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Abstract: As microbes develop resistance to various drugs, the treatment of infections becomes
increasingly challenging, leading to prolonged illness, heightened severity of infections, elevated
mortality rates, and increased healthcare costs. Essential oils are lipophilic and volatile mixtures
of compounds that have gained attention in research for novel antimicrobial agents. Therefore, the
present study evaluated the essential oil of Syzygium cumini leaves (EOSC) in order to prospect its
antifungal and trichomonacidal activities. The essential oil from the leaves was extracted by steam
distillation and analyzed by GC-MS. Antifungal activity was evaluated using the serial microdilution
method. Additionally, the potential of the EOSC as an enhancer of fluconazole (FCZ) action was tested
at subinhibitory concentrations. To assess anti-Trichomonas vaginalis activity, concentrations ranging
from 15.6 to 500 µg/mL of EOSC were tested. Finally, the SwissADME platform was employed to
analyze the physicochemical and pharmacokinetic characteristics of the major component of EOSC.
The GC-MS analysis identified 94.24% of the components of EOSC, with α-pinene (51.11%) and
nerol (8.25%) as major constituents. EOSC exhibited low antifungal activity against the evaluated
Candida strains. However, the combination of EOSC and FCZ reduced the IC50 against Candida
krusei from 45.29 to 0.30 µg/mL. EOSC also demonstrated significant activity against T. vaginalis
(IC50 = 88.2 µg/mL). In silico prediction with α-pinene showed low toxic action and important
physicochemical aspects for drug production. The essential oil of Syzygium cumini emerges as a
promising candidate for the discovery of molecules with potential antifungal and anti-Trichomonas
vaginalis applications.
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1. Introduction

At least 300 out of the 1.5–5 million existing fungal species are associated with human
diseases. Among them, Candida genus leads morbidity and mortality rates. Several species
are highlighted in invasive infections, with the predominant cases being attributed to
C. albicans. However, they may also include C. glabrata, C. krusei, C. parapsilosis, and
C. tropicalis [1]. This fungal diversity plays a crucial role in the dynamics of antimicrobial
resistance (AMR), which represents a serious threat to global health. Alarming predictions
indicate up to 10 million deaths per year by 2050 due to AMR, negatively impacting both
public health and the economy [2].

As cases of AMR continue to rise, there is a need to prospect new therapeutic targets
and drugs that can assist in the treatment of these infections. Unfortunately, the develop-
ment of antifungal medications does not meet clinical needs, especially in light of the rapid
development of resistance by clinically relevant fungi [3]. Therefore, fungal diseases are of
great importance to public health, particularly when associated with AMR, which is also
valid for drug-resistant parasitic and neglected diseases [4].

The neglected tropical diseases (NTDs) are a group of pathological conditions that pre-
dominate in tropical and subtropical regions. These diseases have a strong association with
communities inhabiting low-income areas, especially in Africa, Asia, and Latin America [5].
They represent significant global causes of illness and death, contributing to stigma and
discrimination among affected populations. Another infection often neglected by public
health authorities and requiring new drugs for therapy is trichomoniasis. Trichomoniasis is
the most common non-viral sexually transmitted infection (STI) worldwide, caused by the
flagellated parasite Trichomonas vaginalis [6].

The parasite colonization in host cells poses complications to female reproductive
health, in addition to risks for the predisposition of cervical and prostate cancer. Addition-
ally, T. vaginalis infection can increase HIV (human immunodeficiency virus) transmission
and acquisition [7]. Despite being curable, the excessive reliance on a single class of an-
timicrobials increases vulnerability if clinical resistance spreads. It is believed that market
forces alone will not be sufficient to drive the development of new treatments for trichomo-
niasis [8]. The treatment of trichomoniasis has relied on the use of 5-nitroimidazoles for
over 50 years, and T. vaginalis-resistant isolates have already been reported [9].

