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Abstract: Water electrolysis offers a zero-carbon route to generate renewable energy conversion
systems. Herein, a self-supported nickel phosphosulfide nanosheet (NS) electrocatalyst was fabricated
at a low temperature on carbon cloth, which was then subjected to Ar etching to enhance its catalytic
activity. Etching resulted in better hydrogen evolution reaction (HER) and oxygen evolution reaction
(OER) performance than other samples, with overpotentials of 103.1 mV (at 10 mA cm−2) and
278.9 mV (at 50 mA cm−2), respectively. The characterization results confirmed that Ar etching
created a thin amorphous layer around the NiPS3 NSs, which increased the number of active sites
and modulated their electronic structures. These 3D-structured NiPS3 NSs and their subsequent Ar
etching process show promise for applications in overall water splitting in alkaline media.

Keywords: water splitting; Ni-based nanomaterials; plasma surface treatment; vacancy defect;
hydrogen evolution reaction; oxygen evolution reaction

1. Introduction

Clean energy has attracted extensive research attention in the past few decades due to
the continuous growth of environmental pollution and energy demands. Hydrogen is a
promising alternative to fossil fuels. The electrolytic reduction of water provides a zero-
carbon route to clean and sustainable hydrogen resources. Electrochemical water splitting
involves the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution
reaction (OER) [1,2], which largely depend on highly efficient electrocatalysts. Pt-based
metals and Ru/Ir-based compounds are considered to be the best HER electrocatalysts
and OER electrocatalysts, respectively. However, the high cost and scarcity of these noble
metal electrocatalysts severely limit their widespread applications [3]. Ternary pyrite-type
cobalt phosphosulfide shows a high intrinsic HER activity in acidic solutions with a very
low overpotential (η10) of 48 mV vs. RHE for j = −10 mA cm−2 and outstanding long-term
operational stability [4]. However, due to the lack of stable electrocatalysts for acidic
OER, electrolyzers that can operate in acidic media are obstacles to practical applications.
Thus, high-performance HER catalysts in alkaline solutions are more suitable for indus-
trial hydrogen production. During the past decades, high-efficiency and earth-abundant
compounds, such as first-row (3D) transition metal sulfides [5–7], phosphides [8–10], and
phosphosulfides, have shown their potential to serve as candidates for the HER as alter-
natives to precious noble metal-based electrocatalysts in alkaline solutions. Furthermore,
various strategies to enhance the performance of HER have been explored, including sur-
face and interface engineering [11], electronic and band structure engineering [12], strain
engineering [13], conductivity engineering [14], and nanocomposites [15].

Previous works have demonstrated that for transition metal-based materials, higher
phosphorus or sulfide contents will improve the HER catalytic activity [16,17]. Inspired by
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this idea, a new class of layered materials, metal trichal-cogenidophosphates (MTPs, with
the chemical formula of MPX3 (M = Ni, Fe, Co, Mn, etc.; and X = S, Se)), have attracted
attention due to their high nonmetal element ratio. Thus, they may serve as active sites
during the HER [18–22]. However, the intrinsic limitation of MTPs for water splitting lies
in the inert surfaces, and only the finite edge sites demonstrate catalytic activities [23–25].
To activate these inert surfaces, some strategies have been proposed, such as elemental
doping [24,26] and high-entropy strategies [18]. However, the HER performance still
requires further improvements. Another obstacle to the use of MTPs is their complex
synthesis procedures, which usually require higher temperatures and long sintering times.
The commonly used bulk MTPs are usually difficult to exfoliate, which largely hides the
active edge sites and decreases the overall catalytic performance [27–29].

Herein, we proposed a simple two-step method to synthesize NiPS3 nanosheets (NSs)
on a conductive substrate and investigated the HER performance of the as-prepared NSs
and bulk powder materials. To further enhance the intrinsic catalytic activity, an edge
amorphization strategy was performed by Ar etching, which gave the final Ar-NiPS3
an overpotential (η10) of 103.1 mV at a current density of 10 mA cm−2. The Ar-NiPS3
sample also exhibited a better OER activity (η50 = 278.9 mV vs. RHE and a Tafel slope
of 66.5 mV dec−1). This may have been due to the easier oxidation of the peramorphic
edge layers.

