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Abstract: Geodesic least squares (GLS) is a regression technique that operates in spaces of probability
distributions. Based on the minimization of the Rao geodesic distance between two probability
models of the response variable, GLS is robust against outliers and model misspecification. The
method is very simple, without any tuning parameters, owing to its solid foundations rooted in
information geometry. Here, we illustrate the robustness properties of GLS using applications in the
fields of magnetic confinement fusion and astrophysics. Additional interpretation is gained from
visualizations using several models for the manifold of Gaussian probability distributions.
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Tully–Fisher scaling

1. Introduction

Geodesic least squares is a relatively new technique for regression analysis in a regular
Euclidean data space, which takes into account uncertainty estimates (error bars) on all
regression variables [1]. It is a minimum distance technique that uses the geodesic distance
(Rao distance) on a statistical manifold, as studied in the field of information geometry [2,3].
Crucially, the method is easily implemented, yet it exhibits good robustness properties in
the presence of outliers and model uncertainty.

With this contribution, on the one hand, we aim to demonstrate the robustness of the
technique with recent and new applications. On the other hand, we intend to stress the
considerable value, in some domains of application, of analysis techniques that are easy to
implement, requiring little tuning or expert knowledge, while addressing shortcomings of
overly simple data analysis techniques that are nevertheless commonly employed. Hence,
we aim to promote the use of geometric methods in machine learning by showing that
proper treatment of the complex, nonlinear character of certain data can greatly improve
the performance of even the simplest analysis techniques. We focus on the estimation of
power laws, which are ubiquitous in various domains, such as astronomy, biology and
geology, reflecting scale invariance and details of the underlying dynamical processes.

Two applications are targeted in this work. The first is situated in the domain of
magnetic confinement fusion (MCF), specifically the critical scaling law for the energy
confinement time. MCF is a field where the methods of modern data science have only
recently been introduced and where the ease of implementation and interpretation are likely
to accelerate the widespread adoption of new analysis techniques. The second application
concerns a key scaling law in astrophysics: the baryonic Tully–Fisher relation. This is
a remarkably tight relation between the total baryonic mass of disk galaxies and their
rotational velocity, which is of great practical and theoretical significance in astrophysics
and cosmology.

The exposition starts with a description of the GLS regression technique in Section 2.
We then move to the application in fusion science in Section 3, followed by the astrophysical
application in Section 4. Section 5 concludes the paper.
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2. Geodesic Least Squares Regression

GLS relies on the concept of a statistical manifold, which is a Riemannian manifold
that uses the Fisher information as a metric tensor. As such, it is a nonlinear space wherein
the points themselves represent probability distributions. Geodesics, i.e., curves of a locally
minimal distance between points on the manifold, can be constructed using the Levi–Civita
connection, from which a geodesic distance can be obtained. Given a parametric probability
model p({xm}|{θ j}) for variables xm (m = 1, . . . , M) with parameters θ j (j = 1, . . . , npar),
the Fisher information (covariance of the score) provides a unique metric tensor, with
elements given by

gij = −E
[

∂2

∂θi∂θ j ln p
(
{xm}|{θk}

)]
, i, j, k = 1, . . . , npar.

For instance, in the case of a univariate normal distribution p(x|µ, σ), parametrized by its
mean µ and standard deviation σ, the Fisher information matrix is [4]

I(µ, σ) =
1
σ2

(
1 0
0 2

)
.

To explain the principle of GLS regression, let us assume an exact functional rela-
tionship η = f ({ξm}, αj), parametrized by the set αj (j = 1, . . . , npar), between a set of
hidden predictor variables ξ1, . . . , ξnpred and a single hidden response variable η (in the
remainder of this paper, we no longer make a notational distinction between covariantly
and contravariantly transforming quantities). Let us also consider additive uncertainty on
all variables, yielding the respective measurable variables y, x1, . . . , xnpred :

y = η + εy, x1 = ξ1 + εx1 , . . .