In recent years, there has been a significant increase in demand for medicinal and
aromatic plants. This growth is driven by consumers’ preference for pharmaceuticals and
natural foods. Essential oils and their constituents thus play a significant role due to their
accessibility, low cost, and variety of biological activities. Furthermore, finding effective,
safe, and economical antifungal agents to control the growth and production of mycotoxins
by fungi is crucial from both sanitary and economic perspectives [10]. Several studies
have been conducted to investigate the antifungal, antimicrobial, and anti-inflammatory
properties of essential oils [10–13].

The Myrtaceae family comprises approximately 140 genera and 3.500 species. Among
the members of this family, the genus Syzygium consists of fruit-bearing species primarily
found in tropical and subtropical regions worldwide [14]. The species Syzygium cumini (L.)
Skeels (synonym: Eugenia jambolana), popularly known as “ameixa-preta”, “azeitona-roxa”,
or “jambolão” [15], is used in traditional medicine for the treatment of diabetes, colic, and
digestive disorders [16,17]. Extracts and natural products obtained from the plant organs
of S. cumini exhibit several biological activities, including hepatoprotective, antimicrobial,
anti-inflammatory, antidiabetic, and hypolipidemic effects [18,19].

Studies have demonstrated that the essential oils obtained from S. cumini showed
antioxidant, antimicrobial, antiparasitic, and anti-inflammatory properties [20–23]. A-
Pinene is among the main compounds identified in the essential oil of this plant and
it is suggested that this monoterpene is synergistically related to possible antiprotozoal
and antimicrobial activities, potentiating such actions. These findings further prove the
therapeutic potential of these essential oils and stimulate ongoing research into their
benefits for human health, with promising implications for ethnopharmacology [20,23].
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The computational methods known as in silico models are used to optimize molecules
with potential for drug development, allowing for the assessment of crucial physico-
chemical properties for drug efficacy, as well as pharmacokinetic characteristics such as
absorption, distribution, metabolism, and excretion (ADME) [24]. The SwissADME web
tool simplifies the calculation of physicochemical and pharmacokinetic parameters of
molecules, being useful for both specialists and non-specialists. Additionally, it includes
access to BOILED-Egg, which predicts the gastrointestinal absorption and brain access of
molecules, facilitating the evaluation of potential drugs [25].

In this study, our main objective is to evaluate the chemical composition of the es-
sential oil of S. cumini leaves (EOSC), as well as to investigate its pharmacological effects,
with special emphasis on its antifungal activity, its potential as a fluconazole modifier, and
its anti-Trichomonas vaginalis activity. Additionally, we aim to predict the physicochemi-
cal, pharmacokinetic, and toxicological properties of the major compound using in silico
computational tools, focusing on ADME activities.

2. Materials and Methods
2.1. License and Plant Material Collection

The collection of plant material was conducted with authorization from SISBIO (Sis-
tema de Autorização e Informação em Biodiversidade), number 64011-1, and from SISGEN
(Sistema Nacional de Gestão do Patrimônio Genético e Conhecimentos Tradicionais As-
sociados), registration number A7AEBD7. The leaves of S. cumini were collected in the
municipality of Jardim, Ceará, Brazil (7◦33′18′′ W, 39◦18′23′′ S), and specimens were de-
posited at the Herbário Caririense Dárdano de Andrade Lima (HCDAL), under the voucher
number 13.593.

2.2. Extraction of Essential Oil

After collection, the leaves were dehydrated at room temperature and crushed man-
ually. Subsequently, the crushed material (200 g) was mixed with 2 L of distilled water
in a 5 L round-bottom flask. The essential oil was extracted using the hydrodistillation
method in a Clevenger apparatus for a period of 2 h. At the end of extraction, a final yield
of 0.159% was obtained. The essential oil of S. cumini was stored in amber bottles and kept
refrigerated at −4 ◦C [23] (Figure 1).
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2.3. Gas Chromatography–Mass Spectrometry (GC-MS)