2. Results and Discussion

Self-supported monoclinic NiPS3 nanosheets were prepared on carbon cloth (CC)
by a two-step process. Then, Ar plasma etching was conducted to modify the surface
(Ar-NiPS3) (Figure 1a, details provided in the Experimental Section). To investigate the
effect of synthesis conditions, different sintering temperatures were applied. As shown in
Figures S1 and S2, phase-pure NiPS3 NSs were obtained between 450 ◦C and 550 ◦C. When
the temperature was further increased to 650 ◦C, Ni17S18 became the main phase of the
NSs and a higher temperature resulted in the collapse of the NSs (Figure S2d). To further
determine the best sintering conditions, X-ray diffraction patterns and Raman spectra were
obtained for different samples prepared under the temperature between 450 ◦C and 550 ◦C
(Figures S3 and S4). No obvious differences were detected for any of the samples. NiPS3
powder was also prepared via a solid-state reaction for a comparison (Figure S5). Linear
sweep voltammetry (LSV) curves for different samples prepared between 450 ◦C and 550 ◦C
showed that the sample prepared at 470 ◦C showed the best HER performance (Figure S6).
Thus, 470 ◦C was chosen as the optimal temperature to prepare NiPS3 NSs. To study
the morphology and microstructure evolution of Ar-etched NiPS3 NSs, scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) were applied. The SEM
and TEM images showed that Ar etching did not change the overall morphology of the NSs
(Figure 1b,c), indicating their stability. High-resolution transmission electron microscopy
(HRTEM) images showed representative interplanar spacings of 0.29 nm and 0.29 nm
with an angle of 60◦, which were, respectively, assigned to the (130) and (200) planes of
monoclinic NiPS3 (Figure 1d,e). The corresponding selected area electron diffraction (SAED)
pattern taken along the [0 0 1] zone axis is presented in Figure 1f, which was indexed to
monoclinic NiPS3. This further revealed the single-crystal characteristics of the fabricated
NiPS3 nanosheet arrays. A high-angle annular dark field–scanning transmission electron
microscopy–energy-dispersive X-ray spectra (HAADF-STEM-EDS) line scan was used to
investigate the elemental distribution and ratio of the nanosheet. The results revealed the
homogeneous distribution of both Ni, P, and S elements across the whole nanoflower, and
the ratio was about Ni:P:S = 1:1:3 (Figure 1g).
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Figure 1. (a) Schematic illustration of the synthesis process for Ar-NiPS3; (b) SEM image and (c) TEM
image of an Ar-etched NiPS3 nanosheet; (d) HRTEM image of an Ar-etched NiPS3 nanosheet with
a ~10 nm amorphous layer; (e) enlarged HRTEM image and (f) SAED pattern of the basal plane;
(g) EDS line scan profile of the nanosheet.

The crystal structures of the representative samples were characterized by X-ray
diffraction (XRD) and Raman spectroscopy. As shown in Figure 2a, peaks at 13.9◦, 28.1◦,
31.1◦, 36.2◦, 49.5◦, and 54.7◦ were observed for NiPS3 and Ar-NiPS3 (PDF #78−0499). To
demonstrate the advantages of the proposed nanocrystallization strategy, NiPS3 powder
was also prepared by a solid-state reaction, and it showed good crystallinity. The Ra-
man spectra showed eight Raman-active phonon modes, in agreement with earlier work,
which showed three out-of-plane A1g modes and five in-plane Eg modes [30] (Figure 2b).
According to the previous report, the A1g ratio can be used to indicate the thickness of
NiPS3 [31,32]. It showed clearly that Ar-NiPS3 had a much stronger A1g phonon mode,
indicating that Ar etching reduced the thickness of the NSs, thus exposing more active
sites at the edges. We further conducted electron spin resonance (ESR) spectroscopy to
study the influence of Ar etching. The ESR spectra showed that after Ar etching, more
vacancies appeared in NiPS3 NSs, which may have produced more active sites in NSs,
which further enhanced the catalytic activity [33–35] (Figure 2c). High-resolution X-ray
photoelectron spectroscopy (XPS) was applied to gain insights into the surface chemical
state of NiPS3 and Ar-NiPS3. For pristine NiPS3, the Ni 2p3/2 spectrum showed a main
peak at 853.38 eV, which belonged to Ni2+ species. It also contained three other satellite
peaks at 856.43, 859.13, and 863.53 eV (Figure 2d) [27]. After Ar etching, the Ni 2p3/2 peak
underwent a shift to a higher binding energy (about 0.5 eV), indicating a higher valence
state of Ni atoms in the NSs. In the P 2p and S 2p spectra, the peaks all shifted to lower
binding energies after Ar etching (Figure 2e,f). (The peak at 133 eV in the P 2p spectrum
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belongs to the P-O bond, which was due to inevitable surface oxidation during synthe-
sis [36,37]). Since XPS is a surface-sensitive detection technique, these results indicate the
charge redistribution at the amorphous layer after Ar etching. According to the XPS spectra,
electrons transferred from Ni to P and S, which produced high-valence Ni species. It has
been shown that high-valence Ni undergoes an upshift in the d-band center of the catalytic
system. A shallower d-band center will produce stronger binding between adsorbates and
the surface of catalysts [38]. For HER in alkaline media, the rate-determining step is the
Volmer step, which provides protons for other catalytic steps [1]. Electron-rich P and S sites
provided sufficient electrons for reducing protons, which enhanced the HER performance
of Ar-NiPS3 NSs [26]. From the analysis above, it could be speculated that Ar-etched NiPS3
nanosheets would demonstrate better catalytic performance by increasing the number of
active sites at the edges of NSs. They also decreased the energy barrier of the reaction by
modulating the electronic structure around active sites.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 11 
 

