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Abstract: Ocypode Weber, 1795 (Brachyura: Ocypodidae) is popularly known as ghost crab, and
encompasses 21 valid species, including Ocypode quadrata (Fabricius, 1787). This species has wide
distribution along the Atlantic coast of America, from the USA (Massachusetts) to Brazil (Rio Grande
do Sul), Central America, and Antilles. Such distribution, along with some biological characteristics
of its life cycle and the presence of geographic barriers, could lead to genetic structuring. Herein,
we evaluate the hypothesis of the presence of geographic barriers using COI and 16S partial gene
fragments. The Maximum Likelihood tree suggests the monophyly of O. quadrata, while the values
of intraspecific genetic distance along with the star-shaped haplotype network suggested a lack of
genetic structure in Brazilian, Panama, and French Guiana populations, probably caused by larval
dispersion. USA and Mexico populations may be a new lineage, but we cannot say it with few
sequences and with no morphological characters.

Keywords: connectivity; gene flow; genetic diversity; haplotype network; population genetics

1. Introduction

Ocypode Weber, 1795 (Brachyura: Ocypodidae) [1] is the popularly known ghost
crab, with 21 recognized species and it is one of the most abundant crabs of the family
Ocypodidae Rafinesque, 1815. Ocypode quadrata (Fabricius, 1787) is the only species of the
genus that occurs across the western Atlantic region, from the USA (Massachusetts) to
Brazil (Rio Grande do Sul), Central America, and Antilles [2–4] (Figure 1). This species
is semiterrestrial and typically inhabits the entire supralittoral zone, including dunes,
sandy beaches, and vegetated areas, also being found in the upper midlittoral zone, where
individual burrows are flooded during high tides [2,5]. This crab can provide essential
information about the negative impact on beach ecosystems and contribute in efforts
towards the conservation of beach biodiversity, since the threat of human impact is to have
an irreversible effect on this environment [6,7]. The widespread distribution of O. quadrata,
along with its semiterrestrial habitat, its long planktonic larval phases, and its potential
as a tool for impact on beach ecosystems, make this species an interesting example to
understand different patterns of genetic differentiation, and population structure, mainly
through the study of genetic variability.
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Figure 1. Ocypode quadrata (Fabricius, 1787). A distribution map including localities sampled (black 
dots) in the present study shown with different colors. Male, CCDB 5087 (Photo: Buranelli, R.C., 
modified from [4]); scale bar: 27 mm. Brazilian States—AL: Alagoas; AP: Amapá; BA: Bahia; CE: 
Ceará; ES: Espírito Santo; FN: Fernando de Noronha; PA: Pará; PB: Paraíba; PE: Pernambuco; RJ: Rio 
de Janeiro; RN: Rio Grande do Norte; SC: Santa Catarina; SE: Sergipe; SP: São Paulo (see more details 
in Table in Section 2). The colors used on the map correspond to the haplotype networks. 

The ecological characteristics of this species were widely studied [5,8–14], as well as 
its capability of survival in the intertidal areas [9], which facilitates its collection and 
monitoring. Furthermore, it can be used as a bioindicator for human actions on several 
beaches in the Americas [11,15,16]. 

Figure 1. Ocypode quadrata (Fabricius, 1787). A distribution map including localities sampled (black
dots) in the present study shown with different colors. Male, CCDB 5087 (Photo: Buranelli, R.C.,
modified from [4]); scale bar: 27 mm. Brazilian States—AL: Alagoas; AP: Amapá; BA: Bahia; CE:
Ceará; ES: Espírito Santo; FN: Fernando de Noronha; PA: Pará; PB: Paraíba; PE: Pernambuco; RJ: Rio
de Janeiro; RN: Rio Grande do Norte; SC: Santa Catarina; SE: Sergipe; SP: São Paulo (see more details
in Table in Section 2). The colors used on the map correspond to the haplotype networks.

The ecological characteristics of this species were widely studied [5,8–14], as well
as its capability of survival in the intertidal areas [9], which facilitates its collection and
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monitoring. Furthermore, it can be used as a bioindicator for human actions on several
beaches in the Americas [11,15,16].

Ocypode quadrata has planktonic larvae, five zoeal stages, and a megalopa that stays
60 days in the water column [17,18]; the morphology of the megalopa is probably adaptive
for survival through postponed metamorphosis for more than 34 days into the first crab
stage [19]. Those larval features can facilitate high dispersal capacity, which can be related
to genetic structure, as well as observed in populations that are not panmictic but are very
widely dispersed [20].

All these characteristics draw attention to O. quadrata being a potential model for
several studies, as was the case in other regional genetic population studies [6,21] and in
systematics and taxonomy [1]. Despite this well-developed knowledge on biology and
ecology of O. quadrata, the information on genetic variability with this taxon is still scanty.
In this way, molecular analyses using the genetic barcoding can help in the characterization
of the genetic variability among the populations, detecting homogeneity or structuring,
and improving the knowledge of the dispersion mechanism of this species.

Studies of genetic variability and using the barcoding approach can be seen not only in
different groups of Decapoda (e.g., [22–26]), but also in many other organisms (e.g., [27–30]).