For simplicity, here we consider zero-mean normal error distributions, but other models
can be used as well:

εy ∼ N
(
0, σy

)
, εx1 ∼ N (0, σx1), . . .

Importantly, it is assumed that an estimate of the measurement uncertainties is available,
determined by the experimentalist. This will be used to construct a modeled distribution for
the data. Furthermore, we consider the general case, which will be useful in Section 3, where
the data consist of nobs,k independent observations of the response and predictor variables
from a class k (e.g., a fusion device), out of a total of nclass classes (e.g., multiple fusion
devices). The unobserved values ξm,ik ,k (m = 1, . . . , npred, ik = 1, . . . , nobs,k, k = 1, . . . , nclass)
need to be marginalized out. If f is linear,

η = α0 +

npred

∑
j=1

αjξ j, (npar = npred + 1)

and then the joint likelihood is again Gaussian:

p
(
{yik ,k}, {xj,ik ,k}|{α0, αj}

)
=

nclass

∏
k=1

nobs,k

∏
ik=1

1√
2πσ2

mod,ik ,k

exp

−1
2

[
yik ,k − f

(
{xj,ik ,k, α0, αj}

)]2

σ2
mod,ik ,k

, (1)

where [5]

σ2
mod,ik ,k = σ2

y,ik ,k +

npred

∑
j=1

α2
j σ2

xj ,ik ,k, (2)

and the standard deviations σxj ,ik ,k may in general be different for each data point. Note that,
in Equation (1), we have plugged the measured data points xj,ik ,k into f . The marginalization
causes their uncertainty to propagate through the functional relation f , hence turning up in
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Equation (2). In fact, due to the linearity of f , this result agrees with standard Gaussian
error propagation. By analogy, for a power-law model,

η = α0

npred

∏
j=1

ξ
αj
j ,

we approximate the likelihood by using a Gaussian distribution with the standard deviation
obtained by the Gaussian error propagation rules:

σ2
mod,ik ,k = σ2

y,ik ,k + η2
ik ,k

npred

∑
j=1

α2
j

(
σxj ,ik ,k

xj,ik ,k

)2

.

Although the method has general applicability, in the remainder of this paper, we only
consider linear and power-law functional models and a Gaussian statistical model.

We call σmod,ik ,k the modeled standard deviation, as the expression (2) hinges on the
model assumptions, and the likelihood (1) is the modeled distribution. In reality, data outliers
and model uncertainty may cause the spread of the data around the fitted hypersurface
to be significantly larger. Therefore, in addition to the modeled distribution, an empirical
likelihood is considered, which again for simplicity we assume to be Gaussian and centered
on each measured data point:

p(y|yik ,k, σobs,ik ,k) =
1√

2πσ2
obs,ik ,k

exp

[
−1

2
(y− yik ,k)

2

σ2
obs,ik ,k

]
. (3)

The standard deviations σobs,ik ,k, which we call the observed standard deviations, model the
actual dispersion of the data and are learned from the data. This observed distribution is
designed with minimal assumptions in mind (in the context of the generalized linear model,
this is referred to as the saturated model [6]).

The next step is to minimize the geodesic distance between the modeled distributions
(Equation (1)) and observed distributions (Equation (3)) for all the data points, thereby
estimating the model parameters and the observed standard deviations. Because of the
independence assumption, this can be written as a minimization of the sum of squared
geodesic distances (GDs):

{α̂0, α̂j, σ̂obs,ik ,k} = Arg Min
α0,αj∈R,σobs,ik ,k∈R+

nclass

∑
k=1

nobs,k

∑
ik=1

GD2
[

p
(
{yik ,k}, {xj,ik ,k}|{α0, αj}

)∣∣∣p(y∣∣yik ,k, σobs,ik ,k
)]

.

