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Abstract: In this work we suggest that the common cause for the development of various power laws
is the existence of a suitable exchangeable quantity between the agents of a set. Examples of such
exchangeable quantities, leading to eponymous power laws, include money (Pareto’s Law), scientific
knowledge (Lotka’s Law), people (Auerbach’s Law), and written or verbal information (Zipf’s Law),
as well as less common cases like bullets during deadly conflicts, recognition in social networks,
heat between the atmosphere and sea-ice floes, and, finally, mass of water vapors between pores
in solids. This last case is examined closely in the present article based on extensive experimental
data. It is shown that the transferred mass between pores, which eventually grow towards a power
law distribution, may be expressed using different parameters, either transferred surface area, or
transferred volume, or transferred pore length or transferred pore anisotropy. These distinctions
lead to different power laws of variable strength as reflected by the corresponding exponent. The
exponents depend quantitatively on the spread of frequency distribution of the examined parameter
and tend to zero as the spread of distribution tends to a single order of magnitude. A comparison
between the energy and the entropy of different kinds of pore distributions reveals that these two
statistical parameters are linearly related, implying that the system poise at a critical state and the
exchangeable quantities are the most convenient operations helping to keep this balance.
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1. Introduction

Power laws are observed in many datasets of objects, phenomena, or i events whose
number, Ni, appear inversely to their size, Si, and therefore do not accumulate randomly
around a central value as highlighted by Newman [1]. In this last case, the random build-up
of Si values symmetrically around a mean value Smean usually yields an approximately
normal distribution, as shown schematically in Figure 1a. This outcome suggests that the
sizes of the i elements develop separately and do not depend on, or interact with, their
neighbors for resources of mass, energy, space, information, money, social recognition, etc.
Relevant examples are people’s heights, student’s grades, and speeds of cars: people do
not exchange heights, students should not share information during exams, and cars do
not swap speeds. So, if we plot the number of people vs. their heights, or the number of
students vs. the corresponding grades, or the numbers of cars vs. their speeds, we obtain
a more or less Gaussian distributions Ni = [1/σ·(2π)0.5]·exp[−(Si − Smean)/2σ2], where
symbols have their usual meaning; people’s heights are commonly accumulated around a
central value 170–180 ± 20 cm, student’s grades in 0–10 scale usually lay within 5–6 ± 3,
and the speed of cars usually ranges in the vicinity 80–100 ± 50 km/h.

Another common case is that the i elements of the dataset may interact with each
other and exchange some quantity X in a gradual procedure. Such exchangeable quantities,
which as mentioned may be people, money, energy, food, bullets, bytes, or a handful of
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other cases, result to power or quasi-power law distributions of the affected set. Such laws
exhibit the general form given by relationship (1) and shown graphically in Figure 1b.

Ni ≈ a/Si·q (1)

where q is a small number, usually 1 < q < 3. Typical cases, initially established by the
beginning of 20th century, are the distribution of financial wealth according to Pareto’s
Law [2] and the list size of scientific publications by various authors in accordance to
Lotka’s Law [3]. The first case is the result of many economic transactions, while the second
is the outcome of exchanging scientific information between researchers. Such power law
distributions are commonly expressed in logarithmic form according to relation (2).

logNi ≈ loga − q·logSi (2)
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characterized by a property X, like height H, which is not exchangeable between them, 
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, is introduced into the group, the
distribution of its members in this novel environment will eventually turn into a power law as seen
in (b). The above figures were inspired by the first two figures in the article of Newman [1], as well as
by a similar figure in ref. [4] by Barabási.

The above proposition implies that if a group N of i agents, for example, people, is
characterized by a property X, like height H, which is not exchangeable between them,
then the frequency Ni of values of that specific property (height per person) is randomly
scattered around a central value Smean yielding roughly a normal distribution. However,
if the same group of people is furnished with a novel exchangeable quantity, like money
M, and start exchanging it, not quite randomly but to gain some kind of advantage, then
the size Si of economic health per person, after extensive financial transactions between
the group’s members, is eventually developed into a power or quasi-power law. This
transformation is depicted in Figure 1.

On the same token, if a group of students is examined as to their sole knowledge (exam
markings) without any interaction, the result shall be a more or less a normal distribution.
However, if exchange and accumulation of knowledge is allowed via interaction with peers,
books, or the Internet, then the gained and accumulated knowledge (scientific publications)
of students (or at least some of them) will eventually develop towards a power law or a
quasi-power law. In the case of cars, if their fleet is evaluated not according to their speeds,
but according to their prices, we shall obtain some kind of power law distribution: there
are few Porches and Lamborghinis and many humble cars in the streets, but clearly this
case leads back to the exchangeable property of money.
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It is emphasized that it is not necessary for the distribution in Figure 1a to be of normal
type; it may actually exhibit any irregular arrangement, even a flat one. Nevertheless,
the normal distribution paradigm is usually put forward since it reflects many “neat”
scientifically quantified statistics. On the contrary, data spread randomly in an irregular
fashion and not following a standard mathematical description (i.e., Gauss, Poisson, etc.)
are often disregarded as nuisances although they may lead to power laws like that in
Figure 1b. For a relevant discussion see [5].

2. Exchangeable Properties

The concept of “Exchangeable Quantities” leading to power laws is a general expres-
sion engulfing many different cases. It is understood that some alternative definitions,
like “Transferable Quantities” or “Commutable Properties” might express equally well
some real-world instances, but for reasons of brevity and simplicity we shall stick to the
first definition. To the best of our knowledge, the only suggestion relevant to the present
proposal, namely that exchangeable quantities lead to power laws, has been put forward by
Chatterjee et al. in [6]. These authors suggested that wealth distribution in various societies
resembles the Maxwell–Boltzmann distribution of energy in an ideal gas. They consider
economy as an exchange game of different commodities and treat the corresponding money
trading as a scattering event between gas molecules which exchange energy, that is, money
(this concept is sometimes called econophysics). Under specific conditions, this model
leads to a power law.