Some species are widely spread due to their planktonic larval characteristics and,
along with potential barriers to gene flow, such as isolation by distance, sea currents, or
changes in salinity caused by the outflow of the mouth of the Amazon River into the
Atlantic Ocean [31–36], are a promising model in studies, for example, of genetic variability.
Our study is going to increase the number of DNA sequences from two genes’ fragments
(COI and 16S), amplifying the sample area of this species distribution, different from what
has been previously studied. From this, our study tests the hypothesis of genetic structure
in O. quadrata across the western Atlantic coast of America among populations of the
Caribbean Sea and Northeast and Southeast Brazil influenced by the Amazon River plume.

2. Materials and Methods

Specimens of O. quadrata were obtained from donations and loans and are deposited
in the following collections: Coleção de Crustáceos do Departamento de Biologia (CCDB),
Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto–Universidade de São Paulo
(FFCLRP/USP), Ribeirão Preto, Brazil; Museu de Zoologia, Universidade de São Paulo
(MZUSP), São Paulo, Brazil; Coleção de Crustáceos da Universidade Federal do Rio Grande
do Sul (UFRGS), Porto Alegre, Brazil. The specimens examined are listed in Table 1.

Table 1. Specimens of the ghost crab Ocypode quadrata (Fabricius, 1787), sister groups, and outgroups
used in the molecular analyses. CCDB: Coleção de Crustáceos do Departamento de Biologia–Fa-
culdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo; MZUSP:
Museu de Zoologia, Universidade de São Paulo, Brazil; NCHUZOOL: Zoological Collections of the
Department of Life Science, National Chung Hsing University, Taichung, Taiwan; ULLZ: University
of Louisiana at Lafayette Zoological Collection, USA; ZRC: Zoological Reference Collection of the
Lee Kong Chian Natural History Museum (formerly Raffles Museum of Biodiversity Research).
N = number of sequences used; “-” = absence of sequences.

Species Locality Catalogue
Number

GenBank Accession Numbers Reference
Numbers16S (N) COI (N)

Ocypode quadrata
Fabricius, 1787

USA, Georgia, Jekyll
Island ULLZ 4261 FN539018 (1) - [37]

USA, Virginia USNM IZ 1287556 - KU905799 (1) unpublished

Mexico, Veracruz - -
KY568733;
KY568753-

KY568756 (5)
[21]



Arthropoda 2024, 2 133

Table 1. Cont.

Species Locality Catalogue
Number

GenBank Accession Numbers Reference
Numbers16S (N) COI (N)

Panama, Bocas del Toro
ULLZ 13411 MK971527 (1) MN184090 (1) [38]

CCDB 3562 - OR354404 (1) present study

French Guiana MZUSP 21560 - OR354405 (1) present study

Brazil, Amapá (AP),
Calçoene

CCDB 5409 OR352135-
OR352137 (3)

OR354406-
OR354409 (4) present study

- MG805792-
MG805798 (7) - [6]

Brazil, Pará (PA),
Ajuruteua

- MG805700-
MG805707 (8) -

[6]
- MG805698,

MG805699 (2) -

Brazil, Caeará (CE),
Caucaia CCDB 4506 OR352138 (1) OR354410,

OR354411 (2) present study

Brazil, Rio Grande do
Norte (RN), Parnamirim CCDB 3395 OR352139 (1) OR354412 (1) present study

Brazil, Rio Grande do
Norte (RN), Tabatinga - MG805713-

MG805721 (9) - 6

Brazil, Rio Grande do
Norte (RN), Tibau do Sul CCDB 5559 -

OR354413,
OR354414,

OR355675 (3)
present study

Brazil, Rio Grande do
Norte (RN), Natal CCDB 5422 - OR354426 (1) present study

Brazil, Paraíba (PB),
Intermares - MG805728-

MG805730 (3) - [6]

Brazil, Pernambuco (PE),
Ipojuca

CCDB 5733 OR352140,
KT279697 (2) OR354415 (1) present study,

[39]
CCDB 2926 OR352141 (1) OR354416 (1) present study

Brazil, Fernando de
Noronha (FN-PE),

Conceição
- MG805687-

MG805696 (10) - [6]

Brazil, Alagoas (AL),
Barra do Camaragibe

CCDB 4225, CCDB
5409 - OR354417 (1) present study

Brazil, Alagoas (AL),
Jequiá CCDB 2966 OR352142 (1) OR355676 (1) present study

Brazil, Alagoas (AL) NCHUZOOL
14920 LC150368 (1) LC150423 (1) [1]

Brazil, Sergipe (SE),
Atalaia

MG805722-
MG805726 (5) - [6]

Brazil, Bahia (BA),
Canavieiras MG805751 (1) - [6]

Brazil, Bahia (BA), Forte
MG805750,
MG805782-

MG805784 (3)
- [6]

Brazil, Bahia (BA),
Itacimirim

CCDB 2189, CCDB
2190

OR352144,
OR352145,

OR352147 (3)

OR354422,
OR354423,

OR354427 (3)
present study

Brazil, Bahia (BA), Lauro
de Freitas CCDB 3797 - OR354424 (1) present study

Brazil, Bahia (BA), Prado CCDB 4264 - OR354420,
OR354421 (2) present study
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Table 1. Cont.

