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Abstract: Three homologous electrochromic conjugated polymers, each containing an asymmetric build-
ing block but decorated with distinct alkyl chains, were designed and synthesized using electrochemical
polymerization in this study. The corresponding monomers, namely T610FBTT810, DT6FBT, and
DT48FBT, comprise the same backbone structure, i.e., an asymmetric 5-fluorobenzo[c][1,2,5]thiadiazole
unit substituted by two thiophene terminals, but were decorated with different types of alkyl chain
(hexyl, 2-butyloctyl, 2-hexyldecyl, or 2-octyldecyl). The effects of the side-chain structure and asym-
metric repeating unit on the optical absorption, electrochemistry, morphology, and electrochromic
properties were investigated comparatively. It was found that the electrochromism conjugated poly-
mer, originating from DT6FBT with the shortest and linear alkyl chain, exhibits the best electrochromic
performance with a 25% optical contrast ratio and a 0.3 s response time. The flexible electrochromic de-
vice of PDT6FBT achieved reversible colors of navy and cyan between the neutral and oxidized states,
consistent with the non-device phenomenon. These results demonstrate that subtle modification of
the side chain is able to change the electrochromic properties of conjugated polymers.

Keywords: electrochromism; flexible electrochromic device; asymmetric molecule; 5-fluorobenzo[c]
thiadiazole

1. Introduction

Electrochromic conjugated polymers (ECPs) can easily display reversible optical ab-
sorption change accompanied with color change during the doping–dedoping process. For
example, the ECPs can change colors by applying an electric field, accepting (reduction and
dedoping process) or ejecting electrons (oxidation and doping process); thus, different ab-
sorption spectra switch between redox states [1–3]. ECPs have recently gained a significant
amount of attention due to their good processability, outstanding mechanical flexibility,
color adjustablity through structural modifications, fast response time, high optical contrast,
etc. [4–6].

Among various existing ECPs, conjugated polymers containing donor–acceptor–donor
(D-A-D) structures have achieved considerable success owing to their tunable bandgap and
solid packing, rich color, and the possibility of obtaining high-performance electrochromic
materials by deliberately changing their chemical structure [7–10]. The monomer with a
D–A–D architecture is constructed with two main segments: a central electron-accepting
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core (A) and two electron-donating groups (D). Through changing D and A units, the
D–A–D strategy not only improves the diversity of target molecules, but also avoids the
poor solubility attributed to a strong aggregation of planar organic molecules [11–15].
For example, benzazole-EDOT bearing D–A–D-type ECPs can achieve a reversible color
change between green and a highly transmissive state, accompanied with a 72% opti-
cal contrast during the redox process at a wavelength of 1500 nm [16]. The D–A–D-
type ECP based on strong-electron-accepting-ability thiadiazolo [3,4-c]pyridine and 3,4-
ethylenedioxythiophene (EDOT) exhibits a lower bandgap, higher coloration efficiency,
and faster response time relative to its analogue based on benzo[c][1,2,5]thiadiazole [17].
EDOT-quinoxaline-EDOT electrochromic polymer possesses good electrochemical stability,
with less than 8% charge loss after 5000 cycles [18]. D–A–D-type ECP containing isoindigo
acceptor and EDOT donor exhibits a low bandgap and good electrochromic properties in
the near-infrared region, including an optical contrast of 59%, response time of 0.5, and
coloration efficiency of 362 cm2 C−1, which demonstrate that the D–A–D-type polymer
would be a potential candidate as a near-infrared electrochromic material [19]. PolyCNDI,
containing a naphthalene diimide acceptor, is a multielectrochromic polymer which pos-
sesses five colors under different redox states [20]. A 5,5′-Bibenzo[c][1,2,5]thiadiazole-based
D–A–D-type ECP in the neutral state exhibited a red color and 40% optical contrast between
the neutral state and oxidation state [21]. These results demonstrate that the simple synthe-
sis route and good electrochromic properties make D–A–D-type ECPs the ideal choice for
constructing electrochromic devices.