The EOSC underwent phytochemical analysis through GC-MS, using the Agilent
Technologies AutoSystem XL GC-MS system (Agilent Technologies, Santa Clara, CA, USA).
The process was conducted in EI mode at 70 eV, employing two distinct capillary columns:
an HP 5MS (30 m × 0.35 mm, with a film thickness of 0.50 µm) and an HP Innowax
(30 m × 0.32 mm, with a film thickness of 0.50 µm). A split/splitless injector (220 ◦C)
connected to an FID detector was used. The thermal programming ranged from 60 ◦C
(1 min) to 180 ◦C at a rate of 3 ◦C/min, with the detector temperature set to 220 ◦C.

Helium was used as the carrier gas with a flow rate of 1.0 mL/min. A volume of
1 µL of EOSC, diluted in chloroform at a ratio of 1:10, was injected into the system. Each
sample was analyzed in duplicate, and the relative concentrations of the components were
calculated based on the peak areas of GC, determined by the Flame Ionization Detector (FID)
response, without the use of correction factors [26]. The identification of compounds was
performed using retention index (RI) evaluation with the use of a set of standard n-alkanes
(C7 to C30) under the same experimental conditions. Subsequently, this identification was
compared with mass spectrometry information from the NIST and Wiley libraries, as well
as with mass spectra reported in the literature [26].

2.4. Antifungal Activity
2.4.1. Fungal Strains, Culture Media, and Drugs

Standard strains of Candida albicans INCQS 40006 (isolated from a man with bron-
chomycosis), Candida krusei INCQS 40095 (clinical isolation), and Candida tropicalis INCQS
40042 (isolated from a man with bronchomycosis) were obtained from the Laboratório
de Micologia Aplicada (LMAC) of the Coleção de Culturas Oswaldo Cruz do Instituto
Nacional de Controle de Qualidade em Saúde (INCQS). The culture media used for fun-
gal growth were Sabouraud Dextrose Agar (SDA) and Sabouraud Dextrose Broth (SDB).
The preparation of the media followed the manufacturer’s instructions and was sterilized
by autoclaving at 121 ◦C for 15 min. The reference antifungal drug used for synergistic
evaluation was Fluconazole (FCZ/FLUCOMED), diluted in the same manner as the EOSC.

2.4.2. Cultivation and Matrix Preparation

The growth of Candida strains was conducted on Petri dishes containing SDA medium
at 37 ◦C for 24 h. Following growth, fungal suspensions were prepared in tubes containing
4 mL of sterile NaCl solution (0.9%), which were shaken and assessed for turbidity using
the McFarland scale (reference of 0.5). The EOSC was weighed (0.0191 g) and dissolved in
1 mL of DMSO, the same way as FCZ. Subsequently, this solution was diluted in 9 mL of
SDB culture medium to obtain a concentration of 1024 µg/mL, ensuring that the presence
of DMSO does not interfere with the pharmacological effects [27].

2.4.3. Half-Maximal Inhibitory Concentration (IC50)

The antifungal activity of EOSC was evaluated following the methodology described
in Morais-Braga et al. [28]. The broth microdilution technique was employed to deter-
mine the IC50. The EOSC and FCZ were separately diluted to concentrations ranging
from 1024 to 2 µg/mL. The experiment was conducted in quadruplicate, with one well
reserved for growth control and another for sterility control. After incubation at 37 ◦C
for 24 h, concentrations were adjusted as necessary. Dilution and sterility controls were
performed, and absorbance was measured at 630 nm using an ELISA reader (Termoplate®

Kasuaki, Beijing, China).

2.5. Assessment of the Potentiation of Fluconazole Activity

To investigate the interaction between EOSC and FCZ, the compound was evaluated
using the subinhibitory matrix concentration (CM/8) [29]. Fluconazole was tested at
concentrations ranging from 2 to 1024 µg/mL. The plates used in the broth microdilution



Future Pharmacol. 2024, 4 384

technique and serial dilution were incubated at 37 ◦C for 24 h, and readings were taken
using an ELISA spectrophotometer (Termoplate® Kasuaki, China).