Species Locality Catalogue
Number

GenBank Accession Numbers Reference
Numbers16S (N) COI (N)

Brazil, Bahia (BA), Mata
de São João CCDB 6126 OR352146 (1) OR354425 (1) present study

Brazil, Bahia (BA),
Salvador CCDB 1016 OR352143 (1) OR354419 (1) present study

Brazil, Espírito Santo
(ES), Marataízes CCDB 3973 - OR354418 (1) present study

Brazil, Espírito Santo
(ES), Setiba Pina - MG805727 (1) - [6]

Brazil, Rio de Janeiro
(RJ), Bananal - MG805753-

MG805761 (9) -

[6]Brazil, Rio de Janeiro
(RJ), Restinga da

Marambaia
- MG805785 (1) -

Brazil, São Paulo (SP),
Ilha Comprida CCDB 3677 OR352148,

OR352149 (2)

OR354428,
OR354429,

MT623344 (3)

present study,
[40]

Brazil, São Paulo (SP),
Registro CCDB 3186 OR352150 (1)

OR354430,
OR355677,

MT623342 (3)

present study,
[40]

Brazil, São Paulo (SP),
Ubatuba CCDB 5087 - OR354431,

MT623343 (2)
present study,

[40]
Brazil, São Paulo (SP),

Ubatuba CCDB 1926 KU313182 (1) KU313197 (1) [40]

Brazil, Santa Catarina
(SC), Florianópolis

UFRGS 1859 - OR354432,
OR354433 (2) present study

MZUSP 25171 - OR354434 (1) present study
Brazil, Santa Catarina

(SC), Praia de Ubatuba - MG805665-
MG805674 (10) - [6]

Sister Groups

Ocypode africana De
Man, 1881 Liberia SMF 9823 LC150354 LC150409

[1]

Ocypode
ceratophthalmus
(Pallas, 1772)

Taiwan, Tainan NCHUZOOL
14916 LC150355 LC150410

Ocypode macrocera
H. Milne

Edwards, 1837
India, Tamil, Nadi ZRC LC150361 LC150416

Ocypode nobilii De
Man, 1902 Malaysia, Kuching NCHUZOOL

14918 LC150362 LC150417

Ocypode cordimana
Latreille, 1818 Guam NCHUZOOL

14917 LC150358 LC150413

Ocypode
gaudichaudii H.

Milne Edwards &
Lucas, 1843

Panama, Culebra ZRC LC150359 LC150414

Ocypode kuhlii De
Haan, 1835 Christmas I. ZRC LC150360 LC150415

Ocypode occidentalis
Stimpson, 1860 Costa Rica ZRC 2012.0125 LC150365 LC150420
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Table 1. Cont.

Species Locality Catalogue
Number

GenBank Accession Numbers Reference
Numbers16S (N) COI (N)

Ocypode rotundata
Miers, 1882 Iran SMF 40586 LC150369 LC150424

Ocypode ryderi
Kingsley, 1880 Mozambique, Inharrime ZRC LC150370 LC150425

Ocypode sinensis
Dai & Yang in

Song & Yang, 1985
Taiwan, Pingtung NCHUZOOL

14806 LC150372 LC150427

Ocypode stimpsoni
Ortmann, 1897 Taiwan, Hsinchu NCHUZOOL

14921 LC150373 LC150428

Outgroup

Afruca tangeri
(Eydoux, 1835)

Spain, Puerto de Santa
Maria, Cadiz

NCHUZOOL
13585 AB813666 AB813682 [1]

Genomic DNA was extracted from muscle samples from pereiopods with Chelex®

(Chelating Ion Exchange Resin; [41]). The final concentration of extracted DNA was
measured using a spectrophotometer (NanoDrop 2000/2000c) to calculate the amount of
DNA to be used in the PCR reaction.

We used a two-locus mitochondrial approach that included partial sequences of 16S
rRNA (16S) and cytochrome oxidase I (COI), which were found to be valuable in other
marine decapod population studies [23,26,33,35,36,42]. Fragments of 600 bp (16S) and
700 bp (COI) were amplified by means of a polymerase chain reaction (PCR), using the
universal primers LCO1490 (5′-GGT CAA ATC ATA AAG ATA TTG-3′) and HCO2198
(5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-3′) [43], and 16Sar (5′-CGC CTG TTT
ATC AAA AAC AT-3′) and 16Sbr (5′-CCG GTC TGA ACT CAG ATC ACG T-3′) [44]. PCR
procedures followed [45–47] with adjustments in annealing temperatures according to the
specific primers, decreasing until a 5 ◦C melting temperature. PCRs were performed in a
total volume of 25 µL, which included 4.5 µL of Millipore-filtered water, 5 µL of betaine
(5 M), 4 µL of dNTP (10 µM), 3 µL of MgCl2 (25 µM), 3 µL of a 10× PCR Taq buffer with
(NH4)2SO4, 1 µL of each primer (10 µM for 16S and 20 µM for COI), 0.5 µL of 1.5 U Taq
DNA polymerase. We followed the thermal cycles of initial denaturing for 4 min at 94 ◦C;
pairing for 40 cycles (50 s at 94 ◦C, 70 s at 45/48 ◦C, and 1 min at 72 ◦C); final extension
for 10 min at 72 ◦C [1]. PCR products were purified using a Sure Clean Plus® kit (Bioline,
Tauton, MA, USA) and were sequenced with the ABI 3730 XL DNA Analyzer® (Applied
Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, USA).

