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Abstract: Solution processes have promising advantages of low manufacturing cost and large-scale
production, potentially applied for the fabrication of organic and quantum dot light-emitting diodes
(OLEDs and QLEDs). To meet the expected lifespan of OLEDs/QLEDs in practical display and
lighting applications, tandem architecture by connecting multiple light-emitting units (LEUs) through
a feasible intermediate connection layer (ICL) is preferred. However, the combination of tandem
architecture with solution processes is still limited by the choices of obtainable ICLs due to the
unsettled challenges, such as orthogonal solubility, surface wettability, interfacial corrosion, and
charge injection. This review focuses on the recent progresses of solution-processed tandem OLEDs
and tandem QLEDs, covers the design and fabrication of various ICLs by solution process, and
provides suggestions on the future challenges of corresponding materials and devices, which are
anticipated to stimulate the exploitation of the emerging light technologies.

Keywords: tandem OLED; tandem QLED; charge generation layer; solution process; orthogonal
solubility; PEDOT:PSS; ZnO; stability

1. Introduction

Due to the advantages of self-emission, high efficiency, and flexibility, organic light-
emitting diodes (OLEDs) have experienced substantial development, enabling them to be a
leading technology in commercial display and lighting applications [1–5]. Nevertheless,
the industrial process for the large-scale production of OLEDs from vacuum deposition
was retarded by their huge and expensive manufacturing equipment. Conversely, solution-
processing methods, such as spin coating, slot die coating, blade coating, and inkjet printing,
show appealing advantages in low manufacturing cost and extensive production, allow-
ing for potential applications in industrial production [6–11]. Significant breakthroughs
have been made in solution-processed materials and devices since the first polymer-based
OLEDs were reported by Friend et al. [12]. Due to the efficiency limitation of polymer-based
emitting materials, small-molecule organics featuring phosphorescence and thermally acti-
vated delayed fluorescence have been employed for state-of-the-art all solution-processed
OLEDs [13–20], making their electroluminescence (EL) performance close to that of the
evaporation method.

Despite their striking properties, solution-processed OLEDs are susceptible to external
circumstances that compromise reliability. Fortunately, quantum-dot light-emitting diodes
(QLEDs) have emerged as an alternative lighting technology [21–24]. Owing to quantum
confinement effects, colloidal inorganic quantum dots (QDs) exhibit promising advantages,
such as outstanding photostability, unique size-dependent color tunability, and high color
purity [25–27]. The similar characteristics of solution processes to OLEDs endow QLEDs
with the promising advantages of low-cost fabrication and the potential for large-area
production, making them desirable candidates for display and lighting applications.
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To preserve a high luminance, the multilayer emitting devices (OLEDs and QLEDs)
must run at a high current density, which accelerates the degradation process of the devices.
A favorable notion to lower the drive current while preserving the EL brightness is to use a
tandem configuration (Figure 1), in which two (or more) light-emitting units (LEUs) are
serially stacked by intermediate connection layers (ICLs, also named “charge-generation
layers”, CGLs) [28–31]. Liao and Tang filed a US patent on tandem OLEDs using an ICL
with an n-doped electron-transporting layer (ETL)/p-doped hole-transporting layer (HTL)
structure in 2002 [28]. Bipolar charge carriers are generated by the ICL and injected into the
adjacent LEUs, which gives rise to multiple photon emission from one injected hole-electron
pair in tandem devices. As a result, a high brightness could be realized at a fairly low drive
current, thus offering a delicate solution to extend the operational lifetime of diodes. In
addition, tandem devices are potentially advantageous in constructing white light emission
OLEDs [32,33]. As such, each color of emitting materials is separately confined within
the individual emitting unit, thereby effectively reducing the nonradiative energy transfer
among different color-mixed emitters.
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However, due to the intermixing of layers, the fabrication of high-efficiency solution-
processed tandem OLEDs/QLEDs remains challenging. Compared with the thermal
evaporation process, the stepwise solution-based deposition of each layer has the possi-
bility to dissolve the underneath films [34,35]. Especially in tandem OLEDs, the number
of functional layers is more than that of conventional single devices, which makes the
requirements for the preparation of tandem devices by solution processing much higher.
Although mature and diverse ICLs have been intensively investigated in evaporated de-
vices, there are few reports of tandem OLEDs/QLEDs using solution process techniques.
Herein, we introduce the progress of solution-processed tandem OLEDs/QLEDs, with the
aim of providing an overview of the design and fabrication of efficient ICLs suitable for
solution processing.