2.6. Anti-Trichomonas Vaginalis Activity

The assays were conducted with the T. vaginalis ATCC 30236 (JH 31A #4) metronidazole-
sensitive clinical isolate (MIC: 3.1 µM; IC50:0.5 µM). Trophozoites were maintained in
trypticase-yeast extract-maltose (TYM) medium, supplemented with heat-inactivated
bovine serum (10%, v/v) and penicillin/streptomycin at 37 ◦C [30]. Trichomonads in the
logarithmic growth phase exhibiting > 95% of normal motility and morphology were inoc-
ulated in fresh TYM for assays. The anti-T. vaginalis activity of EOSC was evaluated in vitro
at concentrations ranging from 500 to 15.6 µg/mL, as described by Menezes et al. [31].
The serial diluted EOSC (50 µL) was added to 96-well microplates with 2.0 × 105 tropho-
zoites/mL suspensions (150 µL). The plates were incubated at 37 ◦C, for 24 h, at 5% CO2.
Trophozoite viability was assessed by comparisons with untreated parasites counted in
a hemocytometer using trypan blue dye (0.2%). Two controls were used: negative con-
trol with trophozoites only in a supplemented TYM medium and vehicle control with
0.6% DMSO. All tests were performed in triplicate with three independent cultures (n = 3).

2.7. ADME Prediction In Silico

To analyze the physicochemical and pharmacokinetic characteristics of the major
component (>20%) found in the essential oil of S. cumini, the SwissADME platform provided
by the Swiss Institute of Bioinformatics (SIB) was used, focusing on toxic parameters,
BOILED-egg, and the bioavailability radar [25]

2.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software version 6 (Graph-
Pad Software Inc., San Diego, CA, USA). The IC50 was calculated using non-linear re-
gression. One-way Analysis of Variance (ANOVA) followed by Tukey’s test was applied.
Antifungal and anti-Trichomonas vaginalis activity data were expressed as mean ± standard
deviation (SD).

3. Results
3.1. Chemical Composition of EOSC

Following chromatographic analysis (GC-MS), it was possible to identify 94.24% of
the compounds in EOSC, comprising a total of 16 chemical components, as illustrated
in Table 1. Major components such as α-pinene (51.11%, monoterpene) and nerol (8.25%,
monoterpene) were observed, along with trace elements such as nerolidol (6.56%), linalool
(5.82%), nonalol (4.56%), caryophyllene (3.52%), and others.

Table 1. Chemical composition of essential oil of Syzygium cumini leaves.

Compounds RI a RI b Essential Oil

α-pinene 937 939 51.11

β-pinene 979 981 2.98

β-myrcene 995 991 0.77

Limonene 1029 1031 1.42

Nonalol 1105 1103 4.56

Linalool 1099 1098 5.82

α-terpineol 1187 1189 1.81

Nerol 1228 1228 8.25
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Table 1. Cont.

Compounds RI a RI b Essential Oil

(E,Z)-2,4-decadienal 1296 1295 0.91

Geranil acetate 1385 1384 2.93

Ionone 1387 1387 1.36

Damascone 1409 1411 0.56

Caryophyllene 1417 1418 3.52

α-humulene 1451 1452 1.47

Nerolidol 1569 1564 6.56

α-cadinol 1646 1649 0.21

Hydrocarbon Monoterpene 60.84

Oxygenated Monoterpene 21.64

Hydrocarbon Sesquiterpene 4.99

Oxygenated Sesquiterpene 6.77

Total Identified (%) 94.24
a Experimental retention index (based on n-alkane C7-C30 homologous series). b Literature retention index [24].
The essential oil was reinjected into GC-MS as obtained by Fernandes et al. [23].