Exchangeable advantageous quantities, apart from money (leading to Pareto’s Law)
and knowledge (leading to Lotka’s Law) mentioned above, may be people themselves in
the case of human settlements according to the original Auerbach suggestion [7]; written
or verbal information in the case of language leading to the celebrated Zipf Law [8,9];
geological stress and friction (e.g., energy) between tectonic plates in the case of earthquakes
leading to the Richter scale [10]; resources in breeding populations leading to genetic drift
in biological taxa, known as the Yule process [11,12]; bytes of information in IT technologies
like Internet networks, web pages, links to them, and hits in web sites, termed collectively
as Complex Networks [13]; flares in forest fires [1,12]; bullets and other deadly projectiles
during wars [14,15]; common beliefs in religious denominations, bodies, and sects [1,14];
social recognition (likes) of individuals like actors, personas, and politicians in social
networks via modern electronic applications like FB, Twitter, etc. [16]; musical notes, colors,
and shapes in music and painting [16,17]; food along the trophic chain of pelagic species
(phytoplankton, zooplankton, and fishes) [18,19]; athletic equipment, tools, or objects (balls,
disks, javelins, etc.) used in competitive sports in respect to the resulting power law medal
ranking [20], as well as to the achieved human endurance [21]; and, last but not least, energy
and heat between the atmosphere and ocean, which drives the power law distribution of
sea-ice floes in Arctic seas [22,23].

The latest addition to this litany of power laws is the Zipfian relationship Ni ≈ 1/Vi
observed between the differential numbers Ni and the volumes Vi (≡sizes Si) of pores in
solids, which is the main subject of this work. In this case, the exchangeable quantity is the
fluid content (usually water vapor but sometimes also CO2) of evolving pores that coalesce
step by step towards larger ones as encountered, for example, in volcanic magma, drying
soils, or lab made sol-gels [24–28]. The gain in this case is the relaxation of surface tension,
which decreases inversely to the pore radius according to the Young–Laplace equation.

Cases of above power laws, where the exchangeable quantity is energy or mass, are
reminiscent of the so-called constructal law of design and evolution in nature, suggested in
a number of publications by Bejan and Lorente [29–31]. According to these authors, many
diverse animate, inanimate, or engineered designs, described by Zipf’s distributions (e.g.,
power laws), are a manifestation of the constructal law in the generation of those designs
that facilitate, among other things, the flow of water in nature, including rivers, trees, and
the human body, as well as the distribution of city sizes (Si) and numbers (Ni) in various
geographical areas like continents and states.
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The proposition of exchangeable quantities can be only ensured via some kind of
interaction between at least two participating agents. Therefore, it is closely related to
the creation of efficient interactive networks which, as discussed thoroughly by Barabasi
in [4], result in scale-free structures. For example, in [4], the author summarizes the
well-known paradigm of www connecting various computer hubs around the globe, as
an efficient network for exchanging various information quantities. Without efficient
networks, the exchangeable quantities are null and void. Nevertheless, it is the various
human pursuits (for example efficient exchange of information via www) or/and different
physical necessities (for example efficient flow of fluids in the labyrinth of pores) that drive
the creation of such efficient networks.

Towards this end, a humorous and self-ironic, but nevertheless penetrating, comment
by Fabrikant et al. [32] makes sense: “Power laws. . .have been termed ‘the signature of
human activity’. . .They are certainly the product of one particular kind of human activity:
looking for power laws. . .” (cited by Mitzenmacher in [33]). Paraphrasing the above, it
could be said that power laws are the product of human pursuits, but also of various
natural phenomena, that are optimized towards such patterns via exchangeable human
activities or transferable natural quantities, or properties, via suitable paths.

There are not many distinct groups of possible quantities suitable for exchangeable
operations between living, azoic, or engineered systems. About a dozen such properties
have been mentioned above, but their total number cannot be much larger. To this extent,
if we categorize the very many cases of power laws encountered in the relevant literature,
according to the exchangeable quantity that led to their development, we shall obtain fewer
than two dozen archetypal power laws, recognizable through their repeated occurrence and
collected into groups that share the same prominent features. Typical examples may be
considered the economic sizes of states or the financial health of individuals (exchangeable
quantity, money); the population of cities and towns in various areas or states (exchangeable
quantity, people); the word’s ranking in texts of human languages (exchangeable quan-
tity, common information); and aspects related to scientific knowledge, like publications,
citations, impact factors, and rankings of journals or institutions (exchangeable quantity,
specific technical knowledge and data). In ref. [34] an indicative list of about fifteen such
archetypal power laws has been put forward.

The purpose of this work is to look into some power laws’ inter-relating properties of
porous materials by taking into account the aforementioned ideas of exchangeable quanti-
ties controlling their development. The typical pore properties to be considered are pore
diameters Di (cm), specific pore volumes Vi (cm3·g−1), specific surface areas Si (m2·g−1),
specific pore lengths Li (cm·g−1), and specific pore numbers Ni (g−1). That last property for
isotropic pores (e.g., spherical) corresponds to specific pore anisotropies Bi = Li/Di (g−1),
in other words Ni ≡ Bi. The term “specific” reflects the fact that the relevant property is
estimated per unit mass of porous substance and the subscript (i) means that the property
is differential with respect each segment of pore sizes.

The structure of the following text is as follows. In Section 3, we present the porous
materials and their experimental properties to be employed in the ensuing sections. In
Section 4, we show that a practically perfect Zipf’s law N ≈ 1/V between pore density
Ni (pores/g) and pore volume Vi (nm3/pore) holds over 17 orders of magnitude for
297 experimental points from twelve (12) porous materials belonging to five (5) different
categories of porous samples. In Section 5, we examine the meaning of cumulative and
differential power laws and show that these expressions lead to the realization that the
exchangeable quantity, that is the mass of pore content in our case, when expressed in
different ways, (i.e., pore surface area, pore length, or pore number), leads to different
power laws. Finally, in Section 6, we scrutinize the relation between the hidden variables
with the exchanged quantities, as well as the energies Ei and entropies Si of the examined
pore property distributions and the relation between them.
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3. Experimental Data

The experimental data to be used in the present study are taken from some recent
investigations referring to power laws of pores in solids [24–28,34]. They represent twelve
(12) kinds of porous materials that belong to five (5) different classes, and are shown in
Table 1. Briefly they are the following.

(i) Three (3) microporous spinels CoAl2O4 code named S-500, S-700, and S-900. They were
prepared in the lab as reported previously [24–28] and possess pore diameters in the
nm sale. The differential surface areas Si (m2/g) and pore volumes Vi (cm3/g) were
determined via standard nitrogen porosimetry using the BET methodology and the
BJH algorithm at various partial pressures 0 < (P/Po) = Pi < 1, as described in various
standard textbooks [35,36]. From those original parameters, we estimated the differ-
ential values of pore diameters Di = [Vi/Si] (cm) of pore lengths Li = [Si

2]/[Vi] (cm/g)
and the pore numbers Ni (pores/g), which for isotropic (e.g., spherical) pores tally
with the pore anisotropies Bi = [Si

3]/[Vi
2] (g−1). The values of Di and Bi ≡ Ni to be

employed in the next graphs and discussion are cited in Table S1. The corresponding
values of Si, Vi, and Li are too many and are not shown for the sake of space.