To further enhance the electrochromic properties of ECPs, an emerging type of ECPs
with asymmetric D–A–D molecular topology has attracted significant attention of re-
searchers [22,23]. Compared to their symmetric counterparts, asymmetric D–A–D exhibits
a stronger intermolecular-binding interaction probably due to the increased dipole moment;
hence, it induces the optical contrast and coloration efficiency enhancement of ECPs [24,25].
Asymmetric D–A–D-type ECPs consist of three categories: an asymmetric acceptor with
symmetrical donors, an asymmetric acceptor with asymmetric donors, or a symmetrical
acceptor with asymmetric donors [26–28]. Reynolds et al. reported a dual n-and p-type
electrochromic device based on poly-(bisEDOT-PyrPyr-Hx2) that was extremely stable [29].
Zhang and colleagues synthesized two donor–acceptor–donor′ (D–A–D′) asymmetric
ECPs, PSWE and PSWT, that outperformed symmetrical D–A–D PSWS in terms of optical
contrast, response time, and coloration efficiency [30]. Toppare et al. presented asymmet-
ric thiophene−benzothiadiazole−3, 4-ethylenedioxythiophene type ECP with a 1.18 eV
bandgap, exhibiting p- and n-type doping superior to that with symmetrical analogues [31].
Therefore, the superior electrochromic properties of asymmetric D–A–D ECPs indicate
great potential in electrochromic device applications.

In this contribution, we present three new asymmetric monomers, 7-(4-(2-hexyldodecyl)
thiophen-2-yl)-5-fluoro-4-(4-(2-octyldodecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole
(T610FBTT810), 7-(4-hexylthiophen-2-yl)-5-fluoro-4-(4-hexylthiophen-2-yl)benzo[c][1,2,5]
thiadiazole (DT6FBT), and 4-(4-(2-butyldecyl)thiophen-2-yl)-5-fluoro-7-(4-(2-butyldecyl)
thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DT48FBT) in Scheme 1. All monomers employed
an asymmetric unit of 5-fluoro-2,1,3-benzothiadiazole as the acceptor and thiophene deriva-
tives bearing different alkyl chains as the donor, which provides an effective design strategy
for asymmetric ECPs. Since fluorine possesses a strong electron-accepting ability, the
introduction of a fluorine substituent has important influences on the properties of polymer
film, such as intermolecular electrostatic interactions, polymeric film morphology, π–π
stacking distance, charge transport ability, etc. [32,33]. Önal et al. reported 5-fluoro-2,1,3-
benzothiadiazole-based ECPs [34–36], and analyzed the influence of a fluorine atom on
the optical and electrical properties of a conjugated polymer. As we all know, alkyl side
chains influence the redox behavior and electrochromic properties of the electrodeposited
polymers [24,37]. It is essential to research the impact on electrochromic properties of
polymers with subtle changes in the alkyl substituents of thiophene analogue donors. The
designed asymmetric polymers, namely PT610FBTT810, PDT6FBT, and PDT48FBT, were
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prepared through the electropolymerization of asymmetric monomers (Scheme 1). The
effects of the side-chain structure and asymmetric repeating unit on the optical absorption,
electrochemistry, morphology, and electrochromic properties were highlighted in detail.

Molecules 2022, 26, x FOR PEER REVIEW 3 of 12 
 

 

influence of a fluorine atom on the optical and electrical properties of a conjugated poly-

mer. As we all know, alkyl side chains influence the redox behavior and electrochromic 

properties of the electrodeposited polymers [24,37]. It is essential to research the impact 

on electrochromic properties of polymers with subtle changes in the alkyl substituents of 

thiophene analogue donors. The designed asymmetric polymers, namely PT610FBTT810, 

PDT6FBT, and PDT48FBT, were prepared through the electropolymerization of asymmet-

ric monomers (Scheme 1). The effects of the side-chain structure and asymmetric repeat-

ing unit on the optical absorption, electrochemistry, morphology, and electrochromic 

properties were highlighted in detail. 

 

Scheme 1. Synthetic routes of monomers (T610FBTT810, DT6FBT, and DT48FBT) and correspond-

ing polymers (PT610FBTT810, PDT6FBT, and PDT48FBT). 

2. Results and Discussion 

2.1. Synthesis of T610FBTT810, DT6FBT, and DT48FBT 

To comprehend the effect of an alkyl chain on D-A-D-type monomers, three D-A-D-

type monomers were synthesized via a Stille cross-coupling reaction of 4,7-dibromo-5-

fluorobenzo[c][1, 2, 5]thiadiazole and 2-(tributylstannyl)-4-alkylthiophenes. Importantly, 

T610FBTT810 showed different alkyl chains on the left and right thiophenes. All mono-

mers were prepared at good yields of around 70% and displayed a bright orange color. 