In this form, the problem is severely underdetermined, which we solve by assuming a fixed
observed standard deviation σobs,k for all points from class k or a fixed relative error. For
the application in fusion science, this is a reasonable assumption, as the error bars for all
the measurements from a single device are fixed for each particular variable, although they
can differ from one machine to another. In the astrophysics application, this is trivially the
case, as only a single class is involved.

Hence, GLS acquires its robustness properties by allowing the modeled and observed
distributions to differ, as demonstrated on synthetic and real data in [1]. Incidentally, it
is interesting to note that by forcing the equality of the modeled and observed standard
deviations (along the entire geodesic), GLS becomes equivalent to the maximum likelihood
estimation (MLE), as the corresponding geodesic distance is the Mahalanobis distance [7].
Nevertheless, we stress that the technique is easily implemented, in particular owing
to the closed-form expression for the geodesic distance between two univariate normal
distributions with the parameters µ1, σ1 and µ2, σ2 [4]:

GD(µ1, σ1|µ2, σ2) =
√

2 ln
1 + δ

1− δ
= 2
√

2 tanh−1 δ, δ ≡
[
(µ1 − µ2)

2 + 2(σ1 − σ2)
2

(µ1 − µ2)2 + 2(σ1 + σ2)2

]1/2

.
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GLS is similar to the minimum distance estimation (MDE), where the Hellinger dis-
tance is a popular similarity measure [8,9], although there are several differences. First and
foremost, GLS calculates the geodesic distance between each individual pair of modeled
and observed distributions of the response variable, corresponding to an individual mea-
surement point. As such, each individual data point acquires the status of a probability
distribution in its own right. Consequently, GLS performs regression between probability
distributions on a probabilistic manifold. In contrast, MDE usually considers a distance
between a kernel density estimate of the distribution of residuals, on the one hand, and
the parametric model, on the other hand, based on the entire data sample. Secondly, in
GLS, all parameters of the modeled distribution are explicitly modeled, which is similar to
the ideas behind the link function in the generalized linear model [6]. In the present work,
this is accomplished by explicitly modeling both the mean and standard deviation of the
Gaussian-modeled distribution. Additionally, a final difference is that the Rao geodesic
distance is used as a similarity measure, which offers the appeal of intuitive geometric
interpretation.

3. GLS for Energy Confinement Scaling in Tokamaks

To introduce the application in MCF, we first briefly sketch the context and then we
show the regression results, as well as a number of visualizations.

3.1. Energy Confinement in Magnetic Confinement Fusion

The field of magnetic confinement fusion aims at the development of nuclear fusion as
a clean, safe and as good as inexhaustible source of energy. In MCF, a mixture of hydrogen
isotopes (deuterium and tritium) is heated to thermonuclear temperatures (∼15 keV, or
about 1.5× 108 K) and the resulting plasma is confined using magnetic fields [10]. The
most advanced configuration, shaped as a torus, is referred to as the tokamak. The large-
scale international ITER project, the construction of which in Southern France is nearing
completion, represents the next step in this endeavor.

One of the primary remaining challenges of MCF is to improve the confinement
of heat in the plasma in order to maximize fusion performance. The thermal energy
confinement time τE,th is a critical figure of merit in this regard, characterizing the time
scale of the energy loss from the plasma through transport processes [11]. However, the
detailed physics of the energy transport in fusion plasmas, which is of a predominantly
turbulent nature, is not fully understood. Therefore, a semi-empirical approach is often
taken to estimate the dependencies of τE,th on the plasma conditions, by means of regression
analysis in a database of measurements from multiple fusion devices. Here, a subset
will be used of the recently updated international confinement database DB5.2.3-STD5,
accessible through [12], containing 6233 data points from 18 tokamaks [13]. This allows
for extrapolating the confinement performance to new machines, such as ITER and future
fusion demonstration reactors (DEMO). In addition, these semi-empirical laws provide a
reference for assessing the quality of global confinement in present-day experiments and
can guide the development of theoretical models for heat transport in tokamaks.

