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Abstract: The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications
of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO
protein has been identified as a potential target for developing anticancer therapies. Identifying a
suitable ligand-targeting FTO protein is crucial to developing chemotherapeutic medicines to combat
obesity and cancer. Scientists worldwide have employed many methodologies to discover a potent
inhibitor for the FTO protein. This study uses deep learning-based methods and molecular docking
techniques to investigate the FTO protein as a target. Our strategy involves systematically screening a
database of small chemical compounds. By utilizing the crystal structures of the FTO complexed with
ligands, we successfully identified three small-molecule chemical compounds (ZINC000003643476,
ZINC000000517415, and ZINC000001562130) as inhibitors of the FTO protein. The identification
process was accomplished by employing a combination of screening techniques, specifically deep
learning (DeepBindGCN) and Autodock vina, on the ZINC database. These compounds were
subjected to comprehensive analysis using 100 nanoseconds of molecular dynamics and binding free
energy calculations. The findings of our study indicate the identification of three candidate inhibitors
that might effectively target the human fat mass and obesity protein. The results of this study have
the potential to facilitate the exploration of other chemicals that can interact with FTO. Conducting
biochemical studies to evaluate these compounds’ effectiveness may contribute to improving fat
mass and obesity treatment strategies.

Keywords: FTO protein; deep learning-based screening; molecular docking; molecular simulations;
drug screening

Key Contribution: By utilizing the crystal structures of the FTO complexed with ligands, we have suc-
cessfully identified three small-molecule chemical compounds (ZINC000003643476, ZINC000000517415,
and ZINC000001562130) as inhibitors of the FTO protein.
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1. Introduction

The prevalence of obesity and cancer is steadily rising in numerous countries glob-
ally, posing a significant risk to human well-being [1,2]. Obesity induces alterations
in the physiological and hormonal milieu of the body, thereby fostering the develop-
ment of various diseases, such as diabetes and cardiovascular disorders [3]. Research
has established a positive correlation between obesity and heightened susceptibility to
a minimum of 13 distinct forms of cancer, including esophageal adenocarcinoma, colon
cancer, endometrial cancer, postmenopausal breast cancer, kidney cancer, and hematopoi-
etic cancers [4–11]. The molecular processes responsible for obesity and cancer involve
obesity-related hormones, developmental factors, several signaling pathways, and chronic
inflammation [12–14]. Fat mass and obesity-associated (FTO) gene cloning was initially
accomplished through exon trapping analysis in mice with the fused-toes mutation [15–17].
The Genome-Wide Association Studies (GWAS) conducted in 2007 identified FTO as a
gene influencing obesity susceptibility [18]. Specifically, several single-nucleotide poly-
morphisms (SNPs) located in the intron 1 region of the FTO gene were significantly as-
sociated with various anthropometric and dietary measures, including body mass index,
body fat percentage, waist circumference, hip circumference, and energy intake. Conse-
quently, the gene has been designated the FTO gene and has garnered significant scholarly
interest [19,20].

Based on contemporary genomics research, it has been observed that the FTO gene is
exclusively present in vertebrates and a limited number of marine algae species, exhibiting
a remarkably conserved arrangement of nucleotides and amino acids [21–23]. The FTO
gene, which is responsible for encoding a dioxygenase enzyme belonging to the AlkB family
and dependent on 2-oxoglutarate (2-OG) Fe(II), is situated on chromosome 16q12.2 [24].
The FTO gene exhibits significant expression in adipose tissues and skeletal muscles within
human anatomical structures [25]. Notably, the highest expression level is observed in
the hypothalamus, specifically in the arcuate nucleus, which governs energy balance [26].
This finding suggests that FTO likely plays a crucial role in regulating appetite and energy
metabolism [27]. Through the implementation of GWAS analysis, scholars have discovered
a significant correlation between single-nucleotide polymorphisms (SNPs) in the FTO gene
and the presence of obesity, as well as increased susceptibility to a range of cancers within
populations of diverse racial backgrounds [28,29].

