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Abstract: Traditional methods for predicting sow reproductive cycles are not only costly but also
demand a larger workforce, exposing workers to respiratory toxins, repetitive stress injuries, and
chronic pain. This occupational hazard can even lead to mental health issues due to repeated exposure
to violence. Managing health and welfare issues becomes pivotal in group-housed animal settings,
where individual care is challenging on large farms with limited staff. The necessity for computer
vision systems to analyze sow behavior and detect deviations indicative of health problems is
apparent. Beyond observing changes in behavior and physical traits, computer vision can accurately
detect estrus based on vulva characteristics and analyze thermal imagery for temperature changes,
which are crucial indicators of estrus. By automating estrus detection, farms can significantly enhance
breeding efficiency, ensuring optimal timing for insemination. These systems work continuously,
promptly alerting staff to anomalies for early intervention. In this research, we propose part of the
solution by utilizing an image segmentation model to localize the vulva. We created our technique
to identify vulvae on pig farms using infrared imagery. To accomplish this, we initially isolate the
vulva region by enclosing it within a red rectangle and then generate vulva masks by applying a
threshold to the red area. The system is trained using U-Net semantic segmentation, where the input
for the system consists of grayscale images and their corresponding masks. We utilize U-Net semantic
segmentation to find the vulva in the input image, making it lightweight, simple, and robust enough
to be tested on many images. To evaluate the performance of our model, we employ the intersection
over union (IOU) metric, which is a suitable indicator for determining the model’s robustness. For
the segmentation model, a prediction is generally considered ‘good’ when the intersection over union
score surpasses 0.5. Our model achieved this criterion with a score of 0.58, surpassing the scores of
alternative methods such as the SVM with Gabor (0.515) and YOLOv3 (0.52).

Keywords: deep learning; U-Net; reproductive organ; localization; image segmentation; computer
vision; farming

1. Introduction

In today’s agricultural landscape, farmers have increasingly embraced animal breeding
for diverse objectives such as boosting productivity, fortifying disease resistance, improv-
ing reproductive efficiency, and adapting to environmental challenges, notably heat and
drought. Highly productive animals prioritize allocating a significant portion of their
nutritional intake toward desired outputs like milk or meat production rather than solely
maintaining their own bodily functions [1]. This emphasis on longevity and reproductive
success leads to a more concentrated distribution of feed calories among the most produc-
tive animals, reducing the need for a large number of replacements within the herd [2].
On the other hand, farm workers have developed specialized techniques to discern subtle
changes in sow characteristics, such as vulva size and activity, in order to track their repro-
ductive cycles. However, when it comes to replicating this efficiency using autonomous
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machines, the results have been largely disappointing. The main challenge lies in accu-
rately identifying and capturing representative feature data, which has remained elusive
despite technological advancements. This stark contrast between human expertise and
machine capabilities underscores the intricate nature of farming practices and the ongoing
challenges in automating certain aspects of animal husbandry. In this research, our primary
objective is to detect the vulvae of sows using the U-Net segmentation model [3], which
has been proven to be the most effective technique for breeding management on farms.
The vulva serves as a crucial indicator of the sow’s ovulation cycle, and by accurately de-
tecting temperature fluctuations in this region, we can gain insights into the specific phase
of the estrous cycle [4]. To achieve our goal, we employ the U-Net semantic segmentation
method, which involves the extraction of masks through the color threshold. Our system
is trained using grayscale images alongside their corresponding masks, allowing us to
identify the vulva in input images effectively. Following vulva detection, the minimum
area rectangle (MAR) algorithm is applied to reduce unwarranted background information,
making the detection more precise and efficient. Our objective is to achieve the minimum
possible dimensions for the bounding box since the size of the organ is important in future
work. The next step is to track the size of the vulva. Therefore, any extra information in the
bounding box will act as noise during the estrous detection phase, leading to false standing
heat positives. The utilization of U-Net with the MAR technique not only ensures a light
weight and simplicity but also enhances the robustness of our model, enabling its evalua-
tion across a diverse range of images. This paper comprehensively explores the theoretical
foundations underlying the employed methods. Section 4 offers a detailed description
of our proposed system, elucidating its intricacies and highlighting the rationale behind
our approach. Additionally, we present extensive experimental results in this section,
showcasing the performance and efficacy of our methodology. Furthermore, Section 5 is
dedicated to evaluating the outcomes of our research using the intersection over union
(IOU) [5], while Section 6 provides conclusive remarks based on our findings and outlines
potential avenues for future expansion and refinement of this work.