 

state of Ni atoms in the NSs. In the P 2p and S 2p spectra, the peaks all shifted to lower 
binding energies after Ar etching (Figure 2e,f). (The peak at 133 eV in the P 2p spectrum 
belongs to the P-O bond, which was due to inevitable surface oxidation during synthesis 
[36,37]). Since XPS is a surface-sensitive detection technique, these results indicate the 
charge redistribution at the amorphous layer after Ar etching. According to the XPS 
spectra, electrons transferred from Ni to P and S, which produced high-valence Ni spe-
cies. It has been shown that high-valence Ni undergoes an upshift in the d-band center of 
the catalytic system. A shallower d-band center will produce stronger binding between 
adsorbates and the surface of catalysts [38]. For HER in alkaline media, the 
rate-determining step is the Volmer step, which provides protons for other catalytic steps 
[1]. Electron-rich P and S sites provided sufficient electrons for reducing protons, which 
enhanced the HER performance of Ar-NiPS3 NSs [26]. From the analysis above, it could 
be speculated that Ar-etched NiPS3 nanosheets would demonstrate better catalytic per-
formance by increasing the number of active sites at the edges of NSs. They also de-
creased the energy barrier of the reaction by modulating the electronic structure around 
active sites. 

 
Figure 2. (a) XRD patterns of NiPS3 powder, NiPS3 NSs, Ar-NiPS3 NSs, and CC; (b) Raman spectra 
of NiPS3 powder, NiPS3 NSs, and Ar-NiPS3 NSs; (c) EPR spectra of NiPS3 NSs and Ar-NiPS3 NSs; 
XPS spectra of (d) Ni 2p, (e) P 2p, and (f) S 2p regions of NiPS3 NSs before and after Ar etching. 

The HER performances of Ar-etched NiPS3 NSs and other samples were evaluated 
in 1 M KOH. We first investigated the influence of etching time. Upon increasing the 
etching time, the HER performance first increased and then decreased, and the sample 
etched with Ar plasma for 10 s demonstrated the best HER performance. Thus, we can 
conclude that the etching process should be kept at a moderate degree since upon in-
creasing the etching time, the thickness of the amorphous layer increased, which may 
have provided more active sites. However, a thicker amorphous layer may also decrease 
the conductivity of the nanosheets and reduce the overall HER performance [39]. To 
further demonstrate the advantages of our nanocrystallization and etching strategy, the 
HER performances of different samples, including bulk NiPS3, NiPS3 NSs, and Ar-NiPS3, 
were further tested. As shown in Figure 3a, Pt wire showed the best HER performance 

Figure 2. (a) XRD patterns of NiPS3 powder, NiPS3 NSs, Ar-NiPS3 NSs, and CC; (b) Raman spectra
of NiPS3 powder, NiPS3 NSs, and Ar-NiPS3 NSs; (c) EPR spectra of NiPS3 NSs and Ar-NiPS3 NSs;
XPS spectra of (d) Ni 2p, (e) P 2p, and (f) S 2p regions of NiPS3 NSs before and after Ar etching.