The FTO gene exhibits significant upregulation in various cancer tissues, functioning
as an oncogene in an m6A-dependent manner and contributing to the modulation of cancer
cells’ malignant phenotype [30–33]. In a study conducted in 2017, Li and colleagues discov-
ered that FTO, a protein-coding gene, played a role in promoting cell transformation and
leukemogenesis induced by the leukemia oncogene [34,35]. The crystallographic analysis
of human FTO complexed with a ligand elucidates a previously unidentified binding site
for the FTO inhibitor. It provides insights into the molecular mechanisms underlying
the recognition of the inhibitor by FTO [36,37]. The discovery of the novel binding site
presents promising prospects for advancing targeted and potent FTO inhibitors [38]. This
development will yield valuable insights into identifying potential therapeutic targets in
discovering new drugs for obesity and related disorders [39].

In recent years, drug discovery research has seen extensive utilization of deep learning
techniques [40,41]. Precisely and effectively predicting the interaction between proteins
and ligands using computational methods is a fundamental aspect of extensive drug
screening [42]. Given the advancements in deep learning algorithms and the growing avail-
ability of protein–ligand interaction data, particularly in high-resolution atomic structure
and experimental binding affinity information, it is now feasible to utilize deep learn-
ing techniques to differentiate between binders and non-binders and predict the binding
affinity [43]. In addition, we have developed DeepBindBC, which can determine whether
protein–ligand complexes are native-like. This is accomplished by generating a com-
prehensive protein–ligand decoy complex as a negative training set [43,44]. The graph
convolutional network (GCN) is a widely recognized deep learning technique that utilizes
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nodes to store feature information and edges to represent spatial relationships between the
nodes [45]. The application of the GCN in predicting chemical properties and molecular
fingerprints has been extensively explored [46]. Moreover, the GCN has proven effective in
predicting protein–ligand interactions [47]. In our recent work, we presented a screening
process that combines DeepBindGCN with other techniques to identify molecules with a
high affinity for binding, using TIPE3 and PD-L1 dimer as examples to demonstrate this
approach [48]. One advantage of DeepBindGCN is its ability to operate without relying on
specific docking conformations. Additionally, it effectively preserves both spatial informa-
tion and physicochemical characteristics. In this study, we utilized the pocket residues or
ligand atoms as the nodes and established edges based on the neighboring information
to represent the protein pocket or ligand information comprehensively. Furthermore, the
model utilizing pre-trained molecular vectors exhibited superior performance compared
to the one-hot representation model. This method demonstrated better predictive ability
than the most advanced affinity prediction models that depend on the three-dimensional
complex. DeepBindGCN is a robust technique for predicting protein–ligand interactions
and can be applied in several significant large-scale virtual screening scenarios. Researchers
worldwide employ contemporary methodologies in conjunction with conventional ones to
enhance the precision and efficacy of predictions [49,50].

Researchers have proposed a mixed approach for drug discovery called hybrid drug
virtual screening [51]. For example, the deep learning architecture encompassing the
end-to-end network structure exhibits exceptional speed and accuracy in recognizing
patterns [52,53]. Disease classification studies commonly employ classical neural networks
and popular new models, such as AlexNet, GoogleNet, VGGNet, ResNet, and DenseNet
models, to improve performance [54,55]. These models are frequently utilized as founda-
tions for research, aiming to enhance performance by integrating other techniques. The
present work combines deep machine learning, molecular docking, and molecular dynam-
ics simulation to identify potential therapeutic candidates from chemical databases. This
computational analysis examines candidate compounds with the potential to inhibit the
FTO protein. The prediction is improved in terms of accuracy and efficiency by combin-
ing three computing approaches: (i) virtual screening of the existing chemicals database,
(ii) deep learning, and (iii) molecular dynamics and free-energy calculations. This study
aims to discover small-molecule chemical compounds that exhibit inhibitory properties
against FTO. The computational analysis of ligands complexed with human FTO demon-
strates that the newly discovered small molecule shows a specific binding mode with
FTO. The discovery of the small molecule presents potential avenues for advancing the
development of FTO inhibitors that are more discerning and efficacious.