3.2. Antifungal Effect

The assessment of the antifungal efficacy of EOSC is demonstrated in Table 2. A sig-
nificant activity against C. albicans (541.4 µg/mL) and C. krusei (502.3 µg/mL) strains is
observed, indicating its effectiveness as an antifungal agent in clinical contexts. However,
no relevance was observed in the activity against the C. tropicalis strain, as the action was
higher than the highest tested concentration (1024 µg/mL), suggesting a possible selective
action against the previously mentioned Candida species.

Table 2. Antifungal and modifying activity of essential oil from Syzygium cumini against Candida
strains.

IC50

µg/mL

C. albicans C. krusei C. tropicalis

EOSC 541.4 ± 1.09 502.3 ± 2.93 >1024 ± 2.75

FCZ 1.59 ± 0.91 45.29 ± 3.52 0.01 ± 0.00

FCZ + EOSC 2.17 ± 0.08 0.30 ± 0.01 0.01 ± 0.00

FCZ: Fluconazole, EOSC: essential oil of Syzygium cumini leaves.

3.3. Fluconazole Potentiating Action

The pharmacological potential of the EOSC as a FCZ enhancer is evident, as indicated
in Table 2 and Figure 2. Remarkably, its modifying action was particularly highlighted con-
cerning C. krusei, resulting in a significant reduction in the fluconazole IC50 to 0.30 µg/mL.
However, regarding the other strains, no significant alterations were observed; there was
no substantial impact on C. albicans and C. tropicalis, demonstrating an antagonistic and
indifferent action, respectively, in relation to the combination with FCZ.
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3.4. Anti-Trichomonas Vaginalis Activity

The evaluation of antiparasitic activity is demonstrated in Figure 3. The EOSC was
demonstrated to be active against T. vaginalis with an IC50 of 88.2 µg/mL. At 500 µg/mL
of EOSC, the trophozoite’s viability was 0.16 ± 0.08, while at 250 µg/mL, it was was
14.3 ± 1.98. No significant reduction in trophozoite viability was observed at the concentra-
tion of 15.6 µg/mL (Figure 3).
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31.2, and 15.6 µg/mL. Control: non-treated trophozoites. VC: vehicle control, 0.6% DMSO. Data are
presented as the mean ± standard deviation compared to the control (considering the viability of 100%
of trophozoites). Results are representative of at least three independent experiments in triplicate.
(*) Statistically significant difference (p < 0.05) when compared to the control by Student’s t-test.

3.5. In Silico Tests (ADME)

The oral bioavailability graph (Figure 4) illustrates the pharmacokinetic characteristics
of α-pinene, the main compound from EOSC, based on its ADME activity (absorption,
distribution, metabolism, and excretion). The colored area represents the standards by
which molecules exhibit better similarity to drugs, taking into account lipophilicity, sat-
uration, size, flexibility, polarity, and solubility. It is notable that the molecule stands
out from promising drug molecules due to its low flexibility (lack of rotational bonding),
size (MW: 136.23 g/mol, reference range between 150 and 500 g/mol), and low polarity
(TPSA: 0.00 Å2).
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It is still possible to conclude that the parameters of lipophilicity (XLOGP3: +4.48,
within the reference range between −0.7 and +5.0), saturation (fraction C sp.3: 0.80), and
solubility (log S (ESOL): −3.51, indicating adequate solubility) comply with the predefined
criteria for the production of suitable drugs. The cutaneous permeability coefficient (Log Kp:
−3.95 cm/s, Table 3) is also considered adequate, as there are no obstacles to permeability;
the similarity parameter is reinforced by fitting correctly into the rules of Verber, Egan, and
Lipinski, having violated the rule of the lipophilic characteristic.

Table 3. Toxicity and ADME analysis of α-pinene (major constituent of the essential oil of Syzy-
gium cumini).