The HER performances of Ar-etched NiPS3 NSs and other samples were evaluated in
1 M KOH. We first investigated the influence of etching time. Upon increasing the etching
time, the HER performance first increased and then decreased, and the sample etched with
Ar plasma for 10 s demonstrated the best HER performance. Thus, we can conclude that the
etching process should be kept at a moderate degree since upon increasing the etching time,
the thickness of the amorphous layer increased, which may have provided more active sites.
However, a thicker amorphous layer may also decrease the conductivity of the nanosheets
and reduce the overall HER performance [39]. To further demonstrate the advantages of
our nanocrystallization and etching strategy, the HER performances of different samples,
including bulk NiPS3, NiPS3 NSs, and Ar-NiPS3, were further tested. As shown in Figure 3a,
Pt wire showed the best HER performance and delivered a current density of 10 mA cm−2

at an overpotential (η10) of 89.2 mV. In contrast, NiPS3 powder showed the worst catalytic
performance, with η10 = 256.6 mV. As expected, our self-standing NiPS3 NSs electrode
demonstrated η10 = 125.2 mV, which was 51.2% lower than that of the bulk materials.
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Ar-NiPS3 showed enhanced HER performance with η10 = 103.1 mV. According to the
XPS and HRTEM analysis, the amorphous layer was responsible for this enhancement
due to charge redistribution around the active sites. The amorphous layer also provided
abundant active sites at edges [40]. A comparison of the HER activities of different samples
further proved the effectiveness of the proposed nanocrystallization and etching strategy.
Furthermore, the electrochemical impedance spectroscopy (EIS) results indicated a smaller
charge transfer resistance (Rct) of Ar-NiPS3 than other samples, suggesting faster HER
kinetics (Figure 3b and Table S1) [41]. The Tafel slope is a commonly used indicator for
the rate-determining step. As shown in Figure 3c, Ar-NiPS3 demonstrated a Tafel slope of
66.5 mV dec−1, which was much lower than that of NiPS3 (95.5 mV dec−1) and bulk NiPS3
powder (132.2 mV dec−1). This indicated that the HER occurred on the Ar-NiPS3 via the
Volmer–Heyrovsky mechanism and that the Heyrovsky reaction was the rate-determining
step [1]. Moreover, the electrochemically active surface area (ECSA) of different samples
was estimated by comparing the double-layer capacitance (Cdl) with the cyclic voltammetry
(CV) measurements (Figure S7). The results showed that nanocrystallization significantly
increased the ECSA of NiPS3, which was about 47 times higher than that of the powder
materials. Ar etching further enhanced the ECSA from 42.12 mF cm−2 to 49.15 mF cm−2.
This observation indicated that the Ar-NiPS3 electrode exposed more catalytic active sites
than other electrodes, which significantly increased its HER performance [42] (Figure 3d).
Stability is another important indicator for obtaining promising electrocatalysts. As shown
in Figure 3e, the HER performance of Ar-NiPS3 did not show obvious degradation after
long-term stability tests under different current densities and 1000 CV measurements,
demonstrating its excellent stability (inset in Figure 3e). The excellent HER performance
also made Ar-NiPS3 a superior catalyst to previously reported noble-metal-free HER
catalysts in alkaline media (Figure 3f and Table S2).
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Considering the excellent HER performance of Ar-NiPS3 NSs, we also measured
the OER activities of the modified samples and investigated the overall water-splitting
performance. As shown in Figure 4a, the Ar-etched NiPS3 electrode demonstrated the best
OER activity, with an overpotential of 278.9 mV, reaching a current density of 50 mA cm−2.
NiPS3, NiPS3 powder, and Ni precursor required higher overpotentials of 317.86 mV,
475.1 mV, and 490.0 mV, respectively, to deliver the same current density. The EIS results
showed that NiPS3 and Ar-NiPS3 had lower Rct values than the other samples, which
may have been caused by the fully-exposed active sites on the nanosheets (Figure 4b and
Table S3). The Tafel slope obtained by extrapolating the linear region of overpotential vs.
log j (Figure 4c) was 124.0 mV dec−1 for Ar-NiPS3 (after iR correction) and 127.9, 158.2,
and 267.1 mV dec−1 for the NiPS3, Ni precursor, and NiPS3 bulk materials, respectively.
This indicated that Ar-etched NiPS3 demonstrated faster OER kinetics. Ar-NiPS3 still
exhibited satisfying stability during long-term tests. We studied the chemical state of
Ar-NiPS3 after OER tests. For transition metal phosphides, sulfides, and nitrides, the final
active species are the corresponding in-situ-derived (hydro)oxides [52]. After the OER test,
the surface of Ar-NiPS3 mainly turned into Ni-O species (Figure S8a), and the peaks of
P 2p almost disappeared (Figure S8b), while that of S-O obviously increased (Figure S8c).
Metal–oxygen (M-O) bonds became the main peak in the O 1s spectrum, which indicated
the surface of the sample was totally oxidized under an anodic current. The surface metal
oxides could also accelerate the adsorption of OH−, which further enhanced the OER
(Figure S8d) [53]. We also investigated the full water-splitting performance with Ar-NiPS3
serving as both the cathode and anode in a two-electrode system. As shown in Figure 4e,
the Ar-NiPS3//Ar-NiPS3 electrode couple demonstrated enhanced full water-splitting
activity compared to the NiPS3//NiPS3 electrode couple and excellent stability without
obvious degradation after the stability test.
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different samples measured in 1 M KOH; (b) Nyquist plots of different samples; (c) corresponding
Tafel slopes; (d) stability test of Ar-NiPS3 NSs under different current densities; (e) performance of
the full water-splitting device using the Ar-NiPS3 and NiPS3 electrode as both the anode and cathode;
(f) stability test before and after 1000 CV cycles of Ar-NiPS3.
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3. Materials and Methods