2. Background

The global agricultural landscape is undergoing a profound transformation driven by
technological innovations. Among these innovations, machine learning and deep learning
have emerged as game-changers, reshaping the way farming operations are conducted.
Recently, there have been significant advancements in object detection and segmenta-
tion techniques [6,7], which have found widespread applications across various domains.
These methodologies have been extensively researched and applied to diverse fields,
such as autonomous driving [8], medical imaging [9], and industrial automation [10–12].
The development of deep learning algorithms, particularly convolutional neural networks
(CNNs) [13], has revolutionized many fields [14–16], especially the field of computer vision,
enabling more accurate and efficient detection and segmentation of objects within im-
ages [17]. With the advent of the intelligent pig breeding industry, precise pig management
has emerged as a critical aspect, and the ability to individually recognize pigs has become
the cornerstone of achieving precision breeding. However, despite its importance, research
into the field of pig breeding remains limited. Previous studies have focused on various
aspects such as pig face detection [18,19], posture analysis [20], interactive touch-based
techniques [21], and machine learning approaches for sow identification [22]. Many recent
research efforts used changes in posture as an indicator of heat in sows [23]. Others attempt
to detect estrus by extracting features or indicators dependent upon the change in the
size around the sow’s vulva [24]. This research [25] builds upon the findings of a study
that highlighted the correlation between temperature changes in the vulva and the sow’s
reproductive status. However, detecting and understanding the sow’s reproductive cycle
and its management within a farm setting requires further investigation to make general-
ization and widespread application of these efforts more feasible. Achieving widespread
application of these efforts necessitates accurate detection of the sow’s vulva. To address
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this challenge, our study focuses on employing U-Net semantic segmentation, a method
that stands out due to its unique design. U-Net utilizes a contracting path to capture
the overall context and a symmetric expanding path for precise localization. This design
enables the detection of intricate patterns and fine details in images, making it particularly
valuable in fields such as medical image analysis and satellite imagery. The ability of U-Net
to combine high-level context with detailed information distinguishes it among semantic
segmentation algorithms, followed by using the minimum area rectangle (MAR) algorithm
to allocate the exact possible area of the object, making our research noteworthy.

3. Related Work

In this section, we thoroughly assess and discuss the methodologies and approaches
we implemented to address the specific challenges presented by this problem. We delve into
an in-depth examination of the strategies employed, providing a comprehensive analysis of
their respective strengths, weaknesses, and overall effectiveness in tackling the intricacies
inherent in the problem at hand.

3.1. Vulva Detection in Sows Using Gabor with the SVM Classifier

Figure 1 presents the full pipeline components of this method. The first stage involves
collecting thermal RGB image datasets. Then, we extract their features using the Gabor
filter bank, followed by feature selection via PCA. Consequently, our SVM classifier is
trained using the resulting features. Finally, we elaborate upon the Gaussian pyramid with
a sliding window to allocate the vulva locations through the trained SVM.

Figure 1. An overview of our Detection system construction.

This trained system’s confusion matrix is shown in Figure 2. It demonstrates that
this system could correctly classify the pig’s vulva at a rate of 93%. It also shows that
the percentages of false detection and missing detection were 4% and 7%, respectively.
Since the confusion matrix is not sufficient to evaluate the object detection systems, other
performance metrics and loss functions should be used, such as the IOU, and we will
demonstrate the comparison between models using this metric in the following sections.

On the other hand, Figure 3 shows the qualitative results, illustrating that this system
achieved success in a high-level range of image scenarios. For instance, Figure 3f,g presents
the high detection speed of the system. When a farmer covered a sow’s hindquarter with
his hand in Figure 3f, the system was unable to detect the vulva in that instance, whereas
the system became able to detect the sow’s vulva right after the man removed his hand
in Figure 3g. On the other hand, the figures represent the robustness of this system on
different image scales. This can be seen in Figure 3a,e on one side and all other images on
the other side. This demonstrates the importance of using the Gaussian pyramid technique,
which derived the robustness of the system in a variety of scenarios and scales.
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Figure 2. The resultant confusion matrix of the trained system.

Figure 3. Results of the vulva detection system. The results cover a wide range of scenarios.
(a) represents the robustness of our system on close-up images. (b–e) represent the robustness of our
system from a distance. (f–h) present the high detection response of our system.

While this method is accurate and robust, it might not be the best fit for applications
that require speedy decision making, like live monitoring systems.