All sequences were confirmed by sequencing forward and reverse strands. The con-
sensus sequence for both strands was obtained using the computational program Geneious
v.2021.2 [48]. Sequences were aligned in MAFFT v.7 [49] using default parameters. We used
the program GBlocks v.091b [50,51] to locate and exclude ambiguous areas of the alignment
or each locus, using relaxed gap selection criteria (allowed gap positions = all). Alignments
were concatenated in the software Geneious v.2021. 2. All sequences were submitted to
GenBank under specific accession numbers (COI: OR354404-OR354434; 16S: OR352135-
OR352150; see Table 1). Genetic vouchers used in molecular analyses are deposited in the
collection of the CCDB/FFCLRP/USP or at the institution of origin.

Samples were grouped according to geographical distribution in Brazilian States, and
countries for those localities with fewer individuals (USA, Mexico, Panama, and French
Guiana). Genetic distances were calculated to determine intra- and interspecific variation
rates with the software MEGA v. 11.0.10 [52], using the p-distance method; distance values
are in percentages.
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Phylogenetic hypotheses were proposed using Maximum Likelihood (ML) [53] per-
formed on the W-IQ-TREE online platform using models selected by the program based on
the data provided [54]. For the concatenate ML tree, we chose just specimens with both
DNA fragments (16S and COI), since the other samples have just one sequence, which
would configure a lot of missing data (Table 1); this analysis aimed to contextualize O.
quadrata within the genus. The best-fit models according to BIC were GTR+F+I+G4 for
concatenate genes; branch support was evaluated by ultrafast bootstrapping (1000 pseu-
doreplicates); bootstrap values > 60% are shown in all trees.

GenBank sequences from Ocypode africana De Man, 1881; Ocypode ceratophthalmus (Pal-
las, 1772); Ocypode macrocera H. Milne Edwards, 1837; Ocypode nobilii De Man, 1902; Ocypode
cordimana Latreille, 1818; Ocypode kuhlii De Haan, 1835; Ocypode rotundata Miers, 1882;
Ocypode ryderi Kingsley, 1880; Ocypode sinensis Dai & Yang in Song & Yang, 1985; Ocypode
stimpisoni Ortmann, 1897; Ocypode occidentalis Stimpson, 1860; and Ocypode gaudichaudii H.
Milne Edwards & Lucas, 1843 were analyzed as sister groups and Afruca tangeri (Eydoux,
1835) as an outgroup (Table 1), following the phylogeny proposal for Ocypodidae [1].

Population parameters of genetic variability within each locality are represented by the
number of haplotypes (h), segregating sites (S), haplotype diversity (Hd), nucleotide diver-
sity (π), and average number of nucleotide differences (k), estimated in DnaSP 6.12.1 [55].
The haplotype networks were constructed with PopART v. 4.8.4 [56] using the statisti-
cal parsimony method TCS Network [57]. A linear cross-mark and the total number of
mutational steps represent the links among lineages; the number in the circle represents
the frequency of each haplotype, and the smallest circles indicate only one haplotype.
The black dots show missing haplotypes and the connections among haplotypes indicate
one mutation step. The black dots or the average vectors are considered hypothetical
haplotypes (sequences), generated by the program to connect the sampled haplotypes [58].
The analysis of molecular variance (AMOVA) and the pairwise fixation index (FST) were
evaluated in Arlequin 3.5 [59], with 10,000 permutations, to calculate the variance within
localities, and between Brazilian States, the USA, Mexico, Panama, and French Guiana.

The neutrality tests Tajima’s D [60] and Fu’s Fs [61] were performed in DnaSP 6.12.1 [55]
to explain observed patterns in genetic variation within populations of O. quadrata consid-
ering the interaction between genetic drift and mutation, including other parameters like
nucleotide heterozygosity and the number of segregating sites in a DNA sequences’ dataset;
these tests are useful to detect whether mutations were neutral or under the influence
of selection, and also for detecting population growth. In addition, pairwise mismatch
distribution was analyzed to test occurrence of contraction or population expansion [62],
assay demographic expansion, and detect stability. The sample distribution of pairwise
differences will usually deviate from the distribution expected. From this, a variety of
shapes can be found, including bimodal and trimodal distributions; this wide variety of
distributions is correlated to the pairwise differences and can be because of the history of
coalescent events in a single sample of genes [63]. Furthermore, if the observed distribution
of pairwise differences is close to a Poisson distribution, that means it is consistent with the
hypothesis that the population has been growing exponentially in size [63]; the continued
exponential growth suggests a sudden burst of population growth [62]. If the population
decreases in size, distributions are initially L-shaped, and then converge quickly to an equi-
librium; if the populations are in equilibrium, the theoretical curves are free of waves [62],
or a population that has been growing presents mismatch distributions that are smooth
and have a peak [64].

3. Results

The present study contributes with 50 new sequences of O. quadrata, 16 sequences
from 16S and 34 from COI, another 86 sequences (74 from 16S, 12 for COI) from the same
species taken from GenBank, and 24 sequences from other species of the genus (Table 1).