The structure characterization of the monomers has been added in Figures S1–S9 from 

Supplementary Materials. 

2.2. Theoretical Calculations 

The ground-state-optimized molecular geometries and frontier molecular orbital dis-

tributions of T610FBTT810, DT6FBT, and DT48FBT were carried out using density func-

tional theory (DFT) using Gaussian 09 at the B3LYP/6-31G(d) level, as shown in Figure 1. 

T610FBTT810, DT6FBT, and DT48FBT had slight twisted structures with dihedral angles 

of 10°, 0° and 8° when the sulfur atoms of the benzothiadiazole unit and thiophene unit 

are at the cis position. Meanwhile, all monomers were found to be planar at the trans-cis 

position. In this respect, although alkyl chains showed steric hindrance, N···S and F···S 

noncovalent interactions, namely, ‘‘conformational locks,’’ can fabricate a planar back-

bone [38]. Therefore, all monomers would be high-mobility semiconductors, promoting 

crystallization and facilitating charge transfer [39]. For all monomers, the electron density 

distribution of the lowest unoccupied molecular orbitals (LUMOs) and the highest occu-

pied molecular orbitals (HOMOs) localized in the entire conjugated skeleton, which is 

favorable to the polymerization of D-A-D-type monomers at a low applied potential. The 

Scheme 1. Synthetic routes of monomers (T610FBTT810, DT6FBT, and DT48FBT) and corresponding
polymers (PT610FBTT810, PDT6FBT, and PDT48FBT).

2. Results and Discussion
2.1. Synthesis of T610FBTT810, DT6FBT, and DT48FBT

To comprehend the effect of an alkyl chain on D-A-D-type monomers, three D-A-D-
type monomers were synthesized via a Stille cross-coupling reaction of 4,7-dibromo-5-
fluorobenzo[c][1,2,5]thiadiazole and 2-(tributylstannyl)-4-alkylthiophenes. Importantly,
T610FBTT810 showed different alkyl chains on the left and right thiophenes. All monomers
were prepared at good yields of around 70% and displayed a bright orange color. The
structure characterization of the monomers has been added in Figures S1–S9 from Supple-
mentary Materials.

2.2. Theoretical Calculations

The ground-state-optimized molecular geometries and frontier molecular orbital
distributions of T610FBTT810, DT6FBT, and DT48FBT were carried out using density func-
tional theory (DFT) using Gaussian 09 at the B3LYP/6-31G(d) level, as shown in Figure 1.
T610FBTT810, DT6FBT, and DT48FBT had slight twisted structures with dihedral angles of
10◦, 0◦ and 8◦ when the sulfur atoms of the benzothiadiazole unit and thiophene unit are at
the cis position. Meanwhile, all monomers were found to be planar at the trans-cis position.
In this respect, although alkyl chains showed steric hindrance, N···S and F···S noncovalent
interactions, namely, “conformational locks”, can fabricate a planar backbone [38]. There-
fore, all monomers would be high-mobility semiconductors, promoting crystallization and
facilitating charge transfer [39]. For all monomers, the electron density distribution of
the lowest unoccupied molecular orbitals (LUMOs) and the highest occupied molecular
orbitals (HOMOs) localized in the entire conjugated skeleton, which is favorable to the
polymerization of D-A-D-type monomers at a low applied potential. The values of the
dipole moment and HOMO and LUMO gaps exhibited no significant changes with different
alkyl chains, which are shown in Figure 1.
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Figure 1. Optimized molecular geometries, LUMO, and HOMO of T610FBTT810, DT6FBT, and
DT48FBT.