2. ICLs for Tandem Devices
2.1. Type of ICLs

The EL efficiencies of tandem devices are substantially governed by the performance
of the ICLs or CGLs, which are responsible for providing the generated charges into the
adjacent LEUs. The design criteria for ICLs should meet (i) an efficient charge gener-
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ation, (ii) high transparency, and (iii) low voltage loss [36]. The interconnecting layers
of tandem devices prepared by evaporation processes can be classified into the follow-
ing categories: (1) p-doped/n-doped organic semiconductors (e.g., FeCl3:NPB/Li:Alq,
F4-TCNQ:m-MTDATA/Mg:Alq, etc.) [30,37]; (2) electron acceptor/n-doped ETL (e.g., HAT-
CN/Li:Bphen, HAT-CN/Alq:Li, MoO3/TPBi:Li, MoO3/Mg:Bphen, WO3/Cs2CO3:Bphen,
etc.) [38–43]; (3) organic heterojunctions (e.g., CuPc/C60, Pentence/C70, etc.) [44,45]; and
(4) ultrathin conductive layer (e.g., ITO, Au, Al/Ag, etc.) [29,46]. Among them, materials
such as Li and Mg used in the evaporation process are generally not applicable in the
solution process, which limits the choice of materials for solution processing of ICLs. There-
fore, it is urgent to find materials and processes suitable for all-solution tandem OLEDs
and QLEDs.

The p-type (or electron acceptor) and n-type layers used in the evaporated ICLs usually
function as a hole injection layer (HIL) and an electron injection layer (EIL) in conventional
single devices, respectively. Thus, in this review, we specifically use the simplified com-
position of “HIL/EIL” to refer to the ICL. For solution-processed optoelectronic devices,
the aqueous conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)
(PEDOT:PSS) [47–49], as well as transition metal oxides (TMOs, such as MoO3 or WO3)
based on sol–gel methods [50,51], are the most-used HIL materials, due to their high work
function and sufficient conductivity, whereas ZnO nanoparticles with a conductive band
of ~ 4.0 eV are one of the few solution processable n-type materials that can be used as
EILs [52,53]. In this regard, the combination of PEDOT:PSS (or TMO) and ZnO has emerged
as the most commonly used ICL. This kind of p–n junction, with a large difference in work
function, proves to be an ideal ICL for the fabrication of high-performance tandem devices.
Nonetheless, due to its acidic nature, PEDOT:PSS is prone to reacting with ZnO, resulting
in poor morphology and degradation of the contact interface. Therefore, many efforts have
been devoted to improving the properties of ICLs based on PEDOT:PSS/ZnO, which will
be discussed in detail in the following section.

2.2. Charge Generation Mechanism

The working mechanisms of various ICLs with respect to charge generation have been
studied [53–59]. For the interconnecting layer of p-doped/n-doped organic semiconductors
(Figure 2a), Liao et al. reported that charges were generated at the interface regions via
temperature-independent electric field-induced electron tunneling through a thin depletion
layer [36]. The p-doped and n-doped layers also facilitate efficient injection of the generated
holes and electrons into the adjacent light emitting units, respectively. On the other hand,
for ICLs composed of HIL/n-doped organic semiconductors, in which the HIL mainly
includes TMO (such as MoO3 and WO3) and HAT-CN, charge generation is proposed to
occur at the HTL/HIL interface [42], inside the HIL [32], or at both locations [60]. As shown
in Figure 2b, MoO3/Mg:Bphen is used as an interconnecting layer [42]. Due to the high
work function of MoO3, the HOMO electrons of NPB can be transferred to the conduction
band of MoO3. The electrons in the conduction band of MoO3 can be smoothly transferred
to Mg:Bphen with a reduced energy barrier caused by the energy level shift in the external
electric field.