(ii) One (1) mesoporous soil sample with pore diameters in the mm scale. The data were
read from Figure 5 in a paper by Wang et al. [37] and estimated as explained in
ref [34]. The determination of differential pore diameters Di and pore numbers Ni
encountered in this porous soil took place using Mercury Intrusion Porosimetry (MIP)
and the Pressure Plate Test (PPT) [37]. It is mentioned that the porosity of the soil
was developed by very slowly decompressing a water-saturated sample at different
pressures (Pi = 10, 30, 50, 100, 300, 500, and 1200 kPa), and every pressure step lasted
for 12 h in order to achieve equilibrium. The pore sizes Di were determined via the
Washburn equation Di = (4·σs·cosα)/Pi, where σs is the surface tension. The values of
Di and Ni are cited in Table S2 and discussed next.

(iii) Two (2) macroporous volcanic rock mimics, made in the lab with pore openings in the
mm–cm scale. The data with code names ET 8 and ET 9 were read out from Figure 4
in a publication by Simakin et al. [38]. These authors employed a gas bomb to study
the degassing of water-saturated granite melts at slow rates using a pressure drop
from 100 to 40 MPa over 168 h. The purpose was to determine the water exsolution
and the vesicle formation. Bubble sizes Di and numbers Ni were measured in the
formed granite glasses using SEM images. The corresponding results Di and Ni are
cited in Table S2 and will be used in the next discussion.

(iv) Two (2) macroporous magmatic rocks, a Scoria sample from Isola Volcano and a Pumice
sample from Etna Volcano, both in Italy. Their pore diameters were in the mm–cm scale.
The relevant data Di and Ni, for Scoria and Pumice samples, which are cited in Table S2
and discussed next, were read from relevant publications by Gaonac’h et al. [39–41].

(v) Four (4) macroporous volcanic magmas from Tarawera Volcano, New Zealand. The data
were read from the publication by Sable et al. [42]. The code names of the samples are
T28-G4-24, T43-07-67, T47-12-56, and T47-23-35, and their pore diameters are in the
mm–cm scale. The relevant data Di and Ni are cited in Table S2.

It is mentioned that volcanic eruptions, such as those mentioned above for the Etna,
Isola, and Tarawera events, are quite violent episodes and the formed magmatic rocks are
formed under fast decompression of lava at high temperatures. These conditions affect the
cascade of events controlling the pore formation, as will be shown next.

Table 1. The twelve (12) porous materials employed in the present study.

Sample Code Name Short Description Ref.

S-500 Lab-made spinel CoAl2O4 heated at 500 ◦C [24–28]
S-700 Lab-made spinel CoAl2O4 heated at 700 ◦C [24–28]
S-900 Lab-made spinel CoAl2O4 heated at 900 ◦C [24–28]
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Table 1. Cont.

Sample Code Name Short Description Ref.

Soil sample Typical soil from Nanning, Guangxi, China [37]
ET 8 Lab-made volcanic rock mimic [38]
ET 9 Lab-made volcanic rock mimic [38]
Scoria Magmatic rock from Isola Volcano, Italy [39–41]
Pumice Magmatic rock from Etna Volcano, Italy [39–41]
T28-G4-24 Magmatic rock from Tarawera Volcano, New Zealand [42]
T43-07-67 Magmatic rock from Tarawera Volcano, New Zealand [42]
T47-12-56 Magmatic rock from Tarawera Volcano, New Zealand [42]
T47-23-35 Magmatic rock from Tarawera Volcano, New Zealand [42]

4. The Power Law Limit

All values of differential pore diameters Di (mm) and the corresponding pore numbers
Ni (pores/g) of the samples in Table 1 (cited in Tables S1 and S2) are plotted in Figure 2 in
the form logNi = f(logDi). This figure contains two parts: the left-hand part is a collective
plot containing the 297 pairs of data for the five (5) sub-sets of porous solids in Table 1
(Figure 1, left-hand big plot). The right-hand part contains five separate partial plots for
each of these five different materials (Figure 2, right-hand small plots). The purpose is to
compare the collective power law, extended over 17 orders of magnitude for logNi and
about 7 orders of magnitude for logDi, with the separate plots of its five components,
each covering about one-third of the total x and y scales. All power laws of the form
logNi = A − q·logDi are mentioned in Figure 2 and collected in Table 2.

Table 2. Equations of linear regression for the plots in Figure 2. Correlation coefficients R2 and
number of points in each plot are shown.

Samples Equation R2

(Number of Points)

S-500
logN = (17.09 ± 0.09) − (2.61 ± 0.09) · logD 0.889 (87 points)S-700

S-900

Soil sample logN = (18.39 ± 0.06) − (3.40 ± 0.02) · logD 0.999 (23 points)

Pumice logN = (15.51 ± 1.77) − (2.77 ± 0.26) · logD 0.606 (73 points)
Scoria

ET 8 logN = (19.59 ± 0.43) − (3.23 ± 0.08) · logD 0.981 (33 points)
ET 9

T28-G4-24

logN = (14.63 ± 0.71) − (2.47 ± 0.12) · logD 0.843 (81 points)T43-07-67
T47-12-56
T47-23-35

Total 12 samples logN = (17.41 ± 0.09) − (2.98 ± 0.02) · logD 0.989 (297 points)

In Figure 2 and Table 2, we observe that the collective power law reads logNi = 17.41
− 2.98·logDi with R2 = 0.989 for the total 297 pairs of data. Considering Vi ≈ Di

2.98 ≈ Di
3,

it corresponds to a practically perfect Zipfian Law.

logNi = 17.41 − logVi ↔ Ni = 1017.41/Vi (R2 = 0.989) (3)