Pharmacokinetics

Compound α-pinene

GI absorption Low

BBB permeant Yes

P-gp substrate No

CYP1A2 inhibitor No

CYP2C19 inhibitor No

CYP2C9 inhibitor Yes

CYP2D6 inhibitor No

CYP3A4 inhibitor No

Log Kp (skin permeation) −3.95 cm/s

Drug-likeness

Lipinski Yes; 1 violation: MLOGP > 4.15

Ghose No; 1 violation: MW < 160

Veber Yes

Egan Yes

Muegge No; 2 violations: MW < 200, Heteroatoms < 2

Bioavailability Score 0.55

GI: gastrointestinal; BBB: blood–brain barrier; MW: molecular weight; CYP1A2: Cytochrome P450 1A2; CYP2C19:
Cytochrome P450 2C19; CYP2C9: Cytochrome P450 2C9; CYP2D6: Cytochrome P450 2D6; CYP3A4: Cytochrome
P40 3A4.

Additionally, Table 3 also lists potential toxic effects of α-pinene, with emphasis on the
inhibition of the CYP2C9 isoenzyme. No significant changes were observed compared to
other isoenzymes. The BOILED-egg graph (Figure 5, Table 3) provides data directly related
to the distribution of the α-pinene molecule, simulating its behavior in the human body.
The yellow region indicates the compound’s ability to cross the blood–brain barrier (BBB)
and undergo passive gastrointestinal absorption (Human Intestinal Absorption, HIA). It is
observed that α-pinene has partial penetration into the BBB and low HIA absorption, in
addition to not being subject to active efflux (PGP-, permeability glycoprotein).
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4. Discussion

Syzygium cumini, popularly known as “amora-preta” or “jambolão”, stands out for
its applications in traditional folk medicine, indicating its pharmaceutical potential [16,19].
Several pharmacological activities are attributed to S. cumini, including antioxidant, antidi-
abetic, antidiarrheal, antiparasitic, and anti-inflammatory properties [32]. Antimicrobial
activity has been reported in the essential oil of S. cumini leaves, tested against clinically
relevant bacterial strains such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus
aureus. These factors highlight the importance of S. cumini in medicine and pharmaceutical
research as a product with potential to provide therapeutic benefits [33].

Antifungal effects were observed in extracts from S. cumini leaves against different
Candida spp. strains, demonstrating the ability to inhibit fungal growth with minimum
inhibitory concentrations (MICs) ranging from 31.25 to 125 µg/mL [34,35]. Antifungal
activity was also observed in studies conducted with essential oil of S. cumini leaves
(EOSC) against strains of Aspergillus flavus (MIC: 0.083 mg/mL) and Rhizopus solani (MIC:
0.127 mg/mL). These results were corroborated by Hanif et al. [22], who also highlighted
the composition of EOSC, evidencing the significant presence of hydrocarbon monoterpenes
(27.0%), oxygenated monoterpenes (26.27%), hydrocarbon sesquiterpenes (20.95%), and
oxygenated sesquiterpenes (18.13%).

Some recent studies have investigated the potential effects of compounds present in the
EOSC, among which α-pinene, myrcene, and limonene stand out. These compounds have
been associated with a wide range of in vitro biological activities [16,20,23]. However, other
relevant compounds were also detected, suggesting the presence of significant chemical di-
versity in this essential oil. It is important to note that there is a disparity in the results found
in the literature, with different major compounds identified in EOSC. In addition to those
previously mentioned, τ-cadinol (21.44%) [19], 5-methyl-1,3,6-heptatriene (4.90%) [22], iso-
caryophyllene (18.01%) [36], cis-β-ocimene (27.98%) [17], caryophyllene oxide (17.24%) [37],
β-caryophyllene (37.65%) [38], and α-pinene (21.09%) [39] are also reported.

This variety in results can be attributed to multiple factors that affect the production of
phytochemicals in plant organs. These factors can be directly influenced by soil characteris-
tics, local climate, genetic variations of the plants [19], temperature and humidity, as well as
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interactions with pollinators, predators, and rainfall [38]. Additionally, variations in light
intensity over time, associated with different seasons of the year [40], play an important
role in influencing the production of chemical compounds in plants. It has been observed
that harvesting and extracting essential oil at different times of the year results in variations
in the quantity of present chemical compounds, accompanied by changes in non-living
elements of the environment [41].