Regarding the solution-processed interconnectors, Lei et al. carefully probed the
charge generation mechanism of the PEDOT:PSS/ZnO ICL by means of current density–
voltage and capacitance–voltage measurements [61]. The results suggested that charges
were generated at the PEDOT:PSS/ZnO heterojunction (Figure 3). The ICL-generated
current can be expressed by the Richardson−Schottky thermal emission model:

J = A∗T2 exp

[
−q
(

ϕB −
√

qV/4πεid
)

KT

]
(1)

where A* is the effective Richardson constant, q is the elementary charge, ϕB is the interfacial
barrier, d is the thickness, V is the applied voltage, εi is the relative permittivity of the
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dielectric layer, T is the temperature, and K is the Boltzmann constant. The yielding ϕB value
calculated to be 0.73 eV was consistent with the energetic difference of ca. 0.8 eV between
PEDOT:PSS and ZnO. Further understanding of the operating mechanisms behind the
PEDOT:PSS/ZnO ICL is anticipated with the development of novel solution-processable
ICLs with improved properties.
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2.3. Remaining Issues

The design and fabrication of efficient ICLs are highly desirable for high-performance
solution-processed tandem OLEDs/QLEDs. In particular, orthogonal solubility, surface
wettability, chemical corrosion, annealing temperature, and deposition sequence are crucial
factors that determine the properties of a solution-processed ICL. In addition, interfacial
modification needs to be taken into account to improve the charge injection process from
the ICLs to the corresponding LEUs. Depending on the charge injection direction, tandem
emitting devices are typically categorized into regular and inverted structures (Figure 4).
In the regular structure, the bottom transparent electrode works as an anode with holes
injected out, whereas, in the inverted configuration, the bottom electrode functions as a
cathode with electrons injected out.

For tandem devices with regular structures, the ICL is formed by coating PEDOT:PSS
onto the surface of the ZnO layer. However, the corrosive reaction of ZnO by the acidic
aqueous PEDOT:PSS would cause deterioration of the ICL interface. The resultant poor
wettability would not allow for the PEDOT:PSS to be uniformly spin-coated onto the ZnO.
However, in the inverted structure, the ICL of PEDOT:PSS/ZnO is built by coating ZnO
onto the solid PEDOT:PSS film, which mitigates the corrosion of ZnO by the aqueous
PEDOT:PSS solution. Nevertheless, the large difference in the surface energies makes it
challenging to uniformly deposit aqueous PEDOT:PSS onto a hydrophobic organic layer.
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Therefore, choosing an appropriate ICL and avoiding rinsing with the processing solvent
are important in solution-processed tandem OLEDs and QLEDs.
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The fabrication of well-stacked emitting multilayers also remains difficult due to the
similar solubilities of emitting materials in solvents. In particular, factors such as contact
angle, surface tension, vapor pressure, and solubility of the solvent need to be taken into
account. Moreover, if orthogonal solvents were not selected properly for the adjacent
functional layers, the underneath layers would be damaged due to solving the intermixed
layers. Additionally, a low annealing temperature is required for the interconnecting layer
to suppress thermal influence on the bottom LEUs.

In practice, systematic solvent engineering and finely tuned operating parameters,
such as spin coating and annealing processes, are often adopted to improve film quality.
For example, methanol, ethanol, propanol, and butanol have similar solubilities and can
be used as dispersing solvents for ZnO NPs. The key factors affecting the quality of ZnO
films include the viscosity and volatility of the solvent. During the spin coating process,
the use of the relatively high viscosity of butanol will decrease the film uniformity, leading
to deteriorated device performance. On the other hand, the relatively volatile methanol
can lead to rapid evaporation of the solvent before the solute is uniformly dispersed
and causes cracks in the film. Ethanol with moderate viscosity and volatility enables the
best performance on film morphology and is therefore chosen as a suitable solvent for
ZnO nanoparticles [63].

The example of choosing the solvent for ZnO clearly demonstrates the complexity and
difficulty in building an efficient ICL for solution-processed tandem emitting devices. In
the following sections, we will present the progress of solution-processed tandem OLEDs
and QLEDs. For different configurations, regular and inverted, various ICLs are focused
on. Meanwhile, the terms of orthogonal solubility, surface wettability, interfacial corrosion,
and electrical transportation are discussed.