The final alignment of the COI fragment consists of 636 base pairs (bp) and the
alignment of the 16S rRNA fragment consists of 511 bp. The intraspecific divergence
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for Ocypode quadrata varied from 0 to 13.9% and 0 to 6.4% for COI and 16S, respectively,
whereas interspecific values ranged from 12.1 to 21.7% for COI (Table S1) and 6.8 to 14.0%
for 16S (Table S2), with these values corresponding to the divergence between sequences of
O. africana and O. ceratophthalmus. Genetic distances among localities ranged from 0.4 to
19.7% (Table 2) for COI and 0.0 to 6.4% (Table 3) for 16S.

Table 2. Ocypode quadrata (Fabricius, 1787). The genetic divergence matrix (distance values are in
percentages) obtained by the pairwise distance method of the partial sequences of the COI gene
between localities.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 USA
2 Mexico 0.6
3 Panama 11.0 11.3
4 French Guiana 13.4 13.6 3.5
5 Brazil—Amapá 11.5 11.8 0.6 3.1
6 Brazil—Ceará 10.7 11.0 1.4 4.2 1.7
7 Brazil—Rio Grande do Norte 11.5 11.8 0.7 3.3 0.4 1.8
8 Brazil—Pernambuco 11.7 12.0 0.9 3.5 1.0 1.9 1.1
9 Brazil—Alagoas 11.4 11.7 0.8 3.4 0.6 1.3 0.8 1.3
10 Brazil—Bahia 11.6 11.9 0.9 3.7 0.8 1.9 1.0 1.3 1.2
11 Brazil—Espírito Santo 11.5 11.8 0.5 3.0 0.1 1.6 0.4 0.9 0.5 0.7
12 Brazil—São Paulo 11.9 12.1 0.9 3.6 0.6 2.0 0.9 1.4 1.1 1.2 0.6
13 Brazil—Santa Catarina 11.4 11.7 0.7 3.4 0.6 1.7 0.7 0.9 0.9 1.0 0.5 1.0
14 Sister Group 15.9 16.1 17.9 19.7 18.2 17.9 18.1 18.2 18.3 18.2 18.2 18.5 18.0

Table 3. Ocypode quadrata (Fabricius, 1787). The genetic divergence matrix (distance values are in
percentages) obtained by the pairwise distance method of the partial sequences of the 16S gene
between localities.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 USA
2 Panama 3.7
3 Brazil—Amapá 3.7 0.1
4 Brazil—Pará 3.8 0.2 0.3
5 Brazil—Ceará 6.4 2.5 2.6 2.7
6 Brazil—Rio Grande do Norte 3.7 0.1 0.2 0.3 2.6
7 Brazil—Fernando de Noronha 3.7 0.0 0.1 0.2 2.5 0.1
8 Brazil—Paraíba 3.7 0.0 0.1 0.2 2.5 0.1 0.0
9 Brazil—Pernambuco 3.9 0.3 0.4 0.5 2.8 0.4 0.3 0.3
10 Brazil—Alagoas 3.7 0.0 0.3 0.4 2.5 0.3 0.2 0.2 0.4
11 Brazil—Sergipe 3.8 0.2 0.2 0.3 2.6 0.2 0.2 0.2 0.4 0.3
12 Brazil—Bahia 3.7 0.1 0.1 0.3 2.5 0.2 0.1 0.1 0.4 0.2 0.2
13 Brazil—Espírito Santo 3.7 0.0 0.1 0.2 2.5 0.1 0.0 0.0 0.3 0.2 0.2 0.1
14 Brazil—Rio de Janeiro 3.7 0.1 0.1 0.3 2.5 0.1 0.1 0.1 0.4 0.2 0.2 0.1 0.1
15 Brazil—São Paulo 3.8 0.1 0.2 0.4 2.6 0.2 0.2 0.1 0.5 0.2 0.3 0.2 0.1 0.2
16 Brazil—Santa Catarina 3.8 0.1 0.2 0.3 2.5 0.2 0.1 0.1 0.4 0.3 0.2 0.2 0.1 0.1 0.2
17 Sister Group 9.5 10.0 10.1 10.2 12.8 10.1 10.1 10.1 10.4 9.9 10.2 10.1 10.1 10.1 10.2 10.1

The concatenated phylogram suggested the monophyly of O. quadrata with boot-
strap values of 100 (Figure 2), with an external branch consisting of a specimen from Rio
Grande do Norte, and a subclade with specimens from different localities (bootstrap: 78%),
configuring no pattern dividing groups that could reveal genetic structure.
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Figure 2. Ocypode quadrata (Fabricius, 1787). The Maximum Likelihood phylogram obtained for 16S
and COI concatenated sequences of O. quadrata specimens and other species of Ocypode. Numbers
represent bootstrap values (1000 replicates) and only bootstrap values > 50% are shown. Outgroup
and congeners’ sequences were taken from GenBank. AL: Alagoas; AP: Amapá; BA: Bahia; Br: Brazil;
CE: Ceará; ES: Espírito Santo; PE: Pernambuco; RJ: Rio de Janeiro; RN: Rio Grande do Norte; SC:
Santa Catarina; SE: Sergipe; SP: São Paulo.

The genetic variability of Ocypode quadrata could be evaluated by the number of
segregating sites (S) with 121 and 33 for COI and 16S, respectively; a nucleotide diversity
(π) of 0.0373 (COI) and 0.01108 (16S), with k values of 20.853 (COI) and 5.243 (16S); and
haplotype diversity (Hd) of 0.9707 for COI and 0.6014 for 16S (Table 4).