2.3. Electrochemistry

The anodic scan for T610FBTT810, DT6FBT, and DT48FBT was carried out in CH2Cl2-
Bu4NPF6 (0.1 mol L−1) containing 10 mmol L−1 monomer to explore the effect of molecular
structure on oxidation behavior (Figure 2). The onset oxidation potentials (Eonset) were
decreased along with the increase in the alkyl chain. The Eonset is summarized as: 1.28 V for
DT6FBT, 1.19 V for DT48FBT, and 1.14 V for T610FBTT810 vs. Ag/AgCl. The higher oxida-
tion potential of DT6FBT relative to DT48FBT and T610FBTT810 is attributed to the weaker
electron-donating ability of the hexyl chain than the 2-hexyldecyl and 2-octyldecyl chains.
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Firstly, the polymerization of T610FBTT810, DT6FBT, and DT48FBT was carried out
using cyclic voltammetry (CV) that is a popular method to investigate the redox prop-
erty of as-prepared polymer films. As shown in Figure 3, the current density increased
along with the growth of the cycle number corresponding to cyclic voltammograms (CVs),
indicating polymers with good electrochemical activity were deposited on the working
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electrode [40]. Meanwhile, the polymer film coating on the working electrode could be
observed. Additionally, the three polymers exhibited obvious redox couples: the reduction
potential shifted to a higher potential along with the increase in alkyl chain lengths (0.8 V
for DT6FBT, 1.0 V for DT48FBT, and 1.1 V for T610FBTT810 vs. Ag/AgCl). Additionally, the
obvious redox potential shift of the polymer could be observed during the polymerization
process of the monomer. The phenomenon results from the fact that the polymers possess
increasing electrical resistance along with the growth rate of polymers, which has to be
balanced by the additional applied potential [41,42].
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Additionally, the electrochemical behaviors of PT610FBTT810, PDT6FBT, and PDT48FBT
were investigated using CV in monomer-free CH2Cl2-Bu4NPF6 (0.1 mol L−1). The poly-
mers were prepared using the potentiostatic method at a constant potential of 1.50 V for
DT6FBT, 40 V for DT48FBT, and 1.35 V for T610FBTT810 with a charge of about 5 mC.
As shown in Figure 4, the CVs of polymers at different scan rates were recorded in the
potential windows of 0.4~1.4 V (PDT48FBT and PDT6FBT) and 0.7~1.4 V (PT610FBTT810).
The three polymers showed a distinct potential drift, with the corresponding reduction
peaks shifting in a negative direction as the scan rate decreased, demonstrating that this
was a diffusion-controlled process, which has been observed in previously reported ECPs
and can be explained by the following reasons: the slow transformation of conjugated
blocks between the aromatic structure and the quinoid structure, the local rearrangement
of polymer chains, slow heterogeneous charge transport, etc.
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Figure 4. CVs of PT610FBTT810 (A), PDT6FBT (B), and PDT48FBT (C) modified working electrodes
in monomer-free CH2Cl2-Bu4NPF6 (0.10 mol L−1) at potential scan rates of 300, 250, 200, 150, 100,
and 50 mV s−1.

2.4. Optical Property

UV-vis spectra of monomers (dissolved in 0.1 M CHCl3) are illustrated in Figure 5A.
All monomers exhibited comparable characteristic absorbance peaks of 252 nm, 308 nm,
and 450 nm, which were attributed to the thiophene derivative donor unit, 5-fluoro-2,1,3-
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benzothiadiazole acceptor unit, and intramolecular charge transfer (ICT) between D and
A units. The almost overlapping absorption peaks indicated that the solubility of the
monomers was desirable with no aggregation. Additionally, the fluorescence emission
spectra of T610FBTT810, DT6FBT, and DT48FBT in 0.1 M CHCl3 with the same excitation
wavelength of 450 nm are shown in Figure 5B. In accordance with the UV-vis spectra,
T610FBTT810, DT6FBT, and DT48FBT displayed comparable emission peaks at 555 nm.
These results demonstrate that the slight length variation of alkyl chain structures have
little influence on the optical properties of a monomer.
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DT48FBT.

2.5. Spectroelectrochemistry

As the potential increased, the conjugated block of electrochromic polymer turned
from an aromatic structure into a quinoid structure, accompanied by the optical absorption
change [1,2]. Therefore, the spectroelectrochemical performance of the three polymers was
measured by recording its optical absorption change under different applied potentials.
The spectroelectrochemistry of PDT6FBT is given as an illustrative example in Figure 6.
The neutral PDT6FBT possesses two distinct absorbance peaks located at 330 and 558 nm.
The optical bandgap (Eg