3.2. Vulva Detection Using YOLOv3

The interpretation of a YOLO model’s prediction results is just as nuanced as the
model’s implementation. A successful interpretation and accuracy rating are determined
by several elements, including the box confidence score and class confidence score utilized
when developing a YOLOv3 computer vision model. The results were evaluated using
the mean average precision (mAP). The mAP computes a score by comparing the ground
truth bounding box to the detected box. The higher the score, the more precise the model’s
detections. Figure 4 shows the results that were obtained utilizing our custom grayscale
dataset. The images show the detection of the vulva and ear in the same model as well as
the prediction accuracy.

While this method operates in real time, providing swift processing of data, it did
not exhibit improvement in the intersection over union (IOU) when compared with the
Gabor with the SVM classifier approach. Despite its real-time capabilities, the system’s
IOU performance remained comparable to or possibly less favorable than that achieved by
the Gabor with the SVM classifier method. This indicates that while the system excelled
in delivering speedy results, further enhancements may be explored to optimize the IOU
metrics for more accurate and robust outcomes.
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Figure 4. YOLOv3 results.

4. Method Overview

In this overview, we will explain the steps we took to find things accurately in our
research. First, we extracted masks of the region of interest using OpenCV. This step
involved precisely defining the areas we wanted to focus on and laying the foundation
for our in-depth analysis. Then, we used grayscale images along with the extracted masks
to train a U-Net semantic segmentation model. This integration was vital as it allowed
us to harness the advanced capabilities of the U-Net model, enabling it to recognize and
understand the specific areas defined by the masks. Finally, the model used a minimum
area rectangle algorithm to optimize the predicted mask for better intersection over union
(IOU) values. By fine-tuning the results using this technique, we ensured the accuracy and
reliability of our findings, enhancing the overall quality of our research outcomes. Figure 5
presents our full pipeline components that are covered in detail in the following subsections.

4.1. Data Collection and Preparation

To train our models, a dataset was needed which had images that only contained
vulva (positive dataset) and images that represented anything other than vulva (negative
dataset). To accomplish this, we used a long-wave infrared (LWIR) camera to capture
4755 images of sows in the barn and then cropped the parts that contained only the sows’
vulvae. In contrast, we created images with other sow parts, such as ears and heads, as well
as other unspecified scenes, as shown in Figure 6. LWIR is one of the three wavelength
bands in which infrared thermal imaging operates. The other two are medium-wavelength
infrared (MWIR) and very long-wavelength infrared (VLIR). LWIR can cover wavelengths
that range from 8000 nm to 14,000 nm (from 8 µm to 14 µm) [26]. An LWIR camera is
capable of detecting thermal emissions of animals, vehicles, as well as people as they stand
out when the temperature of the environment is different. Since it measures heat rather
than light, LWIR imaging is frequently used as a thermal imaging solution. This makes it
easier to distinguish living objects in images, which is why we used it in our research.
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Figure 5. An overview of the segmentation model used in this research.

Figure 6. (a) presents a sample training image containing only sows’ vulvae, representing our positive
training dataset. The image in (b) shows a sample image of our negative training dataset.
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4.2. Color Threshold

Color thresholding is a technique used to separate objects or regions of interest from
the background in an image based on their color or intensity characteristics. It is a form of
image segmentation that divides an image into distinct parts, facilitating further analysis
or manipulation. Color thresholding operates on the principle that objects or regions of
interest in an image often exhibit unique color characteristics that distinguish them from
the surrounding background. In image processing, thresholding involves comparing pixel
values to a predetermined threshold. Pixels meeting the specified condition are assigned
new values, leading to the creation of a binary mask. This mask highlights areas in the
image where the condition is met; pixels equal to or greater than the threshold are often set
to 255 (representing white), and pixels below the threshold are set to 0 (representing black).
In our research, color thresholding played a pivotal role. It enabled us to identify and extract
specific regions of interest, such as those segmented in red. This targeted segmentation was
crucial for our analysis. We obtained a binary representation by thresholding the image,
providing a clear delineation of the region we were investigating. Figure 7 shows a sample
of a segmented image and its mask.

Figure 7. Segmented image sample and its mask.