Table 4. Ocypode quadrata (Fabricius, 1787). Values of the number of sequences (N), number of
haplotypes (nHap), number of segregating sites (S), nucleotide diversity (π), average number of
nucleotide differences (k), and haplotype diversity (Hd) of the COI and 16S genes.

N h S π k Hd

COI 45 33 121 0.0373 20.853 0.9707

16S 89 24 53 0.01108 5.243 0.6014

For the COI fragment (34 new sequences, 12 from GenBank), the number of haplo-
types (Hap) was 33, with 1 highly frequent haplotype (Hap_9) with seven individuals
from four different localities, linked with several unique haplotypes (Hap_10, Hap_17,
Hap_18, Hap_20; Hap_26; Hap_27), and 2 less frequent haplotypes (Hap_12, Hap_22). One
individual from the USA (Hap_1) with other Mexican haplotypes were separated by more
than 20 mutation steps from the Brazilian haplotypes (Figure 3).
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Figure 3. Ocypode quadrata (Fabricius, 1787). The haplotype network using the statistical parsimony
method with 33 haplotypes obtained from COI sequences. The number in the circle represents the
frequency of each haplotype, according to the caption; black dots indicate median vectors; each line
indicates one mutation step; the total number of mutational steps represents the links among lineages.
AL: Alagoas; AP: Amapá; BA: Bahia; CE: Ceará; ES: Espírito Santo; FG: French Guiana; MX: Mexico;
Pan: Panama; PE: Pernambuco; RN: Rio Grande do Norte; SC: Santa Catarina; SP: São Paulo; USA:
United States of America. The colors used in the haplotype network correspond to the localities on
the map (see Figure 1).

For the 16S fragment (16 new sequences, 74 from GenBank), the number of haplotypes
was 24; the most common was Hap_2 with 56 specimens from 14 localities, linked with 11
unique haplotypes (Hap_3, Hap_6, Hap_7, Hap_10, Hap_11, Hap_13, Hap_16, Hap_20,
Hap_22, Hap_23, Hap_24), and 4 were less frequent (Hap_4, Hap_9, Hap_12, Hap_14,
Hap_18). One individual from the USA was separated by 17 mutation steps from three
Brazilian haplotypes (Hap_4, Hap_14, Hap_18) (Figure 4). Within Brazilian States, among
Brazil, Panama, and French Guiana, both haplotype networks for O. quadrata fit into the star-
shaped pattern, suggesting a recent demographic expansion, with no apparent population
genetic structure; mainly for the COI gene, the USA and Mexico populations may be a
new lineage.

AMOVA results also did not detect any genetic structure among populations (within
Brazilian States; among Brazil, Panama, and French Guiana), with p = 0.00168 for the COI
fragment, and p = 0.21465 for 16S (Table 5). Most of the FST values were not significant,
with a few exceptions of the comparison between localities (Table 6). The result of the
neutrality test Tajima’s D was −0.69521 and Fu’s Fs was −3.770, which were not significant
(p > 0.10) for the COI gene; and Tajima’s D was −2.45254 and the Fu’s Fs statistic was
−25.390, which were significant (p < 0.001), for 16S. For the COI fragment, evolution in O.
quadrata occurs by genetic drift and mutation, emphasizing the lack of evidence of selection
for these populations. For 16S, these significant values demonstrated that populations of
O. quadrata do not reach the equilibrium, for example, if they experienced a bottleneck
recently [60].
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Figure 4. Ocypode quadrata (Fabricius, 1787). The haplotype network using the statistical parsimony
method with 24 haplotypes obtained from 16S sequences. The number in the circle represents the
frequency of each haplotype, according to the caption; black dots indicate median vectors; each line
indicates one mutation step; the total number of mutational steps represents the links among lineages.
AL: Alagoas; AP: Amapá; BA: Bahia; CE: Ceará; ES: Espírito Santo; FN: Fernando de Noronha; PA:
Pará; Pan: Panama; PB: Paraíba; PE: Pernambuco; RJ: Rio de Janeiro; RN: Rio Grande do Norte; SC:
Santa Catarina; SE: Sergipe; SP: São Paulo; USA: United States of America. The colors used in the
haplotype network correspond to the localities on the map (see Figure 1).

Table 5. Ocypode quadrata (Fabricius, 1787). Results of the analysis of molecular variance (AMOVA)
and pairwise fixation index (FST).

df Variance Components Percentage of
Variation Fixation Index

COI

Among populations 12 0.04141 8.46
FST = 0.08463Within populations 32 0.44792 91.54

Total 44 0.48933

16S

Among populations 15 0.00914 3.03
FST = 0.03032Within populations 73 0.29231 96.97

Total 88 0.30146
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Table 6. Ocypode quadrata (Fabricius, 1787). The matrix of significant FST and p values, with a
significance level of 0.05.