opt) of PDT6FBT was calculated to be 1.63 eV according to the
formula: Eg

opt = 1240/λ, where λ is the edge absorption spectra of PDT6FBT (762 nm). As
the applied potential increased, both absorption bands of PDT6FBT underwent blue shift
along with the increase of 330 nm in the absorbance peak and a decrease of 558 nm in the
absorbance peak. Meanwhile, a new absorption band located at 760 nm began to increase
gradually, which resulted from the formation of the polaron and bipolaron [5,6]. During
the oxidation process, PDT6FBT displayed a distinct color change from navy (neutral state;
L: 34.64, a: 4.35, b: −10.49) to cyan (oxidation state; L: 7.45, a: 0.42, b: −0.60). The recorded
absorption spectra of PDT6FBT passed through an isosbestic point at 640 nm, demonstrating
easy mutual transformation between its neutral and oxidized states [1,2]. PT610FBTT810
and PDT48FBT in this system, because of the long alkyl chain, were soluble as soon as
they were polymerized on the ITO, which made it difficult to obtain the suitable films.
Therefore, the absorption spectra variations were unobserved under different potentials
(Figures S10 and S11 from Supplementary Materials).
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2.6. Electrochromic Performance

The kinetic study of PDT6FBT was characterized by a time–transmittance curve in
monomer-free CH3CN-Bu4NPF6 (0.10 mol L−1) solution, as shown in Figure 7. According
to the results, the electrochromic parameters, including optical contrast ratio (∆T), response
time, and coloration efficiency (CE), were obtained and are summarized in Table 1.
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Table 1. Electrochromic parameters of PDT48FBT.

Sample Wavelength
(nm) ∆T

Response Time (s) CE
(cm2 C−1)Oxidation Reduction

PDT6FBT
380 23% 1.5 0.3 97
550 25% 1.7 0.3 86
750 24% 0.7 0.7 96

The time–transmittance curves and electrochromic parameters of PDT6FBT are given
as an illustrative example in Figure 7 and Table 1. PDT6FBT displayed a moderate opti-
cal contrast ratio at different wavelengths, fast response time of oxidation and reduction
processes, and decent CE values. The ∆T hardly changed at 380 nm, 550 nm, and 750 nm,
ranging from 23% to 25% (10 s intervals for 200 switches). In addition, in order to char-
acterize the effect of different switching time on its electrochromic performance, we also
studied the time–transmittance curves of PDT6FBT with switching times of 2 s, 5 s, and
10 s, respectively (Figure S12 from Supplementary Materials ). With the decrease in the
switching time, the optical contrast of the PDT6FBT also showed a different tendency to
decrease. The short wavelength of PDT6FBT (380 nm) exhibited an obvious reduction from
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23% to 15% with switching time from 10 s to 2 s. 550 nm of PDT6FBT exhibited a slight
reduction from 25% to 21%. Long wavelength maintained the optical contrast ratio with
different switching times. The kinetic stability of PDT6FBT is shown in Figure S13 from
Supplementary Materials. After switching for 2000 s, the remaining optical contrast was
10%, 10%, and 16% at 380 nm, 550 nm, and 750 nm, respectively. Electrochromic optical
contrast is a significant parameter of proving cycling stability; the transmittance of the
device showed a clear decrease during cycling, possibly due to the ion-trapping behavior
at a high current, which led to a poor cycling stability of the electrochromic layer [43].

Response time, a critical parameter of an electrochromic material, is the time required
for a 95% change in transmittance between the oxidized and reduced states, which is closely
related to the following factors: the thickness and micromorphology of the polymer film,
the transport ability of doping ions into and out of the polymer film during the redox
process, the ionic conductivity of the electrolyte, etc. [1,2,5,6]. As shown in Table 1, the
PDT6FBT film showed a fast response time (0.3–1.7 s) in both the reduction and oxidation
processes at all three wavelengths. In particular, the response time during the reduction
process was obviously faster than that during the oxidation process.

CE is an effective index for assessing the energy efficiency of electrochromic polymers.
PDT6FBT exhibited comparative values at all three wavelengths with a range value of
86–97 cm2 C−1. The above electrochromic performance demonstrated that PDT6FBT was
on a par with its analogues PT2BT-1F (thiophene as terminal groups), PF2BT-F (furan as
terminal groups), PS2BT-F (selenophene as terminal groups), and PE2BTD-F (EDOT as
terminal groups) [34–36].