3. Solution-Processed Tandem OLEDs
3.1. ICLs for Regular Structures

As mentioned, the PEDOT:PSS/ZnO ICL is not accessible in regular device architec-
tures (top cathode, bottom anode), where the acidic PEDOT:PSS would inevitably dissolve
the underlying ZnO layer. Therefore, alternative materials to PEDOT:PSS are required to
construct ICLs for regular tandem devices. In 2012, Chiba et al. reported a hybrid process
of spin coating and thermal evaporation for the fabrication of ICLs with the structure
of PVPy:ZnO:Cs2CO3/MoO3 [64], in which poly(4-vinyl pyridine) (PVPy) was utilized
as a binder to improve the film morphology of the ZnO:Cs2CO3 mixture and facilitate
the formation of a uniform and dense film to prevent the solvent from soaking into the
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first (bottom) LEU. The addition of a polymer binder can dramatically improve the film
morphology without compromising the device performance. The device exhibited a sum
current efficiency of 10 cd/A, with 4 cd/A contributed by the first unit and 6 cd/A by the
second unit. Although the ICL exhibited good properties in stacked devices, it was limited
by the vacuum deposition of MoO3 as the HIL.

To conquer the poor solubility problems, Höfle et al. proposed the preparation of
solution-processed TMOs (WO3, MoO3, or VOx) for interconnecting layers by the precursor
method [65]. The structure of tandem devices is depicted in Figure 5a. The TMOs, including
WO3, MoO3, or VOx, were derived from W(OEt)6, Mo(Oeet)5, and vanadium triisopropox-
ide precursors, respectively. Furthermore, a polyethylenimine (PEI) layer was incorporated
with ZnO layers to accurately resemble the sub-OLEDs for efficient electron injection into
the reference bottom LEU. The drive voltage and current efficiency of the tandem device
agreed well with the sum of those for the top and bottom devices, suggesting that the
TMO/ZnO/PEI-based ICL worked properly.
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The application of solution-processed TMOs solves the problem of corrosion brought
by PEDOT:PSS and provides a new path for solution-processed tandem OLEDs. However,
TMOs rely on the choice of precursors and subsequent annealing temperature, which
increases the complexity of the process. A facile method using phosphomolybdic acid
hydrate (MoO3)12·H3PO4·(H2O)x (PMA) as an electron acceptor in the interconnecting
layers was therefore reported [66]. Pu et al. used an interconnecting layer composed
of ZnO/polyethylenimine ethoxylated (PEIE)/PMA/poly(9,9-dioctylfluorene-co-N-(4-
butylphenyl)diphenylamine) (TFB) and realized all solution-processed tandem OLEDs
(Figure 6a). To avoid the dissolution of PEIE by water or alcohols, acetonitrile was chosen
as the solvent for PMA. As shown in Figure 6b, the current density–voltage (J–V) curve
of the tandem device was similar to the sum of the first and second LEUs, which proved
that the additional voltage drop was avoidable by the interconnecting layers. The current
efficiency of tandem OLEDs (Figure 6c) calibrated by the Lambertian pattern was close to
that of the sum of the first and second OLEDs.

To overcome the efficiency limitation of polymer-based emitting materials, Ohisa et al.
reported all solution-processed phosphorescent tandem OLEDs with a thermally activated
delayed fluorescence (TADF) host [67]. The multilayer stack of ZnO/PEIE/PMA/TFB
was used as the ICL in the devices. Compared with single devices, tandem devices
exhibited extremely low efficiency roll-off and enhanced operational stability. Even at a high
luminance of 10,000 cd/m2, the external quantum efficiency (EQE) of the tandem device
remained 21.9%. The findings prove that the application of PMA as an electron receptor
material in ICLs is a feasible and universal strategy for solution-processed tandem OLEDs.
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3.2. ICLs for Inverted Structures

For display applications, inverted devices are desirable due to their ease of integration
with n-type thin-film transistors (TFTs). Due to the mitigated reaction between ZnO and
PEDOT:PSS, the composition of PEDOT:PSS/ZnO is commonly used as the ICL of inverted
tandem OLEDs. In 2014, Höfle et al. first reported fully solution-processed inverted tandem
OLEDs with the ICL architecture of WO3/PEDOT:PSS/ZnO/PEI [68]. The inverted device
architecture prevents the ZnO layer from being dissolved by the acidic PEDOT:PSS solution
upon deposition. It is noted that solution-deposited WO3 and PEI were introduced in
an ICL to achieve well-matched energy alignment for better hole and electron injection,
respectively. To improve the conductivity and wettability, the PEDOT:PSS layer was
modified with sodium PSS and the surfactant Zonyl. Figure 7a shows the structure of a
monochrome yellow and a white tandem device composing this ICL. The white emission
due to the combination of orange-blue mixed EL spectra from the first and second LUEs
demonstrated the feasibility of the WO3/PEDOT:PSS/ZnO/PEI ICL. The current efficiency
(CE) of the yellow devices with two polymer light-emitting units was 18 cd/A, matching
the total CE of the reference single devices, indicating that the proposed ICL structure does
not cause evident efficiency loss.