COI

FST (p value) Amapá, Brazil Ceará, Brazil Bahia, Brazil

Mexico - 0. 28571 (0.04861) -
Ceará, Brazil - - 0.27150 (0.04415)

São Paulo, Brazil 0. 22239 (0.01317) 0.27150 (0.04811) -

16S

FST (p value) Fernando de
Noronha, Brazil

Pará, Brazil 0.22374 (0.99990)

Mismatch distribution graphics revealed multimodal distributions, which means it
deviated from the expected, and pronounced waves with rough crests, which suggest
coalescent events and ancient population explosion. Populations possibly passed through
contraction and expansion events, which is consistent with the neutrality test (Figure 5A,B),
and a third peak suggests multiple genetic clusters (Figure 5A), such as the USA plus
Mexico separated from the other localities.
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4. Discussion

In the present study, the initial hypothesis of genetic structure in O. quadrata, sup-
ported by its wide geographic distribution, was refuted. Other marine Decapoda presented
the same pattern, lack of genetic structure, for short and long distances such as the crab
Ucides cordatus Linnaeus, 1763 [42]; the mangrove crab Sesarma rectum Randall, 1840 [33];
the swimming crab Callinectes danae Smith, 1869 [35,36]; the western Atlantic hermit crab
Clibanarius antillensis Stimpson, 1859 [26]; and the shrimp Artemesia longinaris [23]. There-
fore, the wide distribution cannot be considered as a predictive character for this condition
in marine organisms. Furthermore, since the barriers to gene flow in these environments
influence each organism in a singular way, patterns of genetic structure are not easily
established [65,66]. The USA and Mexican specimens presented higher values of genetic
distances and many mutation steps at the haplotype networks, suggesting signs of a new
lineage. Like those observed herein, for the orange claw hermit crab Calcinus tibicen (Herbst,
1791), results suggested two genetically well-defined groups, North and South Atlantic,
but no morphological pattern for each genetic group was observed [34].

There were low intraspecific genetic distances when comparing interspecific values be-
tween O. quadrata from Brazilian, Panama, and French Guiana specimens, giving evidence
of a lack of structuring, as well as in other marine crabs, like Ocypode species, in which the
intraspecific variation for homogeneous populations was around 0.52 ± 0.11%, whereas the
values between populations of other genetically structured species were 10.14 ± 0.46% [67].
Considering that individuals of the same species are not identical to each other and may
present transversions or random transitions in their genetic material, as well as being
subject to environmental factors with potential for phenotypic changes [68], we can infer
that this population group of O. quadrata characterizes a lack of genetic structure, since such
minimal variation will be present even in species with constant gene flow. Furthermore,
we suggest that genetic variability in Brazil seems to be high and populations are diverse,
as observed in the different unique haplotypes. In addition, as previously suggested [6],
the USA and Mexican specimens are separated from the other localities and may present
a new lineage. However, we cannot infer with a few sequences and without observing
morphological characters.

Results among distinct localities within Brazil along with Panama and French Guiana
also suggested the absence of genetic separation, evidenced by low genetic distance values,
and by the polytomies in the phylogenetic tree and the star-shaped haplotype network, like
those observed for other populations of O. quadrata [6,21]. Herein, it is plausible to infer that
the absence of a geographic pattern in the composition of the formed subgroups is a good
indicator of high panmixia, which is a relevant fact, since the pattern found in most living
species tends to be the structuring at some level for distant geographical localities [25,69,70].
Considering the broad extension of the Brazilian coast, it is possible that these crabs have
a high dispersion capacity, facilitating gene flow even to distant populations, including
the populations of Panama and French Guiana, maintaining genetic homogeneity. This
dispersion may be attributed to larval characteristics, as five zoeal stages and a megalopa,
and their long period of permanence in the plankton [17–19].

Different from the other localities, the individual from the USA together with the
Mexican population were separated by many mutation steps from the Brazilian with
Panama and French Guiana populations, possibly representing a distinct lineage. This
aspect has already been subtly pointed out, suggesting an existing barrier to gene flow in
the tropical–temperate transition between the Caribbean and the east coast of the USA [6].
The megalopae of O. quadrata have been reported ≈190 km beyond any adult populations in
the USA coast, and can tolerate temperature fluctuations, which means that megalopae can
migrate for long distances along the coast and might survive long enough to burrow into a
sandy beach [71]. In the present study, these characteristics can explain the separation of the
USA and Mexico populations from the Brazilian and the other populations. Furthermore,
we suggested that the sea currents of the North Atlantic Current and Gulf Stream [72] are
influencing the larval dispersion of O. quadrata in long distances and can be responsible for
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such northern and southern distinct groups. In the present study, we expanded the number
of specimens and localities, mainly in Brazil, which increase the number of mutation steps
and reinforce the idea of a distinct entity. However, although outside the scope of this
study, it would be interesting to analyze morphological characters of USA specimens along
with the taxonomical history of O. quadrata and related species.

In Ocypode quadrata, the nucleotide diversity and the haplotype diversity were like
other brachyuran species, including the congener species O. ceratophthalmus (Pallas, 1772),
which also did not show significant genetic variation among the Japanese populations,
but showed a slight difference between the Philippine populations, separated by 30 to
1200 km [67], and three genetically distinct geographical groups, corresponding to the
east, west, and central region of the species’ range in the Indo-Pacific region [73]. This
small difference between populations is possibly a result of recent population expansion or
dispersion [66,67], along with gene flow.

Regarding population size changes, our results indicated that the population of O.
quadrata from Brazil, Panama, and French Guina did not show recent abrupt expansions or a
bottleneck, which is corroborated by the genetic balance between these populations because
of the same demographic balance [74,75], which can also be noted in neutrality data and the
star-like haplotype network. Another possibility, a star-like haplotype network with a great
quantity of rare haplotypes, could also suggest an insufficient sampling of intraspecific
genetic variation since O. quadrata has a wide distribution. Thus, no demographic change
was drastic enough to promote lineage divergence between Brazilian, Panama, and French
Guiana populations.