Based on the literature analysis, it is evident that the compound α-pinene exhibits
fungicidal efficacy against yeasts of the genus Candida, indicating a possible relationship
with the inhibition of the antimicrobial efflux pump of fungi, among other mechanisms
of activity, the fungicidal action present in the genus Rhizopus [42,43]. Thus, suggesting a
possible mechanism of action of the EOSC, since there is no research that addresses this
aspect, according to Nóbrega et al. [44], it was observed that this monoterpene inhibited
virulence, inhibiting pseudohyphae and the growth of the pathogens C. albicans and C.
parapsilosis at concentrations ranging from 64 to 128 µg/mL, effectively reducing blasto-
conidia. Additionally, they highlight the fungicidal activity, as well as its ability to inhibit
and disintegrate fungal biofilms, especially the virulence mechanisms of C. albicans [45].

The proven effectiveness of the compound α-pinene as an antifungal agent is widely
attributed to its mode of action targeting fungal yeasts. Studies have indicated that this
compound interacts significantly with the cell membrane, resulting in its rapid destabi-
lization and subsequent rupture, leading to the leakage of intracellular content [46]. This
phenomenon has been observed in fungal species of both Candida spp. and Venturia in-
aequalis, in addition to demonstrating antibacterial activity [47]. Additionally, a theory
suggests a specific interaction between α-pinene and the ergosterol present in the cyto-
plasmic membrane of Candida yeasts, directly influencing the production and inhibition of
fungal hyphae and pseudohyphae [45].

Research on nerol as a single compound to prospect its antifungal potential has
revealed cell damage effects in the cell membrane of Saccharomyces cerevisiae fungi, re-
sulting in the inhibition of cell budding and the alteration of the metabolic profile [48].
Regarding Aspergillus flavus, it was observed that at concentrations of 0.8 µL/mL, nerol
completely inhibited growth, suggesting a negative impact on mycelia development and
spore germination [49]. When tested against C. albicans, nerol demonstrated a MIC of
0.77 µL/mL, inducing apoptosis by damaging the cell membrane structure and increasing
its permeability [50]. When directed to antiparasitic activity, there are certain gaps in this
activity; however, Geraniol (cis isomer of nerol) presented an IC50 of 171.48 µg/ml against
T. vaginalis [51].

However, substantial evidence points to the potential of caryophyllene, isolated from
the essential oil of Syzygium species leaves, as a highly effective antifungal agent, specifi-
cally targeting the fungal cell wall of Aspergillus fumigatus [52]. Additionally, other varieties
of the genus Syzygium, such as S. aromaticum, have also demonstrated antifungal capacity,
significantly inhibiting the growth of fungi and biofilm formation in strains of C. albi-
cans, C. glabrata, and C. tropicalis, with efficacy comparable to fluconazole, a standard
antifungal [47]. In research conducted with Rhizoctonia solani and Helminthosporium oryzae,
caryophyllene exhibited more promising activity, with concentrations of 450 and 510 µg/ml,
respectively, for the species [53].

The anti-T. vaginalis activity from EOSC has not been described yet, but our results
were shown to be promising. Although scarce, studies aiming to evaluate the anti-T. vagi-
nalis potential of essential oils have been conducted, and such compounds are promising for
prospecting new drugs [51,54]. Natural products obtained from S. cumini exhibit activity
against other medically important protozoa, such as fruit extracts that recently showed po-
tential against Plasmodium falciparum (IC50 < 10µg/ml) [55]. Additionally, α-pinene, a major
component of EOSC, demonstrates potential against intracellular amastigote forms (IC50:
15.6µg/mL) and promastigote forms (IC50: 19.7 µg/mL) of Leishmania amazonensis [56].
Regarding the antiparasitic potential, these findings demonstrate the biotechnological
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potential of S. cumini for applications in the pharmaceutical industry, especially to produce
α-pinene.