Due to direct contact, the degradation of ZnO by the adjacent acid PEDOT:PSS re-
mains inevitable. In this regard, Chiba et al. proposed a neutralized PEDOT:PSS (n-
PEDOT:PSS) layer inserted between acidic PEDOT:PSS and ZnO nanoparticles (Figure 8a),
thereby preventing direct contact between the two [69]. The neutralized PEDOT:PSS was
achieved by the facile addition of NaOH. The film quality of the ZnO layer coated onto
n-PEDOT:PSS was superior to that on pristine PEDOT:PSS. In addition, methanol and
2-propanol (IPA) were added into the aqueous PEDOT:PSS dispersion, which allowed for
PEDOT:PSS to be coated uniformly over the EML. The multilayer structure PEDOT:PSS/n-
PEODT:PSS/ZnO/PEIE also showed strong resistance against common organic solvents
such as toluene, p-xylene, and tetrahydrofuran. A twofold increase in luminance and
voltage is observed when the LEUs are stacked (Figure 8c,e). The CE of the tandem-OLED
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was 92.8 cd/A at 1000 cd/m2, equal to the sum of the corresponding efficiencies of the
components first-LEU (26.7 cd/A) and second-LEU (49.4 cd/A).
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4. Solution-Processed Tandem QLEDs 

4.1. ICLs for Regular Structure 

Figure 8. (a) Schematic diagram of tandem OLED based on the PEDOT:PSS/n-
PEODT:PSS/ZnO/PEIE ICL. (b) Normalized EL spectra and (c) CE–J characteristics of green single
and tandem devices. (d) Normalized EL spectra and (e) CE–J characteristics of bule/red single devices
and white tandem device. Reproduced with permission from ref. [69]. Copyright 2015, WILEY.

Triphenylamine derivatives were generally studied as the HTL in OLEDs and per-
ovskite solar cells [70–72]. Recently, Xu et al. synthesized a triphenylamine-based polymer
(PTPA-P) with an ether side chain and applied it at the interface of PEDOT:PSS/ZnO [73].
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The PTPA-P donor not only had a relatively shallow HOMO level (~5.0 eV) but also
showed favorable insolubilities in ethanol and methanol, preventing dissolution by the sub-
sequent processing of ZnO. Furthermore, a cross-linkable EIL of PFN-OX was introduced
to avoid rinsing by the sequent solvent. The whole connecting layer of PEDOT:PSS/PTPA-
P/ZnO/PFN-OX exhibited a high optical transmittance, which ensured the extraction of
the light generated in the tandem PLED. Due to the higher charge generation ability of the
PTPA-P/ZnO ICL, the tandem device exhibited a high current efficiency of 26.9 cd/A and
an external quantum efficiency of 10.4%, which were over two times those in the corre-
sponding single-emitting-layer device. The results verified that the PTPA-P/ZnO ICL could
achieve excellent charge generation, and the generated electrons and holes could be facilely
transported to the corresponding emissive layer. The solution-processed tandem OLEDs
with respect to their ICL structures and current efficiencies are summarized in Table 1.

Table 1. Statistics of solution-processed tandem organic light-emitting diodes (OLEDs); Intermediate
connection layer (ICL); Current efficiency (CE).

Scheme ICL Color CE Ref.

Regular

PVPy:ZnO:Cs2CO3/MoO3 Green 10 cd/A [64]
TMO(WO3)/PEI/ZnO Yellow 25 cd/A [65]

PMA/PEIE/ZnO Red 50 cd/A [67]
PMA/PEIE/ZnO Green 19 cd/A [66]

Inverted
WO3/PEDOT:PSS/ZnO/PEI Yellow 18 cd/A [68]

PEDOT:PSS/n-
PEODT:PSS/ZnO/PEIE Green 94 cd/A [69]

PEDOT:PSS/PTPA-
P/ZnO/PFN-OX Green 27 cd/A [73]