Nevertheless, this law does not refer to a single porous solid with pore distribution
extending from nm to cm, and it is doubtful if such a single porous species exists somewhere
in nature or can be prepared in the lab. In reality, this ideal situation is the result of bringing
together five (5) imperfect power laws observed in restricted ranges of logNi–logDi, as
seen in Figure 2, right. Those five quasi-power laws, referring to five different classes of
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solids (spinels, soil, magmatic mimics ET 8 and ET 9, and volcanic Scoria, plus Pumice and
volcanic rocks from Tarawera volcano) are shown in Table 2. The corresponding correlation
coefficients R2 are much smaller, compared to the collective power law, except for soil and
ET 8 plus ET 9 samples.
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Figure 2. A depiction of the power law limit. Large left-hand plot. Zipf power law N ≈ 1/V ≈ 1/D3

for pore ranking. Ni (pores/g) is the differential pore number per unit mass of porous solid, Di

(nm) is the corresponding pore diameter, and Vi ≈ Di
3 the volume of each pore segment. The thick

red dashed line (– – –) is the regression for all 297 points drawn by the least square method and
corresponds to logN = 17.41 − 2.98·logD → logN = 17.41 − logV with R2 = 0.989. This collective plot
is made up of five (5) sub-sets of data of different origin drawn separately in the right-hand part.
Small right-hand plots—From top downwards. (I) Three (3) sets of data designated as S-500, S-700,
and S-900 and empty circles (#) are from refs [24–28] and refer to random nanopores (nm size) in
spinels CoAl2O4 fired at T = 500, 700, and 900 ◦C. The regression for all 87 points corresponds to
logN = 17.09 − 2.61·logD with R2 = 0.889. (II) One (1) sample indicated by purple triangle (△) refers
to micro-meter (µm) pore sizes encountered in a typical soil data read out from ref. [37]. The regression
for all 23 points corresponds to logN = 18.39 − 3.40·logD with R2 = 0.999. (III) Two (2) sets of data for
Scoria and Pumice refer to magmatic rocks from Etna Volcano and Isola Volcano from publications by
Gaonac’h et al. in [39–41]. The regression for all 73 points corresponds to logN = 15.51 − 2.77·logD
with R2 = 0.606. (IV) Four (4) sets of data T from magmatic rocks of Tarawera Volcano, New Zealand.
They were read from the publication by Sable et al. [42]. The regression for all 81 points corresponds
to logN = 14.63 − 2.47·logD with R2 = 0.843. (V) Two (2) sets of data of random bubbles of mm
sizes from lab-made magmatic-mimicking solids ET-8 and ET-9 published by Simakin et al. [38].
The regression for all 33 points corresponds to logN = 19.59 − 3.23·logD with R2 = 0.981. The thin
regression lines (—-) are averages for all data in each sub-figure and are collected in Table 2.

The results in Figure 2 are reminiscent of the central limit theorem, according to which
the sum of independent random variables tends toward an almost perfect normal dis-
tribution even if the original variables are not normally distributed. Indeed, it has been
shown statistically by Gut [43] that Zipfian power laws are directly related to the central
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limit theorem. Nevertheless, as far as we know, there are few experimental verifications of
this suggestion. In line with such theoretical predictions, the evolution of a nearly perfect
power law in the present case is the outcome of accumulation, of either many non-perfect
components amassed within a short range of observations or many non-perfect components
spread along a long range of observation. We shall call this effect the Power Law Limit.

Similar cases of perfect Power Law Limits extended over 16–18 orders of magnitude
and made up of 5–6 successive, but distinct, components appear in the biomass size
spectrum of pelagic species. Such an example has been presented by Yurista et al. [18] in
relation to the spectra along the trophic chain of pelagic species (algae → zooplankton,
→ large predatory zooplankton → prey fish → predatory fish) in Lake Superior, North
America. Another similar case has been documented by Evans et al. [19] concerning
the abundance–weight distribution of about a dozen pelagic organisms (chironomids,
oligochaetes, amphipods, dreissenids, etc.) in the Great Lakes (Superior, Michigan, Huron,
Erie, and Ontario). In those cases, referring to the biomass spectra, as well in the present
case of pores (Figure 2), the extended Power Law Limit distributions are compartmentalized
into sub-components which are developed and coextended across a similar general law.

The five partial power law components for pores depicted in Figure 2, right, can be
categorized in two groups: first, the two plots for soil plus the plot for ET 8 + ET 9 samples,
which show an almost perfect power law behavior with correlation coefficients R2 = 0.999
and 0.981 respectively (see Table 3). Second, the three plots for spinels, Scoria + Pumice, and
the Tarawera samples that exhibit poor, or very poor, power law behavior with R2 = 0.889,
R2 = 0.606, and R2 = 0.843 respectively.

Table 3. The relationships logji ≈ loga − q·logDi shown n Figure 3, left, the corresponding correlation
coefficient Ri

2 and the differences Max (log of Magnitude of j)-Min (log of Magnitude of j) = ∆log(FW)
indicated by the horizontal lines in the sub-Figure 3, right.

Power Laws
logji = loga − q·logDi

Correlation
Coefficients

Ri2
∆log(FW) |−q| = q Shannon Entropy S

(Ei) (Equation (11))

logBi = −0.86 − 3.11·logDi Ri2 = 0.896 4.9 3.11 1.514
logLi = −0.86 − 2.11·logDi Ri2 = 0.799 2.9 2.11 1.360
logSi = −0.36 − 1.11·logDi Ri2 = 0.522 1.9 1.11 1.173
logVi = −0.96 − 0.11·logDi Ri2 = 0.005 1.6 0.11 1.037

A careful consideration of these results leads to the conclusion that the fundamental
reason for the development of an ideal power law is the transfer rate of the exchanged
quantity between pores during their coalescence. This quantity is usually water vapors
or carbon dioxide. The rate of mass transfer in turn is affected by the rate of heating or
the rate of sample decompression. If the rate of heating is small (as is the case during the
lab preparation of ET 8 and ET 9 samples; see Section 2. Porous materials), or the rate of
decompression is slow (as the case for the preparation of the soil sample; also see Section 2.
Porous materials), then the rate of mass exchange is slow. As a result, the successive steps
of mass transfer between the vesicles (small → large → larger, etc.) are in equilibrium and
this in turn leads to ideal power law behavior. On the other hand, if heating is fast, (as is
the case of lab-made spinels fired quickly at 500, 700, and 900 ◦C, as well as in the case of
volcanic rocks from the violent explosions in Etna, Isola, and Tarawera Volcanos, then the
system is continuously out of equilibrium. In that case, the cascade steps of mass transfer
between vesicle are interrupted before equilibration and this leads to deviation from the
power law.
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of the corresponding pore sizes Di in logarithmic form, e.g., logji = f (logDi). The results are expressed
as power laws of variable strength as expressed by slope (q) and decrease exactly by one (1) along the
sequence of pore properties (top → bottom): Bi (s = −3.11) →Li (s = −2.11) → Si (s = −1.11) →Vi