2. Materials and Methods
2.1. Target and Ligand Information

The protein under investigation in the current research is the FTO protein. The protein
was subjected to crystallization in the presence of ligands, namely 3-METHYLTHYMIDINE,
N-OXALYLGLYCINE, and FE (II) ION. The crystal structure obtained (Protein Data Bank
Identifier—3LFM) was derived using X-ray diffraction with a resolution of 2.75 Å. The
protein comprises a total of 495 amino acids [56]. The FTO protein consists of an amino-
terminal domain with structural similarities to the AlkB family and a carboxy-terminal
region with a unique fold [57,58]. In contrast to the structural characteristics seen in
other members of the AlkB protein family, FTO has a distinctive additional loop that
extends over one side of the conserved jelly-roll motif. This investigation used the ZINC
database as a virtual screening library (source: https://zinc.docking.org/ accessed on
15 September 2023). The chemicals in the database are substances available for purchase
in ready-to-dock, three-dimensional versions [59]. ZINC offers a vast collection of more
than 750 million compounds. These compounds may be conveniently searched for analogs
within a minute [60].

https://zinc.docking.org/
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2.2. Virtual Screening Procedure

DeepBindGCN, a deep learning model based on Graph Convolution Networks (GCN),
performs comprehensive screening on an extensive dataset [48]. The GCN is a well-
recognized deep learning technique that utilizes nodes to store residue information and
edges to represent spatial relationships among the nodes. The use of GCN in predicting
chemical properties and molecular fingerprints has been extensively explored in previous
studies [43,61–63]. In addition, the GCN has shown efficacy in protein–ligand interaction
prediction. This particular type is renowned for its exceptional efficiency and precision
while carrying out such jobs. DeepBindGCN_BC is a binary classifier designed to distin-
guish between binders and non-binders. On the other hand, DeepBindGCN_RG serves
as a predictor for protein–ligand binding affinity. The enhanced accuracy of DeepBindBC
may be attributed to incorporating both physical–chemical and spatial characteristics into
the protein–ligand interactions. The importance of protein–ligand complexes was ranked
by employing three distinct scoring procedures: DeepBindGCN_BC, DeepBindGCN_RG,
and Autodock Vina score. The crystal structure was prepared for molecular docking using
the Autodock Tools [64,65]. The protein molecule was introduced into the designated
computational environment, where the missing side chains and loops were generated,
and the hydrogen bonding pattern of the protein structure was refined. Water molecules
with a size less than 3 Å were eliminated. The structure’s energy was verified by applying
depreciation to the optimized crystal structure. The OPLS 2005 force field was used in
all protocols [66]. The information about ligand-binding residues present in the crystal
structure was used to specify a grid. The Autodock tool was used for the ligand preparation
process of these derivatives. The hydrogen bonds were introduced, and the bond length
was determined using the OPLS 2005 algorithm [67]. Molecular docking was conducted
using Autodock Vina, resulting in the acquisition of 10 poses for each ligand. These poses
were then recorded in a suitable format to facilitate further analysis. The protein–ligand
interactions were shown using the Discovery Studio visualizer V4.0.100.13345 [68].

2.3. Molecular Dynamics Simulations

Force-field-based molecular dynamics (MD) simulations were used to conduct sup-
plementary screening for the protein–ligand complexes exhibiting the highest scores. The
protein–ligand complexes were produced using the Autodock Vina docking method. Fol-
lowing this, the ligand was subjected to alteration using the pymol program to guaran-
tee its positioning in the suitable protonation state [69]. The molecular dynamics (MD)
simulations were performed using an AMBER-99SB force field implemented in the Gro-
macs program [70]. The ligand’s architecture and partial charges were synthesized using
ACPYPE [71]. A dodecahedron box was constructed, with the structural complex placed
in its central location. The box was then populated with TIP3P water molecules by fol-
lowing the methodology outlined in reference [72]. A minimum separation distance of
1 nanometer was defined between the protein molecule and the boundary of the simulation
box. The Gromacs software program included counter-ions to attain charge neutrality. A
cutoff distance of 14 Å was used to determine non-bonded van der Waals interactions. The
LINCS algorithm used hydrogen atoms to restrict covalent interactions [73]. Energy mini-
mization was performed with a step size of 0.001 nanoseconds. Subsequently, a simulation
lasting 100 picoseconds was conducted using an isothermal–isovolumetric ensemble (NVT).
This was followed by a 10-nanosecond simulation using an isothermal–isobaric ensemble
(NPT) to achieve equilibrium for the water system. A molecular dynamics simulation
using a non-polarizable tight-binding model was performed, whereby a production run of
100 nanoseconds was executed. A time step of 2 femtoseconds was used for the simulation.
The simulation used a Parrinello–Rahman barostat and a modified Berendsen thermostat,
operating at a constant temperature of 300 K and a pressure of 1 atm. The trajectory’s root-
mean-square deviation (RMSD) was computed using the Gromacs software 2023.1 tools.
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2.4. Binding Free Energy Calculation