The dependencies of the energy confinement time are usually written in the form of a
power law:

τE,th = α0 IαI
p BαB

t n̄αn
e PαP

l,th RαR
geo (1 + δ)α1+δ κακ

a εαε MαM
eff . (4)

The predictor variables are the plasma current Ip (MA), the toroidal magnetic field Bt (T), the
line-averaged electron density n̄e (1019 m−3), the thermal power lost due to transport Pl,th
(MW), the major radius Rgeo (m) of the torus, the plasma shape variables δ (triangularity),
κa (elongation) and ε (inverse aspect ratio) and, finally, the effective atomic mass Meff
(or isotope mass) of the plasma. The details of these variables are not essential for the
remainder of the present paper, except for Meff. Indeed, most data in the database were
obtained from plasmas made up of hydrogen (Meff = 1) or deuterium (Meff = 2), while the
ITER and fusion reactors will eventually work with a 50− 50 mixture of deuterium and
tritium (DT; Meff = 2.5).
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With the GLS regression technique, we aim to exploit information that is available
about the uncertainty on the measured data. Indeed, estimates of the uncertainty on the
experimentally measured database variables are provided in the confinement database
in terms of percentage errors (i.e., a constant absolute error on a logarithmic scale). This
includes statistical and possibly systematic uncertainty arising purely from the measure-
ment. For the purposes of the present paper, all the measurements of the database variables
are assumed to arise from an underlying normal distribution, with the standard deviation
given by the absolute error derived from the corresponding measurement and its percent-
age error. For the effective mass Meff, it was deemed better to assume a fixed absolute error
for the data used in the scaling, with a typical value of 0.20.

3.2. Regression Results

The parameters of the confinement time in Equation (4) are now estimated using GLS
and compared with those obtained with MLE (or the maximum a posteriori method with
flat priors), the latter corresponding to GLS with a constant standard deviation along the
geodesic. In this way, the advantage of allowing the standard deviation to differ between
the modeled and observed distributions can clearly be shown. The modeled standard
deviations, obtained from the percentage errors provided in the database, are known to
vary among the different machines. However, due to the complexity of heat transport,
engineering details of the devices and the relative simplicity of the regression model, it
is expected that the actual uncertainty of the confinement data is significantly larger [13].
Therefore, the flexibility offered by GLS is expected to be beneficial in this case, as it allows
for the observed distribution to deviate from the modeled distribution.

At this point, we note that Equation (4) is often considered on a logarithmic scale,
leading to a linear relation and rendering the data approximately homoscedastic. However,
as the logarithm alters the data distribution, the inference results using MLE or simple least
squares may be different on the logarithmic scale vs. the original scale, if in both cases a
normal error distribution is assumed [14]. In [1], it was shown that GLS is less sensitive to
these statistical model assumptions than MLE. We will come back to this point in Section 4.

In the application currently under discussion, nonlinear power-law regression was
carried out on the original scale. Table 1 shows the parameter estimates of the confinement
scaling law, using MLE and GLS. A prediction of the confinement time for a standard
ITER baseline scenario in a DT plasma is also shown [13]. It is important to note that the
error bars (one standard deviation) for the parameter estimates were derived based on the
assumptions of the regression model (for GLS, a bootstrapping technique was used). A
more thorough uncertainty analysis has revealed that more realistic error bars are likely to
be at least a factor of 10 larger [13]. This is partly due to interdependencies between the
predictor variables (multicollinearity on a logarithmic scale). The analysis also suggests that,
within these more realistic error bars, some of the predictor variables have no significant
impact on the confinement. A subset of predictor variables thus seems more suitable for the
regression, with the following emerging as the most salient features: Ip, Pl,th, Rgeo and Meff.
Therefore, Table 2 shows the regression results with this reduced set of predictor variables.