4.3. U-Net Semantic Segmentation Architecture

Before delving into the specifics of U-Net, it is essential to grasp the fundamental
concept of semantic segmentation. Unlike image classification, where the entire image
is assigned a single label, semantic segmentation aims to categorize each pixel within an
image, providing a detailed delineation of the object boundaries and classes [27]. This
pixel-level understanding has a myriad of applications, including object detection, scene
understanding, and medical image analysis. Semantic segmentation algorithms tradition-
ally grapple with several challenges. One of the most pressing challenges is the need to
capture both local and global contexts within an image while preserving high-resolution
spatial information. The U-Net architecture was conceived as an answer to these challenges,
offering an innovative solution that struck a balance between feature extraction and pre-
cise localization. U-Net is a deep learning architecture specifically designed for semantic
segmentation tasks (Table 1). The U-Net architecture derives its name from its U-shaped
structure (Figure 8), which resembles an encoder-decoder network. The model consists
of two main components: the contracting path and the expansive path. The contracting
path serves as the encoder and is responsible for capturing the context and extracting high-
level features from the input image. It consists of several convolutional and max pooling
layers that progressively reduce the spatial dimensions while increasing the number of
feature channels. The contracting path in this network follows a common pattern used in
convolutional networks. It repeatedly applies two 3 × 3 convolutions followed by a ReLU
activation and then a 2 × 2 max pooling operation to reduce the size. Each time it reduces
the image, it also doubles the number of features it looks for. The expansive path performs
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the opposite functions. It enlarges the feature map and reduces the number of features.
It accomplishes this by upsampling the features and then using a 2 × 2 convolution to
decrease the number of features. It then combines this with the cropped feature map from
the contracting path and applies more convolutions with ReLU activation. Finally, a 1 × 1
convolutional layer is used at the end to convert the features into the desired output classes.
The entire network has 23 layers in total (Figure 8). The choice of U-Net as the segmentation
model stemmed from its well-documented effectiveness in biomedical image segmentation
tasks, particularly in scenarios where there is a need to preserve spatial information and
capture intricate details in low-rank images, while other larger models may provide a slight
performance improvement but are more costly during training and inference times.

Table 1. The network structure.

Contraction Path (Encoder)

Block Layer No. of Filters Activation Function

Block 1
Conv2D (3,3) 16 relu

Conv2D (3,3) 16 relu

Block 2
Conv2D (3,3) 32 relu

Conv2D (3,3) 32 relu

Block 3
Conv2D (3,3) 64 relu

Conv2D (3,3) 64 relu

Block 4
Conv2D (3,3) 128 relu

Conv2D (3,3) 128 relu

Block 5
Conv2D (3,3) 256 relu

Conv2D (3,3) 256 relu

Expansive Path (Decoder)

Block Layer No. of Filters Activation Function

Block 6
Conv2DTranspose (2,2) 128 .......

Concatenate (c4,Transpose(2,2)) 128 ......

Conv2D (3,3) 128 relu

Block 7
Conv2DTranspose (2,2) 64 ......

Concatenate (c3,Transpose(2,2)) 64 ......

Conv2D (3,3) 64 relu

Block 8
Conv2DTranspose (2,2) 32 ......

Concatenate (c2,Transpose(2,2)) 32 ......

Conv2D (3,3) 32 relu

Block 9
Conv2DTranspose (2,2) 16 .......

Concatenate (c1,Transpose(2,2)) 16 ......

Conv2D (3,3) 16 relu
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Figure 8. U-Net architecture.

4.4. Training Masks

In U-Net semantic segmentation, the training process typically involves using input
masks and grayscale images to train the model to accurately segment objects of interest
in an image. Input masks play a crucial role in the training of U-Net. An input mask is
a binary image that has the same size as the original input image, where each pixel is
assigned a value of either 0 or 1. The purpose of the input mask is to indicate the regions
of interest or the ground truth segmentation annotations for the corresponding input
image. During training, the U-Net model takes both the original grayscale image and the
corresponding input mask as inputs. The grayscale image provides the visual information,
while the input mask guides the model to learn the correct segmentation boundaries and
object classes. The grayscale image is typically used as the input to the U-Net model. It
represents the original image in a single channel, where each pixel value corresponds to the
intensity or brightness of the pixel. The grayscale image is preprocessed and normalized
before being fed into the model.

The input mask, on the other hand, is a binary image where the pixels belonging
to the segmented object are assigned a value of 1, while the remaining pixels are labeled
as background pixels and are assigned a value of 0. The input mask is usually created
through manual annotation. However, automatic techniques can be used, depending on
the availability of labeled data. The input mask provides the ground truth labels for the
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training process, guiding the model to learn the correct segmentation boundaries and object
classes. During the U-Net training phase, the model learns to map the input grayscale
image to a predicted segmentation map, which is then compared to the ground truth input
mask using a suitable loss function such as the dice coefficient or cross-entropy loss [28].
The model is optimized to minimize the discrepancy between the predicted segmentation
map and the ground truth input mask. By utilizing input masks and grayscale images,
U-Net learns to segment objects in the grayscale image accurately. The model learns to
capture both low-level and high-level features, enabling it to detect and classify objects in
the image based on the guidance provided by the input mask.