A remarkable characteristic of essential oils is their hydrophobic nature. The lipophilic
properties of EOs enable them to traverse cell membranes to interact with intracellular
components, thus compromising cellular functions and inducing cell death by enhancing
cytoplasmic permeability. Despite being poorly understood, the mechanisms by which EOs
act against T. vaginalis are mainly related to membrane damage [57]. Indeed, exposure of
the T. vaginalis Tv2 isolate to EO from Amomum tsao-ko and its major component (geraniol)
resulted in damage to the plasma membrane and cytoplasmic leakage, as well as dilation
of the endoplasmic reticulum and disintegration of other organelles [51]. During the
experiments with EOSC, we did not observe trophozoites stained with trypan blue dye,
suggesting a possible rupture of the parasite membrane. However, these findings require
further investigation.

The infection caused by the parasite T. vaginalis is associated with severe clinical
complications, including infertility, cervical and prostate cancer, gestational disorders, and
increased HIV/AIDS acquisition [58]. The World Health Organization estimates 156 million
new cases of trichomoniasis per year [6]. Trichomoniasis treatment is mainly based on
the use of metronidazole, but adverse side effects are frequent. Additionally, resistant
isolates of T. vaginalis have been documented worldwide, with metronidazole resistance
estimated at around 10%, implying a number of 15 million people without therapeutic
options [59]. Thus, new drugs for the treatment of trichomoniasis are highly needed, and
natural products have gained prominence as therapeutic alternatives. Previous studies have
shown that essential oils from Myrtaceae species have potential against T. vaginalis [31].
Our results corroborate with these studies and point to EOSC as promising in combating
T. vaginalis (IC50: 88.2 µg/mL), highlighting the need for studies using α-pinene against
metronidazole-sensitive isolates.

In silico tests aid in the search for promising molecules in pharmaceutical production.
It is possible to use tools like SwissADME Web to calculate fundamental parameters, both
physicochemical and pharmacokinetic, pertaining to drugs, for one or multiple molecules,
with statistically significant predictions, utilizing models such as BOILED-egg and the
bioavailability radar [25]. Regarding the major compound of EOSC, α-pinene, the inac-
tivation of enzymes such as CYP2C9 can lead to potential drug interactions, resulting
in toxic action [60]. However, research indicates the absence of cytotoxic activities [45].
Additionally, based on molecular docking in silico testing, there is a hypothesis suggesting
its potential for breast cancer treatment [61].

The preference for treatments using S. cumini is acceptable given its proven low toxicity,
as evidenced in the studies by Everton et al. [36] and Everton et al. [33]. These studies
found that EOSC does not exhibit significant toxicity towards the model organism Artemia
salina. It shows activity even when tested at extremely high concentrations [62]. It is also
noteworthy that α-pinene is highly promising for the treatment of human diseases as it has
not demonstrated adverse toxicological effects, being considered a molecule of minimal
toxicity, establishing itself as a safe option for therapeutic use [45,63].

5. Conclusions

We can conclude that the use of Syzygium cumini in traditional medicine to treat
fungal infections caused by Candida is supported by scientific studies. Our results demon-
strate that the EOSC contains α-pinene and nerol as its main phytochemical components.
Moreover, there is promising evidence of its efficacy in combating infections caused by
microorganisms and its ability to enhance the effect of fluconazole, indicating its usefulness
as a complementary therapy. In addition, the anti-Trichomonas vaginalis activity of EOSC
was reported for the first time in this study. It was observed that this product was effective
against T. vaginalis in in vitro tests.

Additionally, α-pinene exhibited low toxicological actions in in silico predictive tests.
Despite being limited, our study emphasizes the need for further research to evaluate the
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in vivo cytotoxicity in mammalian cells, possible mechanisms of action, and synergistic
properties of EOSC phytoconstituents.
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