Possibly, USA and Mexican populations have been exposed to events of strong se-
lective pressure and/or genetic drift, changing their size abruptly, which makes certain
individuals more efficient in transmitting their genes than others [62,76]. Genetic structure
and many mutational steps were also observed for Ilyoplax pusilla (De Haan, 1835) [77]
and in the swimming crab Callinectes ornatus Ordway, 1863 [78]. These steps indicate
modifications by transversions or transitions in the nitrogenous bases, in relation to the
previous haplotype, increasing the genetic distance between them. Along the generations,
this process can facilitate the genetic structure within populations and posteriorly, the
speciation [68]. A population expansion can be indicated by the smoothness of the mis-
match distribution, which is not affected by population structure, whereas mean sequence
divergence increases in a pooled sample from highly isolated subpopulations [64]. The
increase in sequence divergence may be the case of the USA and Mexican populations. Dif-
ferent from O. quadrata, the unimodal distribution observed in the mismatch distributions’
graphics was related to demographic and spatial expansion, suggesting a recent bottleneck
effect or sudden population expansion for the crab species S. rectum [33], the occurrence
of a recent demographic expansion during the evolutionary history for another crab, U.
cordatus [15], and demographic expansion for the hermit crab C. antillensis [26]. As well as
in the present study for populations of O. quadrata from the USA and Mexico, the haplotype
network and long branches in the phylogram indicate some groups that could present
haplotypic structure [6,77], despite the low number of mutational steps. However, the low
number of mutational steps within Brazilian populations of O. quadrata was attributed to
non-exclusive continuous gene flow and/or genetic variations to each individual, in which
some subgroups do not necessarily indicate a genetic separation.

Possible explanations for the high gene flow between populations of geographically
distant organisms can be related to the type of occupied habitat [79], its ability to dis-
perse [80,81], and dependency of the life-history strategies [82]. In marine animals, water
temperature is an important variable that is influenced by the currents and that can even
determine their survival and subsequent reproductive success of individuals in its respec-
tive environment. The semiterrestrial Ocypode quadrata is exposed to temperatures that
vary between about 16 ◦C in the north of the United States, 25 ◦C in the north of Brazil, and
20 ◦C in the south [18,83]. At temperatures lower than 16 ◦C, the organism can survive, but



Arthropoda 2024, 2 144

in an inactive state, and can remain in its sealed burrow for almost three months of the
year [18], which may have an influence on its wide distribution.

As individuals of O. quadrata inhabit supralittoral and intertidal zones, their ability
to disperse is mainly attributed to larvae [84]. There are six larval stages, five zoea and a
megalopa, that stay in the water column for 60 days [17,18]. It is also described as a unique
characteristic of this group, when in the early stages of development, that the megalopa can
regulate its development cycle and postpone the metamorphosis until 34 days [19], which
further increases its dispersive success, preventing maturation/settlement in not-favorable
environments. Those larval features allow us to attribute a high dispersal capacity to the
larvae, which explain the lack of genetic structuring in this species. It is like those observed,
along the Brazilian coast, in the fiddler crab, Uca maracoani (Latreille, 1803), a semiterrestrial
coastal species with an extensive marine pelagic larval duration [66,85]; Minuca panema
(Coelho, 1972) [86], and the eastern Pacific Emerita analoga (Stimpson, 1857), an intertidal
sandy beach crab with an especially wide latitudinal distribution and a long pelagic larval
phase, whose populations are not panmictic but are very widely dispersed and approaching
genetic homogeneity [20].

Marine currents may also be facilitators of the dispersion of O. quadrata from southern
Brazil to North America. In Brazil, the three main currents are the North Brazil Current
(NBC), the Brazil Current, and the Malvinas Current [87], the first two being cold and
the last one warm. The NBC is the strongest one, allowing the dispersion of larvae from
Rio Grande Norte (Brazil) to Central America [88]. Similar examples were observed for
other marine decapods along the western Atlantic, including the tiny shrimp Hippolyte
obliquimanus Dana, 1852 [32]; the fiddler crab Minuca rapax (Smith, 1870) (as Uca rapax) [89];
and the orange claw hermit crab C. tibicen [34].

Alternatively, the long-distance larval dispersal can be a consequence of the so-called
steppingstone process, which is common for distinct animals, including marine ones [33,90],
and can be applicable in O. quadrata. It consists of the connection between fragments of
habitats by a given species, enabling the connection between distant regions, providing
gene flow from the occupation of these fragments and subsequent dispersal [90,91].

5. Conclusions

In general, there is no genetic structure in O. quadrata; the null hypothesis of the
present study was corroborated. The constant gene flow, with low genetic variability,
may indicate the absence of sudden selective pressures and genetic drift events in the
sampled localities. The individuals from the USA and Mexico were separated from the
Caribbean Sea and Brazilian populations, possibly representing a distinct lineage that
deserves future attention. Finally, the genetic characteristics of O. quadrata along with its
ecological importance improve the knowledge of the life strategy of this crab and should
be considered in the management and conservation of sandy beach ecosystems.
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