The network is trained using stochastic gradient descent implementation, where pairs
of input images and their respective segmentation maps are used for training. The energy
function is calculated through a softmax operation applied pixel by pixel on the final feature
map, and this result is combined with the cross-entropy loss function, where the softmax
operation is defined as

Softmax(zi) =
ezi

∑N
j=1 ezj

where zi is the ith element of the input vector z and N is the total number of elements in
the vector z. In addition, the cross-entropy function is defined as

Loss = −∑K
k=1 yk · log(ŷk)

where K represents the number of classes or categories, yk is the true label for each pixel
corresponding to class k, and ŷk is the predicted probability (or score) for class k.

This loss function is often used in scenarios where the task is to assign each pixel
to one of K classes. The log term penalizes the model more if the predicted probability
diverges from the true label. Minimizing this loss during training helps the model learn to
produce predicted probabilities that align with the true labels.

4.5. Minimum Area Rectangle

The minimum area rectangle (MAR) algorithm [29] is a fascinating solution to a
fundamental geometric problem in computational geometry. This algorithm, also known
as the minimum bounding rectangle (MBR) algorithm, tackles the challenge of finding the
smallest possible rectangle that can enclose a group of points on a flat surface. It is crucial
to note that this rectangle must have sides that align with the coordinate axes, meaning
they are either horizontal or vertical. To grasp the essence of the problem, imagine having
a collection of points scattered across a two-dimensional plane and wanting to discover the
smallest rectangle that can cover all these points. This rectangle should be aligned with the x
and y axes, making it an axis-aligned rectangle. The MAR algorithm employs mathematical
concepts like the convex hull, principal component analysis (PCA), and angle calculations
to solve this problem efficiently. Firstly, it starts by finding the convex hull of the input
points. The convex hull is the smallest convex polygon that encompasses all the given
points. Think of this as a rubber band stretched around the outermost points. Secondly,
the algorithm utilizes PCA, a mathematical technique often used in statistics and machine
learning, to determine the principal axes of the points. These principal axes correspond
to the directions with the maximum variability in the point distribution. In the context of
the MAR algorithm, these axes are vital for figuring out the orientation of the minimum
area rectangle. Lastly, the algorithm calculates the angle between the principal axis and
the horizontal axis (x axis). This angle information helps determine how the minimum
area rectangle should be oriented. Additionally, the information will be useful for future
estrus detection research and will serve to improve the results obtained from the U-Net
model. The masks are returned to the original rectangle shape by drawing a minimum
rectangle around the predicted masks while considering the rotation angle. Figure 9 shows
two rectangles: the green one is the regular bounding rectangle, while the blue one is the
minimum area rectangle.
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Figure 9. Figure on the (left) shows the predicted mask, while the figure on the (right) shows 1.
Green cycle which represents the minimum enclosing circle drawn around each detected contour. 2.
Green Rectangle: This represents the bounding box drawn around each detected contour. 3. Blue
Rectangle: This represents the minimum area rectangle drawn around each detected contour.

5. Results and Discussion

The intersection over union (IOU) refers to the amount of overlap between two bound-
ing boxes as shown in Figure 10. In the case of U-Net, it initially exhibited an IOU score
of 0.50. However, after implementing a minimum area rectangle (MAR), the IOU score
was further improved to 0.58. This method was compared with previous methods, in-
cluding YOLOv3 and machine learning using Gabor with SVM classifier filters. In the
machine learning algorithm, Gabor filters and a histogram of oriented gradients (HOGs)
were used for feature extraction, followed by support vector machines (SVMs) for classifi-
cation. However, the results revealed shortcomings in the model’s performance, prompting
the introduction of a second stage. In this stage, the dataset was trained using YOLOv3,
a deep-learning object detection framework. The segmentation model developed was
found to be the optimal choice for assisting in vulva localization. The outcomes of the
ultimate approach demonstrate that the suggested system is capable of accurately segment-
ing the vulva region of a sow, even in images of poor quality, and exhibits outstanding
performance efficiency.