4. Solution-Processed Tandem QLEDs
4.1. ICLs for Regular Structure

Currently, QLEDs show performances competitive with that of OLEDs, while similar
challenges are faced by the fabrication process of high-performance tandem QLEDs as to
the OLEDs. Due to their high color purity, QLEDs feature a wide color gamut, showing a
unique advantage in backlight technology for high-resolution displays. In conventional
single-structure QLEDs, white light emission is usually achieved by mixing red, green,
and blue QDs proportionally in a single emission layer or layers in contact [74,75]. In this
way, however, white light emission can only be achieved at a specific drive voltage. The
different energy levels and energy transfer between red, green, and blue QDs cause a shift
in the exciton recombination region and variable light colors. The tandem structure by
stacking multiple monochrome QD-based LEUs can separate red, green, and blue QDs in
different LEUs and make them work independently. In this scheme of device structure, the
recombination region of excitons is not affected by the driving voltage; thus, stable white
light emission can be obtained.

To achieve white tandem QLEDs with regular configurations, Zhang et al. reported an
ICL composed of PEDOT:PSS/ZnMgO (Figure 9a), in which PEDOT:PSS was mixed with
IPA to enhance its wettability and ZnMgO was used as an alternative to ZnO due to its
improved chemical stability [76]. The CIE coordinates of blue, green and red single QLEDs
were (0.16, 0.03), (0.19, 0.75) and (0.67, 0.33), respectively, showing a wide color gamut of
114% NTSC. After serial stacking, white tandem QLEDs with CIE coordinates of (0.36, 0.45)
at 2 mA/cm2 were fabricated. Although stable white light emission was realized, the peak
CE of 4.74 cd/A and the EQE of 2.0% were far lower than the theoretical sums of the three
LEUs (Figure 9c). It was speculated that ICLs or other functional layers were damaged after
multiple solution processing. Therefore, it is still urgent to adjust the device structure and
optimize the preparation process to minimize damage and improve device performance.
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acceptor to build a simple structure ICL of PMA/ZnO for a tandem white QLED (Figure 

10a) [77]. Although the number of solution-processed functional layers exceeded 12, clear 

interfaces could be distinguished in the tandem white QLEDs (Figure 10b). Compared to 

the red and green counterparts, blue quantum dots had a deeper valence band (VB), caus-

ing a higher hole injection barrier. In this regard, different hole transporting layers, TFB, 
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tandem QLEDs, W1, W2, and W3, respectively. As shown in Figure 10c, the W3 device 

Figure 9. (a) Schematic diagram of tandem white QLEDs based on the PEDOT:PSS/ZnMgO ICL.
(b) CIE coordinates of R/G/B monochrome QLEDs in comparison with the NTSC standard and their
changes in white QLEDs under different driving current densities. (c) Current efficiency–luminance–
external quantum efficiency (CE–J–EQE) characteristics of tandem white QLEDs. Reproduced with
permission from ref. [76]. Copyright 2017, WILEY.

As mentioned above, PMA has better stability than PEDOT:PSS and is more con-
venient to handle in the fabrication process. Jiang et al. employed PMA as the p-type
electron acceptor to build a simple structure ICL of PMA/ZnO for a tandem white QLED
(Figure 10a) [77]. Although the number of solution-processed functional layers exceeded 12,
clear interfaces could be distinguished in the tandem white QLEDs (Figure 10b). Compared
to the red and green counterparts, blue quantum dots had a deeper valence band (VB),
causing a higher hole injection barrier. In this regard, different hole transporting layers,
TFB, poly(vinylcarbazole) (PVK), and TFB/PVK, were used in the blue LEU to fabricate
white tandem QLEDs, W1, W2, and W3, respectively. As shown in Figure 10c, the W3
device with a double-layer HTL structure TFB/PVK achieved a higher maximum EQE
of 27.4% than W1 (21.1%) and W2 (24.4%). Due to the enhanced blue light emission, the
W3 device exhibited stable CIE coordinates that were closer to (0.33,0.33). The results
demonstrate a promising application prospect of the tandem white QLED in both display
and lighting fields due to its pure emission color and high efficiency.
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Figure 10. (a) Schematic diagram of tandem white QLEDs based on the PMA/ZnO ICL. (b) Cross-
section transmission electron microscopy (TEM) image of tandem QLEDs. (c) EQE versus cur-
rent efficiency (EQE-J) characteristics and (d) dependence of CIE coordinates and luminance for
different tandem QLEDs. Reprinted with permission from ref. [77]. Copyright 2018, American
Chemical Society.
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4.2. ICLs for Inverted Structure