From these regression experiments, a crucial difference between the results from the
MLE and GLS becomes apparent. The estimated dependence of confinement on the isotope
mass Meff is (much) stronger with GLS than MLE. That this can potentially have important
consequences for the expected confinement in ITER can clearly be seen in the predictions.
In the most outspoken case in Table 2, the predicted confinement time in ITER is 30% higher
according to GLS than with MLE. Caution is required here, as it has been shown in the past
that the power-law model may not be sufficiently flexible to capture all the trends of the
confinement time [13]. Nevertheless, a clear favorable effect of the isotope mass (‘isotope
effect’) has been noted in earlier studies [15].
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Table 1. Estimates of the parameters (intercept α0 and exponents) and prediction toward ITER
in power-law scalings with MLE and GLS of the energy confinement time using subsets of the
DB5.2.3-STD5 database. All error bars correspond to one standard deviation.

α0 αI αB αn αP αR α1+δ ακ αε αM τ̂E,th,ITER

0.0432 1.143 0.060 0.1914 −0.7007 1.511 0.342 0.785 −0.083 0.317 2.893MLE ±0.0014 ±0.020 ±0.017 ±0.0097 ±0.0075 ±0.031 ±0.046 ±0.033 ±0.049 ±0.014 ±0.034
0.0273 1.187 −0.008 0.166 −0.7511 1.485 0.509 0.823 −0.365 0.767 2.996GLS ±0.0024 ±0.024 ±0.029 ±0.015 ±0.0089 ±0.042 ±0.060 ±0.083 ±0.087 ±0.096 ±0.057

Table 2. Estimates of the parameters (intercept α0 and exponents) and prediction toward ITER in
power-law scalings with MLE and GLS of the energy confinement time with a reduced set of predictor
variables.

α0 αI αP αR αM τ̂E,th,ITER

0.0952 1.270 −0.6194 1.182 0.570 2.717MLE ±0.0029 ±0.012 ±0.0079 ±0.015 ±0.026 ±0.037
0.0280 1.124 −0.6605 1.389 2.41 3.535GLS ±0.0028 ±0.016 ±0.0097 ±0.019 ±0.13 ±0.098

3.3. Visualizations

One of the main advantages of geometric approaches to statistics and machine learning
is the possibility to visualize methods and results and to interpret the results geometrically.
We here explore several techniques to visualize or approximate the manifold of univariate
Gaussian distributions, which is well known to possess constant negative scalar curvature,
corresponding to hyperbolic geometry [16].

The first visualization is the Poincaré half-plane, pictured in Figure 1 (a number of
data points at a high confinement time have been excluded to improve the visualization).
The geodesics are half-circles ending on the horizontal axis (as well as vertical lines with
constant µ). Hence, a characteristic of the geodesics is their route through a region of larger
standard deviation, relative to that of the end points.

Figure 1. Illustration of the Poincaré half-plane with several half-circle geodesics in the background.
The confinement time data (value and error bar) are plotted in the half-plane, as well as the modeled
and predicted values obtained by GLS.

The downside of the Poincaré half-plane is that the Euclidean metric in that plane is, of
course, different from the metric on the manifold, which causes visual discrepancies when
judging the distance between points. For this reason, we present another visualization
using a partial immersion of the manifold in three-dimensional Euclidean space, as shown
in Figure 2a (in the interest of the visualization, the surface has been rescaled by a factor of
10 in the µ direction and some data points with low confinement times have been excluded).
A rendering is shown of one blade of a particular pseudosphere, namely, the tractroid,
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which is locally isometric to the actual manifold for σ > 1. The parallels of the tractroid
are lines of constant standard deviation σ, while the meridians (the tractrices) are lines of
constant mean µ. This representation of the normal manifold is periodic in the µ direction.
The generally higher standard deviation of the observed distributions, compared to the
measured confinement times, is a sign of additional sources of uncertainty.

(a) (b)

Figure 2. (a) Visualization of the confinement time data on a pseudosphere, as well as the modeled
and observed distributions obtained by GLS. (b) Projection of the confinement data using MDS,
roughly indicating the directions of increasing µ and σ.