(s = −0.11). Each distribution along this sequence is the cumulative expression of the previous power
law. Right quartet: Frequency–magnitude distributions of the same pore properties j = Bi, Li, Si,
and Vi as a function of the magnitude of each j in the form Frequency of j = f (log Magnitude of j).
The horizontal lines in the upper part of sub-figures correspond to the spread of four distributions
given by Max (log of Magnitude of j)−Min(log of Magnitude of j) = ∆log(FW). Each of the eight
subplots (four left and four right) contains 206 points corresponding to 17 different categories of
porous solids and are indicated by 17 different-colored points as follows: 1-(■); 2-(•); 3-(▲); 4-(▼);
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17 different categories of porous solids are summarized in S.I.-3 after ref. [34].
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5. Cumulative and Differential Power Laws

Power laws commonly expressed in the form Ni ≈ a/Si
q (relation 1) represent the

non-cumulative or differential distribution; in other words, they express the number Ni of i
agents of size between Si and Si + dS. The corresponding cumulative or integral distribution
is given by Ni ≈ a’/Si

q+1, e.g., a power law with exponent one greater than that of the
non-cumulative distribution and represents the number Ni of i agents larger than Si. The
second relationship (cumulative) can be easily produced by integration of the first (non-
cumulative) and vice versa. In strict mathematical terms, if the non-cumulative power
law distribution is given by f(x) = cx−α, then the corresponding cumulative relation is
F(x) = C·x−α+1, and C = c/(α−1). The two forms are related by f(x) = –dF/dx and for large
dx → ∆x, then f(x) = −dF/∆x [22].

The four typical differential pore properties, namely specific pore volumes Vi (cm3·g−1),
specific surface areas Si (cm2·g−1), specific pore lengths Li (cm·g−1), and specific pore
numbers Ni, that correspond to specific pore anisotropies Bi = Li/Di (g−1) (e.g., Ni ≡ Bi),
because the method of their estimation for cylindrical pores (for details please see either
of refs [24–26,34]), are actually each the differential of the previous property in relation to
pore diameter Di ≈ Vi/Si (cm), as shown next.

Bi = Si
3/Vi

2 = (Si
2/Vi)/(Vi/Si) = Li/Di (4a)

Li = Si
2/Vi = Si/(Vi/Si) = Si/Di (4b)

Si = Si
1/Vi

0 = Vi/Di (4c)

Vi = Si
0/Vi

−1 = Vi (4d)

In ref. [34], we estimated the values of those four typical pore properties, namely
j= Vi, Si, Li, and Bi, for 206 different porous materials belonging to 17 dissimilar groups,
namely mixed oxides, spinels, various silicas, and aluminophosphates; metalo-alumino-
phoshates, pillared clays, beta zeolites, and MSU, SBA, and MCM materials; as well as
various organized mesoporous silicates doped with metal cations.

In Figure 3, left quartet, we plot separately the values of those four pore properties
j = Vi, Si, Li and Bi as a function of their pore size diameter Di (cm) in logarithmic form,
e.g., logji = a − q·logDi. The result is four different power laws expressing the distributions
of these parameters. Each line is the result of 206 points corresponding to 17 different
categories of porous solids mentioned above. The points for each of those 17 sub-sets are
indicated by different-colored points; for details, see ref. [34].

The corresponding power laws indicated in the left quartet of Figure 3 are shown
in Table 3, together with the corresponding correlation coefficients Ri

2. The strength of
those laws, as reflected in the slopes qi, as well as the relevant correlation coefficients Ri

2,
decreases along the sequence Bi (strong power law) → Li (reasonable power law) → Si
(medium power law) → Vi (very weak power law). Furthermore, the steeper the slope
|−q|≡ q = (0.11 → 1.11 → 2.11 → 3.11), the better the fit Ri

2 = (0.005 → 0.522 → 0.799 →
0.896), as expected.

An explanation for the appearance of the four different power laws of variable strength
in Table 3 stems directly from the exchangeable quantity during pore development, which
is usually water vapors and/or carbon dioxide. As suggested by Gaonac’h et al. [39–41] in
relation to the bubbles in volcanic magma, small bubbles are gradually diffused and joined
to each other in a cascading series of events. At each generation, two smaller bubbles merge
into a single larger one with an increased volume V, and the size of the resulting bubbles
increases accordingly.

To explore this suggestion, let us imagine that, in a mass segment of a developing
porous solid, there is a number of (n) spherical pores each containing (m1) mass of vapor.
This is initial Case 1. The suitable size of the pores and their convenient spatial arrangement
makes them candidates for merging into a larger entity upon heating or decompression.
Now, upon increasing heating +dT or decompression −dP, this collection of (n) small pores
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diffuses and merges into a larger spherical pore that contains mass m2 = n·m1. This is Case 2.
Those two cases are defined by pore diameters D1 and D2, respectively, where D2 > D1.
Since power laws are commonly expressed in log–log form, it is convenient to express the
variation of pore diameters in logarithmic form; in other words, logD2 − logD1 = ∆logD.

The crux of the matter is that the exchanged quantity m2 = n·m1 affects differently and in-
versely the logarithmic variations of differential pore volumes logV1 − logV2 (where V2 < V1),
differential surface areas logS1 − logS2 (where S2 < S1), differential pore lengths logL1
− logL2 (L2 < L1), and differential pore numbers, which correspond to pore anisotropies
logB1 − logB2 (B2 < B1); see Figure 3. These variations are scaled along an identical stick
which is the variation logD2 − logD1 and can be easily estimated using spherical Euclidian
geometry as follows:

Pore volumes:

logV1 − logV2 = log[(n)·(4/3)π(D1/2)3] − log[1·(4/3)π(D2/2)3]
= log[(n)·(D1/D2)3] = log(n) + 3[logD1 − logD2]
= log(n) − 3∆logD = ∆log

(5a)

Pore surface areas similarly:

logS1 − logS2 = log(n) − 2∆logD = ∆logS (5b)

Pore lengths likewise:

logL1 − logL2 = log[(S1)2/(V1)] − log[(S2)2/(V2)]
= log(n) − ∆logD = ∆logL

(5c)

Pore anisotropies likewise:

logB1 − logB2 = log[(S1)3/(V1)2] − log[(S2)3/(V2)2]
= log(n) ≡ ∆logB as expected

(5d)

Let us consider that the diameters D1 of original small pores and D2 of the resulting
large pore differ by one order of magnitude, e.g., logD2 − logD1 = ∆logD = 1, that is
D2/D1 = 10 (in nm scale; compare with big plot in Figure 2). Then the above model tallies
to the observed results (Figure 3 and Table 4) if we make just the simple assumption that
the number (n) of the original small pores lays in the range of about one thousand, which
is a quite reasonable hypothesis. The fit to the model is almost exact for n = 1288, in which
case logD2 − logD1 = ∆logD = 1.02. If this numerical value is introduced into relations
(5a)–(5b)–(5c)–(5d), the obtained theoretical values of slopes qtheory are favorably compared
to the experimental slopes qexp Table 4.