An active matrix drive scheme is necessary in large-size and high-resolution dis-
plays [22,78,79]. To integrate QLEDs with n-type TFTs in the active matrix backplane,
QLEDs with inverted device structures are preferred. Zhang et al. developed an ICL of
PEDOT:PSS/ZnMgO for stacking the CdZnSeS/ZnS QD-based LUEs (Figure 11a) [80].
Compared with ZnO, Mg-doped ZnO (ZnMgO) exhibited stronger acid resistance against
PEDOT:PSS. The cross-section transmission electron microscopy (TEM) image (Figure 11b)
showed a distinct interface between each functional layer. Comparing the current efficiency–
current density (CE–J) characteristics (Figure 11c), the highest CE of the tandem device
was 57.06 cd/A, nearly twofold the 29.68 cd/A of a single device. Without an additional
efficiency reduction and voltage drop, this ICL structure is considered a feasible strategy
for tandem QLEDs.
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Figure 11. (a) Schematic diagram of the green tandem QLEDs based on the PEDOT:PSS/ZnMgO ICL.
(b) Cross-section TEM image of tandem green QLEDs. (c) CE–J characteristics of single and tandem
devices. Reproduced with permission from ref. [80]. Copyright 2017, WILEY.

Due to the presence of lattice defects in ZnO nanoparticles, the direct contact between
ZnO and QDs will deteriorate the EL efficiency by nonradiative recombination at the
interface. Shen et al. demonstrated an inverted tandem green QLED with CdSe/ZnS
quantum dots using PEDOT:PSS/ZnO/PEIE as the ICL, in which the PEIE was inserted
at the interface of the interconnecting layer [81]. By introducing a PEIE-modified layer of
ZnO and CdSe/ZnS QDs, a maximum CE and EQE of 183.3 cd/A and 42.2% were obtained
from the proposed tandem QLED, respectively (Figure 12c). The high efficiency evidently
shows the practical potential of all solution-processed QLEDs.
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Similarly, Cao et al. used the ICL of PEDOT:PSS/ZnO/PEIE to fabricate an inverted
tandem white QLED [82]. The insertion of a PEIE layer between the electron transport layer
ZnO and the emission layer promotes electron injection into the light-emitting layer and
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inhibits exciton quenching caused by defects at the ZnO interface. As a result, the tandem
white QLED achieved a maximum CE and EQE of 79.9 cd/A and 28.0%, respectively
(Figure 13c). This improves the record efficiency of white QLEDs, further opening the way
for commercial applications of solution-processed tandem white QLEDs. The ICLs and EL
parameters of solution-processed tandem QLEDs are summarized in Table 2.
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Table 2. Statistics of solution-processed tandem QLEDs.

Structure ICL Color CE Ref.

Regular PEDOT:PSS/ZnMgO White 5 cd/A [76]
PMA/ZnO Red 28 cd/A [77]

Inverted
PEDOT:PSS/ZnMgO Green 57 cd/A [80]

PEDOT:PSS/ZnO/PEIE Green 183 cd/A [81]
PEDOT:PSS/ZnO/PEIE White 80 cd/A [82]

5. Color-Tunable Solution-Processed Tandem OLED/QLED

The tandem structure, which stacks multiple LEUs, can easily double the luminous
brightness, CE, and EQE. In addition, tandem structures have also been used as a strategy to
realize color-tunable OLEDs/QLEDs [83–85]. Compared with the conventional horizontal
geometric arrangement of red, green and blue subpixels, color-tunable OLEDs/QLEDs are
of great significance for improving the efficiency and pixels of flat panel displays.