A visualization in three-dimensional space clearly also has its disadvantages, which is
addressed by the final visualization in Figure 2b. This is a projection on a two-dimensional
Euclidean plane that is locally approximately isometric to the original manifold. It has been
obtained using multidimensional scaling (MDS), which aims at preserving the pairwise
distances between all points: geodesic distances on the manifold are approximated by
Euclidean distances in the plane.

4. GLS for Tully–Fisher Scaling in Astrophysics

The second application that we consider aims to give a very simple additional illustra-
tion of the robustness of GLS and the interpretation thereof.

4.1. The Baryonic Tully–Fisher Relation

The baryonic Tully–Fisher relation (BTFR) between the total (stellar + gaseous) bary-
onic mass Mb of disk galaxies and their rotational velocity Vf is of fundamental importance
in astrophysics and cosmology [17]. It is a remarkably simple and tight empirical relation
of the form

Mb = α0VαV
f . (5)

The BTFR serves as a tool for determining cosmic distances, provides constraints on galaxy
formation and evolution models and serves as a test for the Lambda cold dark matter
paradigm (ΛCDM) in cosmology. In this scaling problem, we use data from 47 gas-rich
galaxies, as detailed in [17]. The data also contain estimates of the measurement errors
(38% on Mb and 10% on Vf), which again we treat here as a single standard deviation.

4.2. Regression Results

In this application, we demonstrate the robustness of GLS against outliers, by com-
paring between the loglinear and nonlinear regression of the BTFR. The scalings obtained
with GLS are shown in Figure 3, reflecting consistent estimates for both regressions. In
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particular, whereas the data point corresponding to the largest Vf and Mb does not have the
characteristics of an outlier on the logarithmic scale, it may be considered as such on the
original scale. Nevertheless, the trend estimated by GLS seems not significantly affected by
this outlier.

Furthermore, the relative error derived from the observed standard deviation esti-
mated by GLS amounts to 63%, which is considerably larger than the value of ca. 40%
predicted by the model. Again, this is an indication that the scatter on the scaling law is
not due to measurement error alone, which has particular significance in this application,
as it may provide evidence for the ΛCDM vs. so-called modified Newtonian dynamics
(MOND) cosmological models.

(a) (b)

Figure 3. Fit of the BTFR by GLS (a) on a logarithmic scale and (b) on the original scale of the data.

4.3. Visualization

It is interesting to visualize the data and the fit by GLS, as this provides insight into
the way GLS succeeds in ignoring the outlier. This is illustrated in Figure 4, showing the
Poincaré half-plane with the BTFR data, as well as the modeled and observed distributions
obtained by GLS. The geodesic between the modeled outlier and the data point is shown
(dashed curve), as well as that between the modeled outlier and the corresponding observed
distribution (full curve). The latter is (slightly) shorter, because the increased observed
standard deviation leads to a decrease in the geodesic distance.

Figure 4. The BTFR data in the Poincaré half-plane, with geodesics considered by GLS shown for the
case of the outlier.

5. Conclusions

Geodesic least squares regression has been presented, demonstrating the robustness
of the method in two applications in the physical sciences. Essentially a least squares
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technique, it is easily implemented, which, as we have stressed, is a key asset for the
adoption of the method in scientific disciplines where advanced methods of statistics and
machine learning are not yet widely used. The data and results can be visualized in several
ways, offering additional options for interpretation.

We have applied the GLS technique to the energy confinement scaling in fusion devices
of the tokamak design based on an international multi-machine database. A new regression
by GLS with a reduced set of predictor variables suggests an isotope effect that is much
more favorable than predicted by regular MLE. This could lead to significantly improved
confinement in the next-step fusion device ITER. A second application of GLS has been
aimed at demonstrating the robustness against outliers, with a corresponding intuitive
geometrical interpretation.

As GLS combines simplicity with good robustness properties, it can be of particular use
for practitioners in various application domains. Requiring little to no tuning or learning of
hyperparameters, it can be readily employed without expert knowledge about the details
of the method.
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