Table 4. Comparison of slopes q for the experimental power laws in Figure 3/Table 3 and for
those estimated according to relations (5d)–(5c)–(5b) and (5a) assuming logD2 − logD1 = ∆logD = 1
and (n) = 1288.

Relationship Experimental Power Laws
as of Table 4

Experimental Slopes qexp
(Figure 3 and Table 3)

Theoretical Slopes qtheory
Estimated from Relations

(5d)–(5c)–(5b)–(5a)

5d logBi = −0.86 − 3.11·logDi 3.11 3.11
5c logLi = −0.86 − 2.11·logDi 2.11 2.09
5b logSi = −0.36 − 1.11·logDi 1.11 1.07
5a logVi = −0.96 − 0.11·logDi 0.11 0.05

It is worth mentioning that the calculations leading to relationships (5a, 5b, 5c, 5d)
tally with the suggestion of Gaonac’h et al. [39–41] mentioned above for the binary pore
coalescence; namely, for logD2 − logD1 = ∆logD = 0.1, e.g., D2/D1 = 1.26, we can easily
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estimate that n ≈ 2 (see, for example, relation 5a). Then, two first generation seed pores with
D1 = 1 merge into a larger pore with D2 = (2)0.33D1 = 1.26·D1 = 1.26 in a first-generation
merging event. A similar second-generation event results in D3 = 1.59 and the third-
generation event provides D4 = 2.04, etc., up to the 10th generation, where D11 = 10.08 after
merging a total number of n = 210 = 1024 first-generation seed pores with D1 = 1, which is
in good agreement with the above experimental results.

These results suggest that the concept of exchangeable quantity provides a useful
tool for appreciating the development of power laws, at last in the present case of pores
in solids, as well as the relation between their cumulative and differential expressions.
The critical point is that exchangeable quantity, which is the mass content of pores, can
be expressed in different ways for different pore properties, like pore anisotropies, pore
lengths, pore surfaces, and pore volumes. It is not clear, as far as we know, if there are
similar cases in other archetypal power laws, for example, those expressing financial health
distribution, where the exchangeable quantity can be expressed in different forms (such as
money, bonds, or other equities) resulting in different power laws.

Another point of interest is that, if the frequencies of properties j = V, S, L, and B
are plotted versus their magnitude of distribution in the form (Frequency of j) = f (log of
Magnitude of j), they appear to be spread along the x-axis, as shown in Figure 3, right. The
shape of those spreads becomes more irregular as their range increases. The total Full Width
(FW) values of the corresponding four distributions along x-axis, e.g., the differences Max
(log of Magnitude of j)-Min (log of Magnitude of j) = ∆log(FW), are indicated in Figure 3,
right, with horizontal lines and cited in Table 4.

From the data in Table 4, we observe that the slopes q of power laws are related to the
logarithm of the Full Width (FW) of the distribution, e.g., ∆log(FW). The relevant plot q = f
(∆ log(FW)) is shown in Figure 4, left, and the corresponding neat relationship reads:

q = 3.25 − 11.63 · e−0.84·∆log(FW) R2 = 0.955 (6)

Relation (6) shows that the slope q tends asymptotically to the ideal Zipfian exponent
q ≈ 3 as the spread of the distribution, measured by ∆log(FW), increases to many orders of
magnitude. On the contrary, as the spread of distribution decreases and ∆log(FW) → 1.48,
the slope q is nullified and the power law fades.
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6. Discussion

Hidden variables and exchanged quantities. The experimental results in Figure 4 show
that the power laws of pores in solids depend on the spread of the distribution ∆log(FW)
of the tested properties. This observation is closely related to a point stressed by Aitchison
et al. [44] and Schwab et al. [45], namely that Zipfian Laws arises naturally when, in a
collection of data, there exist underlying hidden variables affecting the system. In [44], the
authors recorded the frequencies of different word categories (nouns, pronouns, adjectives,
verbs, adverbs, prepositions, determiners, conjunctions, and interjections) in English. These
word categories are the underlying variables that act as “hidden” components of the law.
The authors showed that while the separate frequency distributions of each category (i.e.,
distribution of nouns, distribution of pronouns, etc.) do not follow closely Zipf’s Law, their
summation results in a perfect law.

In the case of pores, a practically perfect power law logNi ≡ logBi = −0.86−3.11·logDi
with Ri

2 = 0.896 is observed in Figure 3, left top. This law contains seventeen (17) hidden
variables/components which correspond to seventeen sub-laws corresponding to the
groups of examined porous solids, (oxides, spinels, silicas, aluminophosphates, metalo-
alumino-phoshates, pillared clays, beta zeolites, and MSU, SBA, and MCM materials) and
are indicated by different-colored points in the same figure. A careful observation reveals
that each of those 17 groups exhibits a poor Zipfian behavior, but their collective plots
converge to a practically perfect power law.

Each of the remaining three power laws in the same Figure 3, left downwards (namely
logLi = −0.86 − 2.11·logDi; logSi = −0.36 − 1.11·logDi and logVi = −0.9 − 0.11·logDi) is
actually the differential of the previous one. Therefore, they exhibit a slope that is dimin-
ished by exactly one lower correlation coefficient R2, as shown in Table 4. Nevertheless, the
same rule of hidden variables also holds in those cases.