The binding free energy of the top three FTO–ligand complex structures was calculated
using the molecular mechanics/Poisson–Boltzmann surface area (MMPBSA) approach,
which relies on molecular dynamics trajectories [74]. The calculation of MM-PBSA free
energy was performed for the three highest-ranked complexes of FTO–ligand complexes.
The binding free energy was calculated using the MM/PBSA technique, implemented in the
g_mmpbsa program. The computation was conducted using the last 20 nanoseconds of the
trajectory, whereby 20 frames were chosen from each nanosecond. A 40-nanosecond NPT
molecular dynamics simulation acquired the trajectory used in this study. The calculation
of the binding free energy was performed using the following equation:

∆G bind = E_complex(minimized) − E_ligand(minimized) − E_receptor(minimized)

3. Results
3.1. Virtual Screening Results

In this study, we used the crystal structure of the FTO protein and its associated ligand
as a guide to implementing a hybrid screening approach. We aimed to find small-molecule
chemical compounds from the ZINC database that could bind to the FTO protein. Three
small molecules, namely ZINC000003643476, ZINC000000517415, and ZINC000001562130,
were found with a DeepBindGCN_RG score of less than 7 (Table 1). Table 1 displays
DeepBindGCN_BC, a binary classifier that distinguishes between binders and non-binders,
as well as DeepBindGCN_RG, which is a process that predicts the affinity between proteins
and ligands. The only difference was that one output was a binary value ranging from 0 to 1,
indicating categorization, while the other was a continuous value representing affinity pre-
diction. The conformation that was taken into consideration was the docked conformation,
which had a binding energy of −9.0 or higher. Further analysis was conducted on the
three docked complexes for more detailed information. The compound ZINC000003643476
exhibits 18 interactions with the amino acid residues present in the FTO protein, whereas
ZINC000000517415 and ZINC000001562130 demonstrate 19 and 16 interactions, respec-
tively, with the protein molecule seen in Figure 1. The ligand ZINC000000517415 exhibits
a higher number of interactions in comparison to the other ligands. Five hydrophobic
contacts were identified between ZINC000000517415 and ZINC000001562130, but only
four hydrophobic interactions were observed between ZINC000000517415 and the receptor.
The hydrophobic interactions play a crucial role in protein–ligand interactions [75]. The
hydrophobic carbon composition of a ligand mainly determines whether the ligand can
initially enter the active site [76]. The precise conformation of these hydrophobic carbons
with the geometry of the active site also guarantees the absence of undesired protein–ligand
interactions resembling the target [77].

Table 1. Predicted DeepBindGCN_BC, DeepBindGCN_RG, and binding energy of compounds from
ZINC database with FTO protein.

S.No Compound DeepBindGCN_BC DeepBindGCN_RG Binding Energy (kJ/mol)