A schematic diagram of the structure and energy levels of a color-tunable QLED
device through all solution processes is shown in Figure 14a [86]. Although the green
and red QD-based LEUs were connected serially with the ICL of PEDOT:PSS/PVK, they
did not work simultaneously but worked individually depending on the direction of the
bias voltage. As shown in Figure 14b, both electrodes (i.e., bottom ITO and top Al) have
large hole injection barriers, regardless of the positive or negative bias. When the device
is forward biased, electrons can be injected from the top Al electrode (the cathode), and
holes are generated at the interface of PEDOT:PSS/PVK, while the holes at the bottom ITO
electrode are blocked due to the large hole injection barrier. In this case, only the red QD
layer emits the light. Predictably, when a reverse voltage is applied to the device, only
the green LEU works. As shown in Figure 14c, a single emission peak is observed when
the duty cycle is 0% or 100%, while a mixture of two emission peaks is observed when
the duty cycle is between 0% and 100%. It is predictable that color-tunable QLEDs with
vertically stacked independently operated subpixels can open a promising pathway toward
cost-effective ultrahigh-resolution displays.
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6. Outlooks

A variety of ICLs for solution-processed tandem OLEDs/QLEDs have been introduced
in this review. The multilayers based on PEDOT:PSS/ZnO and TMO/ZnO represent the
most commonly used solution-processable ICLs in current studies. To solve the detrimental
effects caused by the acidity of PEDOT:PSS, the neutralized and polymer layers have been
inserted at the interface of PEDOT:PSS/ZnO; to overcome the low solubility of pure TMOs,
PMA is developed as an efficient precursor; to improve the electron injection and passivate
the interfacial defects, PEIE and PEI are generally incorporated with ZnO. To date, the
recorded current efficiencies of the solution-processed tandem OLEDs and QLEDs are
92.8 cd/A and 183.3 cd/A, respectively. Considering the very high photoluminescence
yield of the organic and QD emitting layers, there is still a large space for further improving
the EL efficiency of the tandem devices from the solution process.

In terms of acceptor materials, the HILs used in ICLs are still limited to the use
of PEDOT:PSS or TMO. Conversely, the HAT-CN and p-doped layers that have been
intensively used in evaporated ICLs are seldom reported for solution-processed tandem
devices. The realization of solution processable HAT-CN and p-doped layer would provide
more choices in materials to form more efficient ICLs. In terms of device durability, few
reports have focused on the operational lifetime of solution-processed tandem devices.
Considering that aqueous PEDOT:PSS is generally used in solution-processed tandem
OLEDs/QLEDs, the residual water due to hydrogen bonding is speculated to remain in
the devices. As reported, a trace amount of water usually leads to the fast degradation of
OLEDs. Therefore, the solutions that are used to solve the stability problems should be
focused on. In terms of processing methods, the reported tandem OLEDs and QLEDs from
solution are all fabricated by spin coating. Other solution technologies, such as slot die
coating, blade coating, and inkjet printing, are more accessible to large-area production.
How to combine these solution processes with the tandem structure should be investigated.

The commercial application of QLEDs has been still limited due to its short lifetime,
which can be attributed to quantum dots materials, packaging technology, and devices
structures [87,88]. By preparing a core–shell structure or multi-shell structure, it can
effectively reduce the surface energy of quantum dots and improve their stability. An
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optimized packaging process can isolate QLED devices from moisture and oxygen while
avoiding the harm of toxic substances such as Cd and Pb elements in quantum dots.
However, the electrical degradation of QLEDs, which is caused by the corresponding
increase in the current as the EL brightness increases, is difficult to solve through material
design and packaging processes.

In addition to ICL, the emitting material is also an essential factor affecting the per-
formance of light-emitting devices. As shown in this review, solution-processed tandem
OLEDs are still limited by the utilization of less efficient polymer-based emitters. In the
pursuit of a high efficiency and lifetime, phosphorescent and thermally activated delayed
fluorescent materials are attractively desirable. On the other hand, inorganic colloidal
quantum dots are intrinsically solution processable and can function as a suitable candidate
of solution-processed LEDs. The dispersion solvent is the primary consideration when
preparing tandem QD devices, to which the solvent of adjacent functional layers is orthog-
onal. In addition, the eco-friendly cadmium-free QDs would be potentially adopted in
solution-processed tandem devices to overcome the toxicity problems.

Over the decades, the development of evaporated OLEDs has paved the way for
solution-processed tandem devices. Although solution-processed tandem OLEDs and
tandem QLEDs share similar ICL structures, colloidal QD-based LEDs generally contain
less functional layers and therefore show many superior advantages compared to OLEDs.
For the future, a significant job would be how to achieve the equally high efficiency and
stability of tandem QLEDs with their counterpart of evaporating OLEDs. Finally, the
realization of color-tunable QLEDs driven by alternating the current through tandem
structures is also promising in diverse display and lighting applications.
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