We draw attention to the fact that the concept of hidden variables proposed in [44,45],
whose accumulation leads to improved power laws, coincides with the concept of the Power
Law Limit described in Section 4 and depicted in Figure 2 but also shown in Figure 3, left:
perfect, or nearly perfect, power laws are the outcome of the accumulation of many quasi-
power laws, e.g., hidden variables, either overlaying within a short range of distribution or
laying along a long range of dispersal.

Nevertheless, there is a significant physical difference between these two cases. In
the first case (many quasi-power laws developed within a short range of distribution), the
exchange quantity, for example, water vapor, between the developing pores in the present
case, takes place between the agents (pores) of about similar size but with a different rate
depending on the chemical nature of material. In other words, the pores in oxides, spinels,
silicas, aluminophosphates, metalo-alumino-phoshates, pillared clays, etc., develop upon
heating with a different pace that depends on the surface energy of the melted substrate
of the developing material. Eventually, there will be a temperature limit where no larger
pores can be formed by diffusion and coalescence of smaller ones and the mass of substrate
solid is disintegrated into particles.

In the second case (quasi-power laws developed along a long range of dispersal), the
situation is different: since, for example, single oxides cannot support pores larger than
a certain limit in the range of nano-meters, the extension of power law above this limit
requires a qualitative different material able to support the development of larger pores in
the range of micro-meters. This is soil in the present case (see Figure 2), whose composite structure
(particles of sand, silt, clay, organic matter, various minerals, gases, and microorganisms)
permits the exchange of water vapors between micro-pores and their development up to a limit of
milli-meters. Then again, this substrate ceases to exist as a continuous medium supporting
internal porosity and disintegrates. In order to move to higher pore sizes, a different
system is required, which is the volcanic magma into which the temperature, pressure,
and chemical composition permit the exchange of mass between pores up to the limit of
centimeters. At this point, the collective power law ceases. It is not clear if there are systems
supporting such an exchange mechanism between larger cavities.
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The same line of arguments could also apply for the development of other Power Law
Limits, for example, that documented by Yurista et al. [18] along the trophic chain of pelagic
species algae → zooplankton, → large predatory zooplankton → prey fish → predatory fish.
For instance, the family of prey fishes exchange mass (food) between themselves as well
as with predatory zooplankton and predatory fishes. At some point, an equilibrium is
reached where, because of physiological reasons and/or the prey–predator equilibrium
achieved via the population dynamics, the number and the size of species in a family reach
a limit. Within each family (e.g., large predatory zooplankton; prey fish; predatory fish) the
number–size distribution follows a limited range power law but the combination of such
sub-laws leads to an almost perfect Power Law Limit.

Energies Ei. and Entropies S (Ei) of distribution. The observations in [44,45] about the
hidden variables stem from a suggestion by Mora and Bialek [46] that, in a system with
a very large number of states (i), the distribution of negative logarithms of frequencies
−logNi, which correspond to the logarithms of probabilities −logPi, represents the distri-
bution of energies Ei. The argument is related to the Boltzmann distribution, Pi = (1/Z)
exp (−Ei/kBT), where kB is the Boltzmann constant and Z is the partition function. By
setting the temperature such that kBT = 1 and considering Z = 1, this leads to the following
definition for the distribution of energies:

Ei = −logPi = − logNi (7)

The last equation is related to Zipf’s Law if the energy states of a system are ordered
by decreasing probability Pi, which decays inversely to their rank ri to some power q, e.g.,
Pi ∝ 1/ri

q, and since rank ri is directly related to size Si, it corresponds to a power law that
reads Ni ∝ 1/Si

q. The distribution logNi = f (logSi) expresses a strong power law when the
corresponding distribution of Ei ≡ f (logNi) is as broad as possible. This is exactly the case
in Figure 4, where the various power laws depend on the width of frequencies.

The same authors [46] introduced the entropy S (Ei) of such systems (not to be confused
with the size notation Si used above) which depends on the density ρ (Ei) of the states of
energy. This property, discussed also extensively in [45], is defined by relation:

S (Ei) = logρ (Ei) (8)

where ρ (Ei) = Σiδ (E − Ei) is the density of states. Following closely the statement of Mora
and Bialek [46] that “. . .Zipf’s law for a very large system is equivalent to the statement
that the entropy is an exactly linear function of the energy” and the two quantities are
connected via relation:

S (Ei) = Ei/q + s (9)

where s is a sub-extensive term, that is s → 0 as the size (i) of system increases to I → ∞.
For a perfect Zipf Law, with q = 1 and i → ∞, relation (8) is simplified to (9):

S (Ei) = Ei/q (10)

Relation (9) for q → 1 tends to S (Ei) ≈ Ei. In [43], the authors used a statistical model
and compared those two parameters in emerging power laws for spins. They showed that
an almost perfect Zipf Law (S (Ei) ≈ Ei) emerges as the standard deviation of the Gaussian
distribution characterizing the hidden variable of the system increases.

In the present case, a comparison can be made between the energy Ei of the system,
expressed as the Full Width (FW) of distributions, e.g., ∆log(FW), and the entropy of the
distribution estimated according to the Shannon formula:

S (Ei) = −Σ pi·logpi (11)

The values of pi in Equation (11) can be estimated from the bar charts of Figure 3, right,
and correspond to pi = ni/N, where ni is the number of experimental points at each bar
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and N = 206 is the total number of points in all cases. The estimated values of S (Ei) are
cited in Table 4. In Figure 5 we plot the relation q·S (Ei) = f (Ei) from the data in that table.
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In Figure 5, we observe that a linear equation qi·S (Ei) = 1.2Ei − 1.5 relates the energies
Ei. and entropies S (Ei) of the distribution of pores, also taking into account the slope q of
power laws. This result is in good agreement with the theoretical suggestion expressed
by relations (8) and (9) in ref. [46] and verified in [45] for spins. It expresses the fact that
Zipfian Laws for large systems are equivalent to the statement that the entropy is a linear
function of energy of the system.

A central point expressed in refs. [45,46] is that the very many power laws observed in
various natural or physical systems are nesting on a critical state of the system. This implies
that every external or internal unbalancing input or action, for example, the introduction
of mass as sand grains, discussed in the well-known paradigm of sand piles by Bak
et al. [47,48], or the exchanging of various commodities, including money, as discussed by
Chatterjee et al. in [6], or the variation in temperature and/or pressure in volcanic melts
and sol-gels bearing seeds of pores, will automatically force a counterbalancing action (sand
avalanches, flow of money, pore coalescence) of the system by adjusting its energy and
entropy, which are in turn reflected by the distributions of the frequencies and sizes of its
agents and vice versa. The most convenient way to achieve such an adjusting mechanism
is a readily exchangeable quantity, like sand grains, money, or water vapors.