1 MolPort-001-741-269_ZINC000003643476 1 9.079 −10.0
2 MolPort-002-508-662_ZINC000000517415 1 9.025 −9.7
3 MolPort-002-476-943_ZINC000001562130 1 7.666 −9.0
4 MolPort-002-507-418_ZINC000142857948 1 6.040 −7.1
5 MolPort-002-801-687_ZINC000001022034 1 9.036 −7.1
6 MolPort-001-739-485_ZINC000229938091 1 9.052 −6.9
7 MolPort-005-945-631_ZINC000013485421 1 9.002 −6.8
8 MolPort-001-736-557_ZINC000005447704 1 9.334 −6.8
9 MolPort-001-741-121_ZINC000075906045 1 9.031 −6.8
10 MolPort-001-832-299_ZINC000004521756 1 9.045 −6.7
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Figure 1. Schematic 3D (FTO-ZINC000003643476 (A), FTO-ZINC000000517415 (B), and FTO-
ZINC000001562130 (C)) and 2D interaction diagrams of top three compounds with FTO protein
(FTO-ZINC000003643476 (D), FTO-ZINC000000517415 (E), and FTO-ZINC000001562130 (F)).

Each of the three ligands exhibits an interaction with the leucine amino acid residue.
The ligands establish interactions with leucine residues at positions 109 and 203 of the
FTO protein. Charged residue interactions between the ligands and the receptor molecule
involve arginine residues at positions 96 and 322 and an aspartic acid residue at position
233. Charged residues were discovered to enhance high-affinity binding. Additionally, they
play a crucial role in “electrostatic steering”, a technique that allows electrostatic forces
to guide a ligand toward a binding site on the receptor protein, significantly increasing
the association rate [78,79]. Our findings demonstrate the significance of the hydrophobic
amino acid residue “Valine” at the 228th position. All three chemicals establish a strong
hydrophobic interaction with the amino acid valine at position 228 and the charged residue
arginine at position 96. Based on our empirical findings, it is evident that all the ligands
exhibit a high degree of binding efficacy with the FTO protein, primarily due to their ability
to establish a more significant number of stabilizing binding interactions.

Upon examination of the interactions between FTO and ligands in all three complexes,
it is shown that a few interactions are conserved across all complexes. The amino acid
residues 96Arg (positively charged) and 228Val, 203Leu, and 109Leu (hydrophobic) exhibit
interactions with each of the three ligands, respectively. Shiraki and colleagues thoroughly
address the involvement of the charged residue “Arginine” in protein–ligand interac-
tion [80]. The interaction between a protein and a ligand via hydrophobic interactions is
well recognized as a significant factor influencing the process of protein folding and stability.
The significance of the histidine residue located at the interface is well acknowledged in
preserving the appropriate conformation of the receptor for effective ligand binding.
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3.2. Molecular Dynamics Simulations

Molecular Dynamics simulations were conducted on the three highest-ranked protein–
ligand complexes acquired from molecular docking. Analyzed in Figure 2, the dynamic
stability of the protein–ligand complex was estimated by examining the changes in root-
mean-square deviation (RMSD) seen during the molecular dynamics (MD) simulations.
The simulations accurately replicate the interactions and bonding within the protein–
ligand complex while considering the environmental factors of water, temperature, and
pressure in physiological settings. The protein–ligand complex was generated in the most
favorable binding position obtained from docking, with an average root-mean-square
deviation (RMSD) value of approximately 0.3 Å. A protein’s backbone root-mean-square
deviation (RMSD) falling between 0.2 and 0.4 Å is considered acceptable and provides
vital information about the sequence of structural changes. The observed protein–ligand
complex was found to be stable during the simulation time.
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molecular dynamics simulations.

Figure 3 displays the root-mean-square fluctuation (RMSF) values for each amino
acid residue in protein. The peaks shown in the figure represent the localized variations
occurring throughout the protein chain. The observed RMSF values indicate that minor
structural changes occurred inside the docking complex during the simulations. The
interactions between the ligand atom and the protein residues throughout the simulation
are seen in Figure 3. During the simulation, it was observed that the arginine residue at
the 322nd position had interactions with ligand atoms for a duration exceeding 30% of
the simulation time. Acknowledging that the residues above establish interactions during
docking tests is essential. Additional mutagenesis investigations would provide a valuable
opportunity to elucidate how ligands interact with critical binding amino acid residues.

3.3. Binding Free Energy

A highly effective method for verifying the accuracy of molecular docking outcomes
involves the computation of the binding free energy of the protein–ligand complex using
MM-PBSA continuum solvation. The MM-PBSA methodology was employed to determine
the physical characteristics of three protein–ligand complexes. The molecular dynamics
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(MD) trajectories were used to predict the binding energies (Figure 4). The diagram
incorporates stabilizing physical free energy, including van der Waals forces, electrostatic
interactions, and solvent-accessible surface area (SASA). ZINC000003643476 exhibited
higher values of binding free energy (−104.14 kJ/mol), van der Waals (−193.42 kJ/mol)
and electrostatic (−36.12 kJ/mol) free energies, and SASA (solvent-accessible surface area)
free energy (−16.46 kJ/mol).
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4. Discussion

Computer-aided drug screening can significantly enhance the process of identify-
ing potential drug leads [81]. Discovering potent inhibitors with a restricted number of
studies would pose a challenge [82]. According to the literature, molecular modeling and
molecular dynamics simulations are highly effective in reducing the number of potential
FTO inhibitors while still being computationally efficient [83]. Drug virtual screening has
a lengthy and extensive history, encompassing the development of various related tech-
niques like docking, Quantitative Structure Activity Relationship (QSAR), pharmacophore,
and structure-based ligand similarity [84]. The increasing availability of deep learning
algorithms and the growing collection of experimental protein–ligand interaction data will
significantly enhance the use of deep learning for virtual drug screening [85]. Currently,
protein-ligand interaction models utilize a graphical representation of ligands or proteins
to capture their spatial and physical–chemical characteristics concisely [86]. These models
employ a graph convolution network as the training architecture. The present study used a
more efficient integrated virtual screening technique. Nevertheless, contemporary deep
learning algorithms have already been utilized to identify inhibitors, and exhibit immense
potential in drug development. Regardless, other constraints still require consideration,
encompassing both efficiency and accuracy [48].

In addition, molecular dynamics simulations provide a higher level of atomic res-
olution for protein–ligand interaction, enhancing the predictability and facilitating the
identification of ligand-binding processes. To summarize, we conducted screenings of
small-molecule chemical databases to identify compounds with specific drug-like charac-
teristics that can effectively block the FTO protein. The retrieved hits underwent several
computational techniques, such as molecular dynamics simulations and free energy cal-
culations. Our findings indicate three chemical compounds that can expedite medication
development targeting the FTO protein. The results of our study can significantly assist
in identifying potential compounds from a vast chemical pool, thereby facilitating the
discovery of novel chemicals targeting the FTO protein.

Our group has recently published a series of research articles that focus on the rec-
ommendation of potential small-molecule chemical compounds for various target pro-
teins [43,44,48,63,87]. This recommendation process is facilitated by our pipeline, which
incorporates deep learning-based drug-screening techniques. The compounds that emerged
as the best performers were selected for further study. Molecular dynamics (MD) simula-
tions were used to investigate the protein–ligand complexes with the highest affinity to
give more validation for the screening outcomes. The simulations were conducted for a
duration of 100 nanoseconds. During the simulation, a modification was seen in the con-
figuration of the docking complexes. Nevertheless, the ligands mostly remained confined
to the FTO-binding area. Several van der Waals interactions facilitate the stabilization of
FTO-ligand complexes. MD simulations determined the compounds’ stability, wherein
an in-depth analysis of protein–ligand complexes was conducted during the simulation
period. The free energies obtained from the molecular mechanics/Poisson–Boltzmann
surface area (MMPBSA) calculations provide further evidence to corroborate the findings
of the screening process.

5. Conclusions

We utilize our advanced deep learning model, DeepBindGCN_BC, to precisely detect
protein–ligand interaction. In addition, we employ DeepBindGCN_RG to evaluate the
binding affinity between the FTO protein and ligands. Our GCN-based model enhances
the identification of FTO inhibitors, especially those with strong binding affinity, which are
often more favorable candidates for drug development. These models employ the graph
convolution network to improve the effectiveness of spatial information representation.
Further, molecular dynamics (MD) simulations and free energy calculations suggest that
the compounds ZINC000003643476, ZINC000000517415, and ZINC000001562130 have
significant potential as candidates for targeting the FTO protein in terms of binding and
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stability. Furthermore, this study offers comprehensive insights into the interactions be-
tween proteins and ligands, which may greatly aid in drug development. The subsequent
step in advancing this study is conducting experimental studies to validate the suggested
potential compounds.

Author Contributions: Formal Analysis, N.B., R.S., T.A. and K.M.S.; Investigation, S.V.; Methodology,
K.M., D.V. and M.T.; Software, K.M.S.; Supervision, S.V.; Validation, C.S.S., S.S.P. and T.A.; Writing—
Original Draft, K.M.S.; Writing—Review and Editing, R.B.S.K., T.A. and K.M.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Kannan Mayuri, Chaitanya Sree Somala, Selvaraj Sathya Priya, Nagaraj
Bharathkumar, Raja Babu Singh Kushwah and Thirunavukarasou Anand were employed by the
company B Aatral Biosciences Private Limited. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Ramachandran, A.; Snehalatha, C.; Satyavani, K.; Sivasankari, S.; Vijay, V. Type 2 Diabetes in Asian-Indian Urban Children.

Diabetes Care 2003, 26, 1022–1025. [CrossRef] [PubMed]
2. Ahmed, B.; Konje, J.C. The Epidemiology of Obesity in Reproduction. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 89, 102342.

[CrossRef] [PubMed]
3. Gross, D.C.; Cheever, C.R.; Batsis, J.A. Understanding the Development of Sarcopenic Obesity. Expert Rev. Endocrinol. Metab. 2023,

18, 469–488. [CrossRef] [PubMed]
4. De Pergola, G.; Silvestris, F. Obesity as a Major Risk Factor for Cancer. J. Obes. 2013, 2013, 291546. [CrossRef] [PubMed]
5. Otsuka, K.; Nishiyama, H.; Kuriki, D.; Kawada, N.; Ochiya, T. Connecting the Dots in the Associations between Diet, Obesity,

Cancer, and MicroRNAs. Semin. Cancer Biol. 2023, 93, 52–69. [CrossRef] [PubMed]
6. Bupesh, G.; Saravanan, K.; Panneerselvam, G.; Meenakshi Sundaram, K.; Visvanathan, P. Role of Glucose Transporting Phytos-

terols in Diabetic Management. Diabetes Obes. Int. J. 2022, 7, 000261. [CrossRef]
7. Relier, S.; Rivals, E.; David, A. The Multifaceted Functions of the Fat Mass and Obesity-Associated Protein (FTO) in Normal and

Cancer Cells. RNA Biol. 2022, 19, 132–142. [CrossRef]
8. Wei, H.; Li, Z.; Liu, F.; Wang, Y.; Ding, S.; Chen, Y.; Liu, J. The Role of FTO in Tumors and Its Research Progress. Curr. Med. Chem.

2022, 29, 924–933. [CrossRef]
9. Zuidhof, H.R.; Calkhoven, C.F. Oncogenic and Tumor-Suppressive Functions of the RNA Demethylase FTO. Cancer Res. 2022,

82, 2201–2212. [CrossRef]
10. Akbari, M.E.; Gholamalizadeh, M.; Doaei, S.; Mirsafa, F. FTO Gene Affects Obesity and Breast Cancer Through Similar Mecha-

nisms: A New Insight into the Molecular Therapeutic Targets. Nutr. Cancer 2018, 70, 30–36. [CrossRef]
11. Chen, J.; Du, B. Novel Positioning from Obesity to Cancer: FTO, an M6A RNA Demethylase, Regulates Tumour Progression. J.

Cancer Res. Clin. Oncol. 2019, 145, 19–29. [CrossRef] [PubMed]
12. Arvanitakis, K.; Papadakos, S.P.; Lekakis, V.; Koufakis, T.; Lempesis, I.G.; Papantoniou, E.; Kalopitas, G.; Georgakopoulou,

V.E.; Stergiou, I.E.; Theocharis, S.; et al. Meeting at the Crossroad between Obesity and Hepatic Carcinogenesis: Unique
Pathophysiological Pathways Raise Expectations for Innovative Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 14704.
[CrossRef] [PubMed]

13. Yang, Z.; Yu, G.; Zhu, X.; Peng, T.; Lv, Y. Critical Roles of FTO-Mediated MRNA M6A Demethylation in Regulating Adipogenesis
and Lipid Metabolism: Implications in Lipid Metabolic Disorders. Genes Dis. 2022, 9, 51–61. [CrossRef]

14. Zhao, L.; Kong, X.; Zhong, W.; Wang, Y.; Li, P. FTO Accelerates Ovarian Cancer Cell Growth by Promoting Proliferation, Inhibiting
Apoptosis, and Activating Autophagy. Pathol.-Res. Pract. 2020, 216, 153042. [CrossRef] [PubMed]

15. Huang, C.; Chen, W.; Wang, X. Studies on the Fat Mass and Obesity-Associated (FTO) Gene and Its Impact on Obesity-Associated
Diseases. Genes Dis. 2023, 10, 2351–2365. [CrossRef]

16. Peters, T.; Ausmeier, K.; Rüther, U. Cloning of Fatso (Fto), a Novel Gene Deleted by the Fused Toes (Ft) Mouse Mutation. Mamm.
Genome 1999, 10, 983–986. [CrossRef]

17. Deng, X.; Su, R.; Stanford, S.; Chen, J. Critical Enzymatic Functions of FTO in Obesity and Cancer. Front. Endocrinol. 2018, 9, 396.
[CrossRef]

https://doi.org/10.2337/diacare.26.4.1022
https://www.ncbi.nlm.nih.gov/pubmed/12663567
https://doi.org/10.1016/j.bpobgyn.2023.102342
https://www.ncbi.nlm.nih.gov/pubmed/37276817
https://doi.org/10.1080/17446651.2023.2267672
https://www.ncbi.nlm.nih.gov/pubmed/37840295
https://doi.org/10.1155/2013/291546
https://www.ncbi.nlm.nih.gov/pubmed/24073332
https://doi.org/10.1016/j.semcancer.2023.05.001
https://www.ncbi.nlm.nih.gov/pubmed/37156343
https://doi.org/10.23880/doij-16000261
https://doi.org/10.1080/15476286.2021.2016203
https://doi.org/10.2174/0929867328666210714153046
https://doi.org/10.1158/0008-5472.CAN-21-3710
https://doi.org/10.1080/01635581.2018.1397709
https://doi.org/10.1007/s00432-018-2796-0
https://www.ncbi.nlm.nih.gov/pubmed/30465076
https://doi.org/10.3390/ijms241914704
https://www.ncbi.nlm.nih.gov/pubmed/37834153
https://doi.org/10.1016/j.gendis.2021.01.005
https://doi.org/10.1016/j.prp.2020.153042
https://www.ncbi.nlm.nih.gov/pubmed/32825930
https://doi.org/10.1016/j.gendis.2022.04.014
https://doi.org/10.1007/s003359901144
https://doi.org/10.3389/fendo.2018.00396


BioMedInformatics 2024, 4 357

18. Scuteri, A.; Sanna, S.; Chen, W.-M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-Wide
Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits. PLOS Genet. 2007, 3, e115.
[CrossRef]

19. Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.;
Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and
Adult Obesity. Science 2007, 316, 889–894. [CrossRef]

20. Qiao, Y.; Zhou, B.; Zhang, M.; Liu, W.; Han, Z.; Song, C.; Yu, W.; Yang, Q.; Wang, R.; Wang, S.; et al. A Novel Inhibitor of the
Obesity-Related Protein FTO. Biochemistry 2016, 55, 1516–1522. [CrossRef]

21. Ho, T.L.; Lee, J.; Ahn, S.Y.; Lee, D.-H.; Song, W.-J.; Kang, I.; Ko, E.-J. Immunostimulatory Effects of Marine Algae Extracts on in
Vitro Antigen-presenting Cell Activation and in Vivo Immune Cell Recruitment. Food Sci. Nutr. 2023, 11, 6560–6570. [CrossRef]

22. Ruud, J.; Alber, J.; Tokarska, A.; Engström Ruud, L.; Nolte, H.; Biglari, N.; Lippert, R.; Lautenschlager, Ä.; Cieślak, P.E.; Szumiec,
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