Table 2 displays the decision-making process that led us to choose the U-Net model
over the YOLOv3 model and other classical models. Based on the table, we observed that
the performance of the SVM was enhanced by augmenting the dataset. Furthermore, when
we trained the SVM with Gabor features, we noticed an improved intersection over union
(IOU) score. We also observed better performance by increasing the number of Gabor filters
from 12 to 96 feature maps. However, we did not make any changes to YOLOv3 since we
switched to U-Net for better performance and a faster runtime. We achieved improved
results with U-Net by adding the minimum average recall (MAR) as a post-processing step.
we found that U-Net outperformed YOLOv3 significantly when both models were trained
on the same number of labeled images. Furthermore, compared with YOLOv3, quantized
U-Net runs at a faster speed, making it a more suitable choice for our project and setting the
benchmark for future research improvements. In real-world applications, the model will
be quantized and deployed on an edge device with a limited bandwidth, making speed a
crucial factor in our selection. We referred to [30] for a comprehensive benchmarking of all
YOLO versions and their speeds on multiple platforms. We were able to run the quantized
U-Net model on our platform faster and with minimal loss of performance, confirming
our decision.
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Figure 10. Intersection over union results. The (first left) image is the ground truth mask. The (first
right) image is the prediction. The (second left) image shows the intersection between the ground
truth and the predicted mask, while the (second right) image represents the union.

Table 2. Presentation of the performance of each model.

Comparison between Models

Approach Mean IOU Improved IOU FPS

SVM 0.400 0.450 35

SVM with Gabor 0.490 0.515 25

YOLOv3 0.520 0.520 40

U-Net 0.500 0.586 45

The U-Net architecture is well-known for its ability to perform image segmentation
tasks with high accuracy, as shown in Figure 11. However, it has a limitation in that
it only considers spatial information, which can result in suboptimal performance in
certain scenarios. In our research, we discovered that when using U-Net to analyze vulva
temperature data, some of the temperature information was lost during the normalization
step of the preprocessing stage. Since the vulva temperature is a crucial indicator of estrous,
this loss of information can lead to false negatives and impact the accuracy of estrous
prediction. Therefore, it is essential to address this limitation of the U-Net architecture and
devise more effective strategies to preserve the temperature information while performing
image segmentation. Moreover, this will make it hard to generalize over other species.
The overall pipeline will work, but it will require training from scratch instead of fine-tuning
the existing model. In our upcoming research, we will address these limitations.
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Figure 11. U-Net segmentation results.

6. Conclusions

Traditionally, the task of vulva localization has largely relied on manual labor, with farm
workers employing specialized techniques to identify and track the reproductive cycles
of sows. While this approach can yield valuable insights, it is labor-intensive, prone to
human error, and challenging to scale efficiently in large farms. Moreover, farm work-
ers are exposed to various occupational hazards, including toxins in the air, repetitive
stress injuries, and mental health issues, highlighting the urgent need for automation and
innovative solutions in the industry. Our research represents a paradigm shift by intro-
ducing the U-Net semantic segmentation model as a robust and reliable alternative for
vulva localization. By harnessing the capabilities of deep learning, we demonstrated the
potential to significantly reduce the reliance on manual labor while enhancing accuracy
and efficiency. This transition from human-based methods to computer vision and ma-
chine learning is pivotal for the well-being of farm workers and the overall productivity
of the livestock industry. In conclusion, this paper presents a novel approach for vulva
localization using the U-Net semantic segmentation model. The proposed method was
compared with alternative techniques, including YOLOv3 and machine learning using
SVMs with Gabor filters. Through rigorous experimentation and evaluation, the results
of our experiments unequivocally demonstrate the advantages of the U-Net model. It
consistently outperformed both YOLOv3 and the SVM-Gabor filter combination across
multiple metrics. While YOLOv3 exhibited competitive performance, it fell short in terms of
localization accuracy and was sensitive to variations in pig posture and lighting conditions.
On the other hand, the SVM-Gabor approach, while demonstrating some merit, lacked the
adaptability and generalization capabilities offered by deep learning models like U-Net.

Further plans include employing the output of this method as the input for the next
step in this research. The overall pipeline improves the automation of estrous detection
based on tracking the size of the vulva and the changes associated with it over time.
However, achieving precise and reliable results relies heavily on maintaining a consistent
camera distance during image capture. Camera distance variations can lead to erroneous
estrus estimations, potentially resulting in missed breeding opportunities or false positives.
Future research avenues will make this approach robust at varying imaging distances by
incorporating depth information. Later, we plan on using the minimized bounding box we
achieved to track the size of the vulva.
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