Nevertheless, the concept of exchangeable quantities, although useful and insightful
in the power laws observed in nature or various human activities, cannot help much in
animate cases like human speech and the distribution of words as reflected by Zipf’s Law.
The exchangeable quantities, that is, the words in such cases, apart from the superficial
power law distribution, seem to obey a further selective fitting choice by the human
brain controlled by previously imprinted recognizable patterns in a kind of feedback. For
example, Zipfian Laws for words during spoken dialogs differ depending on the familiarity
of speaking persons [49]. Thus, familiar people when talking tend to exchange fewer
common words and more uncommon ones compared to non-familiar talkers. Similarly,
very young children and military combat texts result in flatter Zipfian Laws, either because
of poor exchangeable vocabulary (children) or purposefully because the orders should
be simple and laconic (army) [50], which means that, in such cases, the exchangeable
quantities (words) pass thought a selective matching cognition filter embedded gradually
or purposefully into the brain. However, such questions lay beyond the scope of this work.

The above discussion mainly refers to power laws observed in solids. Nevertheless,
in such systems, there often exist exponential components blended into the superficially
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observed power law. The separation and weighing of those two components are not trivial
questions. In other words, the detection of an interruption of cascade steps of mass transfer
leading to the power law by steps following an exponential law is not clear and is usually
unattainable. A possible answer to such queries may be found in the various models for
pore development discussed by this group in ref. [28] and the literature cited there.

7. Conclusions

In the present work, we propose that various power laws are developed via the
gradual and extensive exchange of a suitable quantity between the members of a uniform
set. Typical examples include exchange of money (Pareto’s Law); knowledge (Lotka’s
Law); people (Auerbach’s suggestion); written or verbal information (Zipf’s Law); stress
and friction (e.g., energy) between tectonic plates (Richter scale); living resources (Yule
process); bytes of information (Complex Networks); flares (forest fires); deadly projectiles
(wars); common beliefs (religious bodies); social recognition (social networks); musical
notes, colors, and shapes (music and painting); food (trophic chain of pelagic species);
athletic equipment, tools, or objects (athletic performance); energy and heat (sea-ice floes
in Arctic seas); and, finally, water vapors during pore development in solids, leading to
typical power laws.

The last case was scrutinized using extensive experimental data. It was shown that
a practically perfect Zipf’s Law Ni ≈ 1/Di

3 ≈ 1/Vi between differential pore density
Ni (number of pores/g) and differential pore volume Vi (≈Di

3) (nm3/pore) holds over
about 17 orders of magnitude for 297 experimental points from twelve (12) porous materials
belonging to five (5) different categories of porous samples. This result, which is reminiscent
of the central limit theorem, shows that the evolution of a nearly perfect power law may be
the outcome of accumulation of either many non-perfect components amassed within a
short range of observations or many non-perfect components spread along a long range
of observation. The first case corresponds to the concept of hidden variables affecting
the system.

The pore development leading to power laws takes place via merging of smaller
pores towards larger ones and exchange/transfer of mass content (usually water vapors or
carbon dioxide) between them. Nevertheless, the exchanged quantity unevenly affects the
variation in the differential distribution of pore volumes Vi, surface areas Si, pore lengths Li,
and pore numbers Ni, which for spherical pores corresponds to specific pore anisotropies,
e.g., Ni ≡ Bi. Because of the method used, the estimation of each of these quantities e.g.,
j = Vi, Si, Li, and Ni is actually the differential of the previous property in relation to pore
diameter Di. Consequently, they yield four different power laws log(j) ≈ a − q·logDi with
slopes q differing by one. Those slopes depend closely on the logarithm of the Full Width
(FW) of the distribution, e.g., ∆log(FW), of j parameters, and reflect strong power laws for
∆log(FW) → 5. As ∆log(FW) → 1, the corresponding power law fades.

Finally, it was shown that the energy Ei of the examined systems, expressed as the Full
Width (FW) of distributions, e.g., ∆log(FW), and the entropy S (Ei) of the same distributions,
estimated according to the Shannon formula, are linearly related, as suggested previously
based on statistical physics arguments. This linear relationship, according to the same
suggestions, means that the system nests on a critical state. The exchangeable quantity, that
is, water vapors between pores, is the most convenient way to keep the system balanced.

The results of the present work emphasize the significance of suitable exchangeable
quantities between the agents of a set that lead to power laws. This concept was studied
here mainly in relation to the properties of microporous lab-made solids as well as of
macroporous volcanic rocks. It is important to scrutinize in more detail the vast class of
mesoporous solids, including various soils, by experts in the field, to check the applicability
of these ideas in this domain. Furthermore, if the power laws for porous materials are
considered universal, then local (see, for example, sub-Figure 2-I) or extended (see, for
example, sub-Figure 2-IV) deviations from the perfect power law may be of interest as to the
physicochemical reasons leading to such divergences. Such effects are usually attributed to
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different mechanisms but the deeper reasons for such mechanistic differentiations must be
related to the different surface energy, which may depend on the chemical composition of
the porous interface. For example, the seventeen (17) different categories of porous solids
show differentiated slopes in Figure 3, left, but the physical reasons for this are not clear up
to now. Finally, theoretical computer simulations, as exemplified, for example, in [51–53],
using among other prototypes the so-called Random Apollonian Packing, provide signifi-
cant inside into such porous systems. Such theoretical studies could eventually highlight
the emergence of the power laws as the system is gradually developed via the suitable
exchangeable property.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foundations4020012/s1, Table S1: The differential pore properties Di
(diameter, nm) and Ni (pore density, pores/g) of the three (3) porous spinels CoAl2O4 T = 500, 700,
and 900 ◦C discussed in this work are from refs [21–25,32]. The partial pressure 0 < (P/Po) = Pi < 1
where the Di and Ni values were determined during nitrogen porosimetry is also shown; Table S2:
Pore properties Di (diameter, nm) and Ni (pore density, pores/g) of eight (8) porous volcanic rocks
or mimics plus one (1) sample of porous soil (last double column) discussed in the present work.
The original publications are cited; Table S3: The seventeen (17) different categories of porous solids
that are depicted in Figure 3 by 17 different-colored points as follows: 1-(■); 2-(•); 3-(▲); 4-(▼); 5-(♦);
6-(
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