Materials. Nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O), ammonium fluoride (NH4F),
high-purity sulfur powder, and red phosphorus powder were obtained from Alfa Aesar.
Urea was purchased from Sinopharm Chemical Regent Co., Ltd. Carbon cloth (CC) was
provided by Shanghai Hesen Corp. Ultrapure water (>18.25 MΩ cm) was obtained from an
Evoqua system. Commercial Pt film catalysts were purchased from Aladdin. All chemicals
were of analytical grade and used as-received without further treatment.

Synthesis of Ni(OH)F NS/CC precursors. The Ni(OH)F precursors were prepared by
a simple hydrothermal method. Briefly, Ni(NO3)2·6H2O was weighed in stoichiometric
amounts (2 mmol). Then, NH4F (5 mmol), urea (10 mmol), and Ni(NO3)2·6H2O were
dissolved in deionized water (40 mL) with continuous stirring for 30 min. The as-obtained
homogeneous solution was then transferred to a 50 mL Teflon-lined stainless steel autoclave.
CC was cut into small pieces (with dimensions of 2 cm × 3 cm) and cleaned by sonication
sequentially in acetone, water, and ethanol for 20 min each to ensure a well-cleaned surface
for use. A piece of cleaned CC was placed in an autoclave at 120 ◦C for 6 h. When the
autoclave cooled naturally to room temperature, the samples were taken out and washed
with deionized water several times before vacuum drying overnight at 70 ◦C.

Synthesis of the NiPS3 NS/CC electrode. A piece each of Ni(OH)F NS/CC (2 cm × 3 cm),
sulfur powder (3782 mg), and red phosphorus powder (1218 mg) were placed in a corun-
dum porcelain boat. Sulfur powder and phosphorous powder were placed upstream. Then,
the porcelain boat was pushed into the heating zone in the middle of the tube furnace.
High-purity argon gas was poured in to flush the furnace tube for 30 min to exhaust the
air in the tube (300 sccm). After that, high-purity argon gas was continuously injected
(100 sccm). The next step was to increase the temperature to 470 ◦C, at a heating rate of
5 ◦C/min. After holding at 470 ◦C for 2 h, it was cooled down naturally. After cooling,
the black sample was removed, which was the NiPS3 nanosheet catalytic electrode. The
loading of catalyst on the CC substrate was about 6.8 mg/cm2.

Preparation of Ar plasma-treated NiPS3 nanosheets. A piece of NiPS3 NS/CC
(2 cm × 3 cm) was fixed on a silicon chip and treated by Ar plasma. The power of ar-
gon plasma and flow rate of Ar were fixed at 150 W and 100 sccm, respectively, with
different irradiation times (0 s, 5 s, 10 s, 15 s). The NiPS3 NS/CC (Ar-NiPS3) plasma treated
for 10 s was used for detailed studies.

Material Characterization: The crystal structure of the samples was determined by
an X’Pert Pro Super diffractometer with Cu-Kα radiation (λ = 1.54178 Å). Field-emission
scanning electron microscope (SEM) images were obtained on a Hitachi SU8010 SEM. TEM,
HRTEM, AC-HAADF-STEM, and elemental maps were conducted on a JEM-ARM200CF
microscope operating at 200 kV. XPS spectra were collected on an ESCALAB MK II with an
Al Kα excitation source. Raman spectra were measured on a Renishaw InVia Reflex Raman
microscope. The electron paramagnetic resonance (EPR) spectra were obtained on a Bruker
A300-10/12.

Electrochemical Measurements: All electrochemical measurements in this work were
carried out on a CHI 760E electrochemical workstation in 1 M KOH. HER performances
for each sample were measured with a three-electrode system at room temperature. The
prepared samples were used as the working electrodes directly. A graphite rod (Alfa Aesar,
Shamghai, China, 99.9995%) and an Hg/HgO electrode were used as the counter electrode
and the reference electrode, respectively. LSV curves were obtained at a scan rate of
2 mV s−1. In this work, all measured potentials were referred to the reversible hydrogen
electrode (RHE) using the following Equation (1)

ERHE = EHg/HgO + 0.098V + 0.059 × pHERHE (1)

EIS measurements were carried out within a frequency range from g 0.01 Hz to 106 Hz
for all electrolytes. The series resistance (Rs) obtained from EIS measurements were used to
correct the polarization measurement with Equation (2)
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Ecorrected = Euncorrected − iRs (2)

CV test was used to perform the stability test with the scan range of −0.6 to 0 V
versus RHE, and the scan rate was set as 50 mV s−1. The ECSA was estimated from the
corresponding electrochemical double-layer capacitances (Cdl) with CV measurements.
CV curves were collected in a non-Faradaic region at various scan speeds ranging from 20
to 120 mV s−1 at the potential range of −0.62–−0.77 V vs. RHE.

4. Conclusions

Here, a two-step method was proposed to develop high-efficiency water-splitting
electrodes by modifying the edge sites of NiPS3 nanosheets. The HER, OER, and overall
water-splitting performances were studied. The self-standing NiPS3 electrode provided
abundant active sites after Ar etching by forming a uniform amorphous layer at the edges of
NiPS3 nanosheets. This reduced the charge transfer resistance during the catalytic process
and delivered η10 = 103.1 mV and η50 = 278.9 mV for the HER and OER, respectively. The Ar-
NiPS3 electrode also demonstrated better catalytic activity and stability during overall water
splitting. This study provides an efficient electrode for water splitting and also provides a
promising strategy for the further modification of transition metal-based electrocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010315/s1. References [54,55] are cited in Supple-
mentary Materials. Figure S1. The XRD patterns of the as-prepared NiPS3 NS/CC samples at different
temperatures. Figure S2, The SEM image of the as-prepared NiPS3 NS/CC samples at 350 °C (a),
450 °C (b), 550 °C (c), 650 °C (d) (Scale bar: 50 µm), Figure S3. The XRD patterns of the as-prepared
NiPS3 NS/CC samples at 450 °C to 550 °C, Figure S4. Raman spectra of the NiPS3 NS/CC samples
prepared under different temperatures and the NiPS3 Powder sample, Figure S5. The SEM image
of the as-prepared NiPS3 powder sample (inset showed the enlarged image of the powder, which
showed layered structure of NiPS3), Figure S6. Polarization curves of different sample prepared
under different temperatures, Figure S7. CV curves of (a) Ar-NiPS3 NS/CC, (b) NiPS3 NS/CC,
(c) NiPS3 Powder and (d) Ni Precursor under different scan rates, in the potential range from −0.62 V
to −0.77 V vs. RHE, Figure S8. XPS spectra of (a) Ni 2p3/2, (b) P 2p, (c) S 2p, and (d) O 1s after OER
test, Table S1. HER data obtained from the corresponding LSV curves, