and Tier IB (navify MP,
SOPHIA, and QCI) were compared. 15 variants (45.5%) overlapped for Tier IA across the
three annotators, while 14 variants (33.3%) did not overlap (Figure 3a). For Tier IB, there
were 19 variants in total (a relatively small sample size), with no agreement among all three
annotators, and there were only two variants shared between navify MP and SOPHIA, but
not QCI (Figure 3b).

3.3. 2-Way Comparisons of Four Algorithms

Two-way comparisons were performed using PPA (Figure 4) and NPA (Figure S1)
calculations for comparable tiers across annotators. For these calculations, each of the four
annotators was positioned as the comparator. Raw numbers of variants used for these
calculations are present in Table S2. For Tier I (Figure 4a), the highest concordance observed
between two different annotators was for navify MP compared to SOPHIA, with a PPA of
95.3%, while the lowest concordance was for SOPHIA compared to Franklin, with a PPA of
36.4%. In general, Tier I comparisons with Franklin exhibited the lowest PPAs (Figure 4a).

Tier IA concordance measured across navify MP, SOPHIA, and QCI (Figure 4b) re-
vealed a maximum PPA of 88.9% (QCI compared to navify MP) and a minimum PPA of
57.7% (SOPHIA compared to QCI). Tier IB concordance measurements (Figure 4c) showed
a maximum PPA of 66.7% (SOPHIA compared to navify MP) and a minimum PPA of 0.0%
(QCI compared to navify MP and SOPHIA). Finally, Tier IIC concordance measurements
(Figure 4d) revealed a maximum PPA of 80.6% (navify MP compared to SOPHIA) and a
minimum PPA of 27.4% SOPHIA compared to navify MP).
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  Figure 3. Tier IA (a) and Tier IB (b) calls across comparable annotators. n represents the total number

of variants classified as Tier IA or Tier IB in at least one annotator. Agreement in calls between all
annotators is represented by the bold number in the center. Agreement in calls between pairs of
annotators as well as unique calls are represented by non-bold numbers. 
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 Figure 4. Positive Percent Agreement (PPA) for 2-way comparisons for Tier I (a), Tier IA (b), Tier IB
(c), and Tier IIC (d).

3.4. Complex Variants Classified by Navify MP, SOPHIA, and QCI

Complex variants, including TMB, MSI, Fusions, and CNVs, were investigated across
the 80 cases in this study. A complete list of complex variants with a IA, IB, or IIC clas-
sification in at least one annotator can be found in Table S3. A subset of 57 cases was
investigated further as they harbored complex variants with tier classifications in all three
annotators. Table 2 summarizes the findings, which shows compared tier classifications for
four different complex alterations: MSI-high, ALK-EML4, MSI-negative (neg), and ALK-
EPS8 in the context of different cancer types. All Tier IA calls for MSI-high and ALK-EML4
were consistent across the three annotators. In 37 cases, Tier IIC classifications for MSI-neg
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were in agreement for all cancer contexts. A single colorectal adenocarcinoma case with
an ALK-EPS8 fusion showed agreement across all three annotators for Tier IIC. Notably,
there were eight colorectal adenocarcinoma cases where MSI-neg was classified as Tier IB
by navify MP and SOPHIA and Tier IIC by QCI.

Table 2. Summary of complex-type variants available for tier comparisons across three annotators. 57
total cases covering the listed cancer types had four different complex variants classified by all three
annotators.

Complex
Variants Cancer Type (s) #

Cases
Navify

MP SOPHIA QCI

MSI-high Colorectal adenocarcinoma 9 IA IA IA

ALK-EML4 Lung adenocarcinoma 1 IA IA IA

MSI-neg Colorectal adenocarcinoma 8 IB IB IIC

MSI-neg Colorectal adenocarcinoma
Colon squamous cell carcinoma 1 IB IIC IIC

MSI-neg

Bladder urothelial carcinoma
Breast adenoid cystic carcinoma

Breast mucinous carcinoma
ER-positive positive breast cancer

Esophagus adenocarcinoma
Gastric adenocarcinoma

Head and neck squamous cell carcinoma
Her2-receptor positive breast cancer

Lung adenocarcinoma
Lung small cell carcinoma

Lung squamous cell carcinoma
Melanoma

Non-Hodgkin lymphoma
Ovarian clear cell carcinoma
Pancreatic adenocarcinoma
Prostate adenocarcinoma

Triple-receptor negative breast cancer

37 IIC IIC IIC

ALK-EPS8 Colorectal adenocarcinoma 1 IIC IIC IIC

4. Discussion

As the demand for variant annotation and interpretation software solutions has in-
creased, there has been more of a necessity for labs to understand the strengths and
weaknesses of these tools in order to decide on the right solution for their needs. This study
compared Tier IA, IB, and IIC classifications for alterations identified from comprehensive
genomic profiling of 80 pan-cancer cases across four variant annotation software solutions:
navify® Mutation Profiler (RUO*), SOPHIA DDMTM (RUO in the U.S.), QIAGEN® Clinical
Insights (QCI) Interpret (RUO), and Franklin’s free annotator.

Across all four annotators, in general, classification concordance for Tier I and II
variants was quite variable (Figure 4). Clearly, there was a stark difference in the observed
Tier I concordance with the Franklin annotator compared to the other tools. One possible
explanation is that simply combining Tiers IA and IB in the other annotators may not
actually be equivalent to Franklin’s “Tier I”, potentially due to different evidence sources at
play. This is currently unclear but highlights the importance of questioning tiering rules
when choosing an annotator, especially for high impact AMP/ASCO/CAP categories such
as Tier I and II. These findings also may suggest different levels of robustness between
commercial and free tertiary analysis solutions. That stated, there were demonstrations of
discordance even across the three commercial annotators as evidenced by PPA comparisons
made across just those tools (Figure 4b–d). For example, for Tier IA, the PPA between
QCI vs. SOPHIA was 57.7% (Figure 4b) with an even lower PPA observed (27.4%) for Tier
IIC calls between navify MP and SOPHIA (Figure 4d). These low PPA observations may



J. Mol. Pathol. 2024, 5 89

be explained, in part, by gene-level nuances. In the case of Tier IIC, 132 (52.6%) variants
in this category did not overlap among any of the annotators (Figure 2b). Upon closer
examination of the 84 variants that were unique to navify MP for Tier IIC classification, it is
interesting to note that 17 of these variants belong to the TET1 gene (Figure 2a; Table S1).
In this case, these variants were grouped into the broad category of “TET1 mutation” to
reflect content that described variants at this level. This behavior is not unique to navify
MP. All annotators have handling for broader mutation groups, mostly notably of the type
called “inactivating/activating” mutations. In these cases, users should take extra care to
scrutinize the evidence for such mutations to determine relevance for their case.

In general, the comparisons made across annotators for Tier IA revealed tighter
concordance overall than for Tiers IB and IIC (Figure 4b–d). Notably, the highest PPA
for Tier IA was between QCI and navify MP (PPA-88.9%). However, with Tier IA being the
least subjective category in the AMP/ASCO/CAP guidelines (discussed below with respect
to Table 3), the expectation would have been that concordance would be high and similar
for all possible comparison permutations. But this was not the case and raises concerns
since Tier IA is the most actionable category. It’s possible that concordance would be higher
for specific cancer types and it would be interesting to understand whether classification
concordance improves for variants from specific cancer types. For example, it would be
expected that Tier IA classifications would be more highly concordant across annotators
for variants from non-small cell lung cancer cases since this type of cancer is rich with
targetable biomarkers in the NCCN guidelines [8].

Table 3. Subjective words and phrases exactly as published in the AMP/ASCO/CAP guidelines [3].
Bold, underlined words are considered “subjective” and require further definition by each site
implementing this classification structure.

Tier Evidence 1 Evidence 2 Evidence 3
# of Subjective

Words or
Phrases

IA “FDA-approved therapy”
“Included in
professional
guidelines”

1

IB
“Well-powered studies
with consensus from
experts in the field”

3

IIC “FDA-approved therapies
for different tumor types”

“Investigational
therapies”

“Multiple,
published, small

studies with
some consensus”

4

IID “Preclinicaltrials”
“A few case

reports without
consensus”

3

While concordance for Tier I and II variants in this study was variable, it is important
to note that NPA analysis depicted strong agreement for all 4 annotators (Figure S1).
Furthermore, the sample sizes for NPA calculations were much higher than the ones used
for PPA, as variants from this testing had a much higher tendency to not be classified as
Tier IA, IB, or IIC. This may also indicate that these variants are not somatic i.e., common
germline, or are possibly skewed to a few specific tumor types. In addition, the high
NPA as compared to PPA observed for classifications across the four solutions supports
the notion that positive calls are fraught with complexities not present in negative calls.
The lack of strong concordance in positive calls was previously demonstrated in a similar
study published in 2020 [9], where navify MP and QCI were compared and found to have
14/61 (23.0%) concordant Tier IA classifications. This is significantly lower than what was
observed for Tier IA alterations in the present study. However, for Tier IB classifications,
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the previous study [9] had higher concordance between navify MP and QCI (8 out of 39;
20.5%). These differences between studies implicate multiple factors, including a lower
sample size in the previous study (n = 48) compared to the current study (n = 80), tumor
type differences (e.g., lung cancer comprises 39% in the previous study vs. 20% in the
current study), new approvals and new study data, as well as statistical analysis differences
(Kappa statistic in the previous study vs. PPA/NPA in the present study).

In the present study, a Kappa statistic was intentionally not used and instead positive
percent agreement (PPA) and negative percent agreement (NPA) [7] were employed in
order to account for the lack of a true gold standard reference, as well as account for
small sample sizes. The absence of a gold standard is underscored by the weak (59%)
concordance demonstrated in the Variant Interpretation Testing Among Laboratories (VI-
TAL) study where 134 participants interpreted the same 11 variants across 4 cancers using
the AMP/ASCO/CAP guidelines [10]. The strength of PPA and NPA to compare tier
classifications between annotators is the ability to gain a more targeted and meaningful
assessment of the annotators’ performance in identifying relevant variants and ensuring
that the classifications are aligned with the relevant context. In contrast, the Kappa statistic
may not provide the same level of specificity, especially when the primary focus is on
accurately identifying disease-associated variants. In addition, the Kappa statistic is not
ideal for comparing auto-classification of tiers since it takes into account the potential for
guessing (which never occurs in auto-classification) and makes certain assumptions about
the independence of the comparators, thus potentially providing an underestimate of the
level of agreement between comparators [11].

In this study, complex variants, including microsatellite instability (MSI) status, tumor
mutation burden (TMB) levels, amplifications, fusions, exon skipping, and combination
alterations were separately analyzed (Tables 2 and S3) across navify MP, SOPHIA, and QCI,
as these three annotators had support for this category, while the Franklin annotator did
not (Table 1). For the four complex variants across 57 cases, Table 2 shows classifications by
the three annotators were largely in agreement.

It is important to note that complex-type biomarkers are not “in scope” for the
AMP/ASCO/CAP guidelines; therefore, tertiary analysis solutions must assess them
and provide classifications under their intended uses. This has led to annotators apply-
ing “AMP/ASCO/CAP guideline-like” tiering to such biomarkers as evidenced by the
classifications seen for these types of alterations in such tools. For example, SOPHIA and
navify MP auto-classified several combination alterations, which QCI did not. In addition,
navify MP automatically classified wildtype NRAS/KRAS in a colorectal adenocarcinoma
case as Tier IA, while QCI did not. This finding was, however, expected in this case as
“pertinent negative” genes, including NRAS/KRAS were not pre-defined in the metadata
for the analyses performed in QCI (underscoring the criticality of specifying pertinent
negatives in platforms that require it in order to not miss actionable biomarkers of this
nature). Furthermore, navify MP and QCI auto-classified several cases of TMB-high as well
as key gene amplifications (including ERBB2 amplification and MET amplification), but
SOPHIA did not. In the software version used for this study, it appeared that SOPHIA took
a more conservative approach for some complex variant types, including TMB and CNVs.
While SOPHIA calculated TMB levels, they did not auto-classify TMB alterations into tiers.
SOPHIA also did not auto-classify several CNV amplifications and provided a rationale of
a strict requirement for eight samples or more in the same run to address the possibility of
a batch effect bias.

Multiple factors may explain the complexities and lack of concordance across different
variant annotation software solutions. It is therefore important to consider how these
factors may influence the performance of these decision support tools. In the next sections,
several reasons for lack of concordance are proposed and discussed.
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4.1. Subjectivity in the Guidelines

We believe that the lack of concordance seen across the solutions is in part due to
the fact that the underlying classification structure published in the AMP/ASCO/CAP
guidelines [3] has a large degree of subjectivity, as evidenced by ambiguity in words and
phrases describing different types of evidence that power the tier classifications. Tier I
evidence definitions have four subjective words or phrases while Tier II evidence definitions
have seven subjective words or phrases (Table 3). These phrases may indeed be interpreted
differently by different individuals.

For example, for Tier IB (Table 3, Row 2), several questions have arisen for the guidance
that the variant should be the focus of “well-powered studies with consensus from experts
in the field”. How does one define a well-powered study? By sample size? By study type?
By journal in which it is published? Also, what constitutes “consensus?” Two concordant
studies? 10 concordant studies? 100 concordant studies? And how does one define an
“expert in the field?” Individuals with specific credentials? Individuals with a certain
number of publications? Individuals only in the genomics field? Clearly, there are many
questions, and this guidance for Tier IB is a good example of where there needs to be further
definition by AMP/ASCO/CAP to standardize language in order to ensure consistency in
Tier IB classifications, as well as other tiers with subjective phrasing in the guidelines.

4.2. Variant Allele Frequency (VAF) Thresholds

It is important to highlight that different annotators have different variant allele fre-
quency (VAF) threshold defaults for variants identified from tumor sequencing. Table 1
shows default VAF settings for navify MP (none), SOPHIA (2%), QCI (5%), and Franklin
(5%), where variants under these thresholds are filtered out and not subjected to classifica-
tion. navify MP does not impose a default VAF setting and provides users the opportunity
to define the threshold when creating an assay or for each individual case. For this study, a
VAF cut-off was not defined in navify MP, and here is an example of a potential negative
consequence of not doing so. When investigating discrepant variant classifications across
annotators, RB1 p.E209* was uncovered in a breast cancer case where the tier classifications
were as follows: Low Confidence (LC)—SOPHIA, Tier IB—navify MP, LC—Franklin, Tier
III+—QCI. This variant had a VAF of 1.7%, which resulted in a low confidence annotation
via SOPHIA and Franklin (with default VAF cutoffs of 2% and 5%, respectively). Upon
closer investigation of the Tier IB classification by navify MP, it was clear that this variant
should not have passed through and been classified due to the low VAF. Not filtering out
the variant in question resulted in a classification based on broader categorization of this
variant as an RB1 inactivating (truncating) mutation. It is therefore critical to ensure that
VAF cut-offs are determined ahead of time based on the analytical sensitivity of the specific
assay used, where the user should establish the lowest VAF that can reliably be detected at
a given amount of input DNA/RNA.

4.3. Minor Allele Frequency (MAF) Thresholds

Another notable characteristic is the gray line cutoff of the minor allele frequency
(MAF) thresholds across annotators. MAF measures the frequency at which the variant
(minor allele) is seen in general population, where the significance cutoff has been reported
to range from 1% to 5% [3]. Of the annotators in this study, only QCI and Franklin have
default thresholds of 1% for MAF, while navify MP and SOPHIA do not have default
MAF thresholds and rely upon user definition (Table 1). One variant, BRCA1 p.Q356R
from a pancreatic adenocarcinoma case, had a wide range of tier classifications across the
annotators: Tier IA—navify MP, Tier IA—SOPHIA DDM, Tier III+—QCI, Tier IV—Franklin
and was therefore flagged in this study for a deeper dive investigation. This BRCA1 variant
had a MAF of 4.7%, which resulted in being filtered out in QCI and Franklin, and explains
their Tier III+ and Tier IV classifications, respectively. Without MAF thresholds set, both
navify MP and SOPHIA classified this as Tier IA, which would not have been the case had
the MAF threshold been set accordingly.
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Another variant, TERT c.-245T > C, was classified as follows: Tier IA—navify MP,
LC—SOPHIA, QCI—III+, Franklin—Tier IV. This variant had a high MAF as reported in
gnomAD, varying from 12% in African/African Americans to 52% in South Asians. In
spite of these high MAFs, the variant was classified as a Tier IA variant for glioblastoma
via navify MP based on strong, supporting evidence for TERT promoter mutations, in
general [12,13]. This raises two important considerations users should understand about
their population: (1) pre-defining the MAF cutoff should be considered to avoid potentially
misleading results; and (2), more importantly, users need to recognize that the MAF varies
by genomic ancestry. Thus, pre-defined cut-offs could remove important variants that
differ in frequency by ancestry.

4.4. Disease Ontologies

Disease ontology differences can contribute to tier classification differences that may
not be evident when using broad cancer types, such as “breast cancer”. BRCA1 p.Q356R
was depicted in two separate cases, one ER+ breast cancer case as well as one triple-receptor
negative breast cancer case. In the absence of a MAF filter (as described above), this variant
was considered to be in a class of “inactivating BRCA1 alterations” and thus, was auto-
classified by navify MP as Tier IB for ER+ breast cancer due to well-powered studies [14,15]
and Tier IIC for triple-negative breast cancer due therapies indicated for a different type of
breast cancer. The message therefore is that it is very important to be as specific as possible
with input cancer types, as variants can fall in or out of higher tier classifications strictly
based on the cancer type selected. Choosing a less specific cancer type will often cause
inclusion of additional information potentially not relevant to the case at hand.

4.5. Additional Considerations

There are additional factors that may account for tier classification differences, and
several are summarized below.

4.5.1. Genome Builds

Discrepancies arising from diverse genome builds (e.g., GrCh38, hg38, GrCh37, hg19)
influence the genomic coordinates assigned to variants, affecting their positional accuracy
and compatibility with various reference genomes. Some annotators are set up to support
VCFs generated from a wide variety of genome builds (e.g., QCI), while others (e.g., navify
MP) are optimized for a primary genome build and then perform a liftover function to map
coordinates from one build to another. This may cause variants to fail liftover for regions in
the primary genome build that are not present in other builds.

4.5.2. Splice Site Regions of Interest

Annotators have distinct regions of interest which are driven by their intended appli-
cation. When a variant does not fall in these regions, they may be filtered out of the analysis.
This was the case for a TP53 variant (c.920-2A > G), where navify MP and QCI classified
this variant as Tier IIC, while SOPHIA called this LC due to being an “off-target” region.
This may cause missed highly relevant variants, an incomplete biological understanding,
or skewed data interpretation when excluding a variant based on predefined regions. It is
advisable to periodically review and update the predefined regions of interest, considering
the evolving knowledge in the field and the potential implications of variants outside these
regions.

4.5.3. Classification Context

Classification contexts of “therapeutic, diagnostic, prognostic”, and/or hereditary
significance [3–5] can lead to mis-prioritization of variants, thus impacting the interpretation
of variants for specific applications. For example, TERT promoter alterations are evidenced
to be “diagnostic” for glioblastoma as stated in the NCCN and WHO guidelines [16,17]. One
of the glioblastoma cases in this study, previously mentioned above, harbors a TERT c.-245T
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> C variant where 3 annotators (navify MP, QCI, and Franklin) provided a classification
(this variant was classified as a “low confidence” call in SOPHIA). Only navify MP classified
this variant as Tier IA, as this qualifies as a “diagnostic” Tier IA classification in accordance
with the AMP/ASCO/CAP guidelines [3]. Both QCI and Franklin classified this variant
as Tier III or IV, presumably due to having different rules around classification context.
Understanding whether a tier classification is “therapeutic, diagnostic, and/or prognostic”
in accordance with guidelines [3,4] is therefore critical to proper interpretation of variants
and this context should be as transparent as possible in tertiary analysis solutions to avoid
misinterpretation. While not the immediate focus of this study, an interesting follow-
up activity would be to measure AMP/ASCO/CAP tier classification concordance for
therapeutic significance vs. diagnostic/prognostic significance.

4.5.4. Implications of Variant Misclassifications

Over-classifying variants to a higher tier can severely impact downstream manage-
ment and lead to wasted resources, ethical concerns, and issues with data quality and
reproducibility. In this study, PIK3CA variants have been subject to overcalling, as this gene
is known to be of high relevance to disease [18]. For example, of the 10 variants that only
QCI classified as Tier IA (Figure 3a), 7 of these were PIK3CA variants. This dramatically
affected PPAs for QCI compared to navify MP and SOPHIA, which were 61.5% and 57.7%,
respectively (Figure 4b). This highlights the need for users in certain cases to confirm any
suspicious Tier I and II calls with additional review of literature and trusted databases.

Under-classifying variants to a lower tier can also have profound implications. In
this study, there were many examples of classification discordance, and inevitably, some
of this discordance stemmed from the under-classification of variants. For example, of
variants classified as Tier I (A or B) by navify MP, SOPHIA, and QCI, there were six variants
classified as non-IA-IB-IIC by the Franklin annotator (Table S1). It is important to recognize
cases of both over- and under-classification through regular quality control measures and
provide feedback of any issues to the tertiary analysis software support teams.

As with any comparison-type study, it is crucial to ensure an “apples to apples”
strategy is employed to interrogate the data. As a follow-up to this study, it would be
interesting to understand the nature of variants that were not present in all four annotators
to understand the level at which variants were “unfit” for classification comparisons. This
type of exercise would likely uncover interesting nuances in secondary analysis, variant
processing for tertiary analysis, and specific rules in tertiary analysis software solutions
that result in lack of tier classification. For example, SOPHIA and Franklin have created
rules to categorize post-processed variants as “LC”, or low confidence, and understanding
the concordance for this category across both annotators would be useful. Finally, we
recognize that since the time the data were captured and compared, it is possible that newer
versions of all the annotators would show improved calls of Tier I and II variants based
on updated content and/or software feature enhancements. It would be of paramount
interest to perform the same analysis over time to see if concordance improves across the
annotators in this study.

5. Conclusions

Both secondary and tertiary software solutions provide a time-saving, repeatable
method for variant annotation, analysis, and reporting. The output of the different variant
annotators varies and is attributable to how and what genomic information is applied to
a variant, and also the disease ontology that is available for each software tool. All four
software solutions analyzed provide a user-friendly interface and surpass manual curation
in terms of efficiency. However, there were marked disagreements between all annotators,
suggesting that it is important to carefully consider the choice of variant annotation software
for specific applications and to be educated in the nuances and settings. In addition, as
reported from the Variant Interpretation Testing Among Laboratories (VITAL) challenge
conducted by AMP, variant classification remains challenging and clarifications in the
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guidelines are warranted [10]. In addition, future versions of the AMP/ASCO/CAP
guidelines should address impactful complex biomarkers, such as TMB and MSI, expand
international applicability (e.g., inclusion beyond FDA drug approvals), and aim for greater
standardization of tier classification criteria.
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annotator software solutions; Figure S1: Negative Percent Agreement (NPA) for 2-way comparisons
for Tier I (a), Tier IA (b), Tier IB (c), and Tier IIC (d); Table S3: Complete list of complex variants
present in one or more annotators and any available classifications.
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