2.7. Flexible Electrochromic Device

A flexible electrochromic device (ECD) was fabricated with the configuration of indium
tin oxide–polyethylene terephthalate (ITO-PET)/PDT6FBT/gel electrolyte/ITO-PET. As
shown in Figure 8A, the flexible ECD of PDT6FBT achieved reversible colors of navy and
cyan between the neutral (0 V) and oxidized (2 V) states, consistent with the non-device
phenomenon. The ∆T of ECD was 9% at both wavelengths, lower than that of the non-
device value (Figure 8B). Electrochromic devices have a voltage drop problem due to poor
packaging, uneven distribution of gel electrolytes, and uneven film thickness, resulting
in different resistance in different directions. When an oxidation voltage is applied to
the electrochromic device, the current is concentrated in the direction of least resistance,
leading to a significant increase in the doping level and the highest transmittance. As the
doping level increases, the resistance in the original direction of least resistance rises and
the current is divided to other places; it is difficult to maintain the original doping level
in the place with the highest transmittance at small currents; and the transmittance will
decrease and show a downward trend.
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2.8. Morphology

As shown in Figure 9, the micromorphology of PT610FBTT810, PDT6FBT, and PDT48FBT
was characterized using a scanning electron microscope (SEM). At low magnification
(<5000×), the three polymer films exhibited smooth surficial morphology. When the
magnification reached 60,000×, more rough particles appeared on the PDT6FBT film
surface than those on the PT610FBTT810 and PDT48FBT film surfaces. This may be
due to PDT6FBT’s comparatively short alkyl chain, which facilitates aggregation and
compact stacking.
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3. Conclusions

In summary, three 5-fluorobenzo[c][1,2,5]-thiadiazole-based electrochromic conjugated
polymers (named PT610FBTT810, PDT6FBT, and PDT48FBT) with different lengths of lin-
ear/branched alkyl chain were designed and electrosynthesized. The study demonstrated
that the structure modification of alkyl chains has an obvious impact on electrochemical
properties, spectroelectrochemistry, and electrochromic properties. PDT6FBT with two
hexyl chain lengths showed a better electrochromic performance than PT610FBTT810
and PDT48FBT, likely due to their stronger aggregation and compact stacking. PDT6FBT
displayed a distinct color change from navy to cyan upon oxidation with a 25% optical
contrast ratio. Meanwhile, PDT6FBT exhibited a relatively fast response time of 0.3 s. These
results indicate that 5-fluorobenzo[c][1,2,5]-thiadiazole is an appropriate unit to construct
asymmetric electrochromic D-A-D-type polymers. Side-chain engineering is promising in
screening high-performance electrochromic conjugated polymers, which could improve
the solubility, optimize morphology, etc. The precise regulation of alkyl chains is crucial in
achieving highly efficient electrochromic conducting polymers, which provides insight for
designing electrochromic conducting polymers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238424/s1, Figure S1: 1H NMR spectrum of T610FBTT810;
Figure S2: 13C NMR spectrum of T610FBTT810; Figure S3: 1H NMR spectrum of DT6FBT;
Figure S4: 13C NMR spectrum of DT6FBT; Figure S5: 1H NMR spectrum of DT48FBT; Figure S6:
13C NMR spectrum of DT48FBT; Figure S7: HRMS spectrum of T610FBTT810; Figure S8: HRMS
spectrum of DT6FBT; Figure S9: HRMS spectrum of DT48FBT; Figure S10: Spectroelectrochemistry of
PT610FBTT810 on the ITO coated glasses in CH3CN-Bu4NPF6 (A), chromaticity diagram (CIE 1931)
of PT610FBTT810 in oxidized state (B) and in neutral state (C); Figure S11: Spectroelectrochemistry
of PDT48FBT on the ITO coated glasses in CH3CN-Bu4NPF6 (A), chromaticity diagram (CIE 1931)
of PDT48FBT in oxidized state (B) and in neutral state (C); Figure S12: Time-transmittance curves
of PDT6FBT at 380 nm with switching time of 2 s, 5 s, and 10 s (A); at 550 nm with switching time
of 2 s, 5 s, and 10 s (B); at 750 nm with switching time of 2 s, 5 s, and 10 s (C) in monomer-free
CH3CN-Bu4NPF6 (0.1 mol L−1); Figure S13: Kinetic stability of PDT6FBT at 380, 550, and 750 nm.
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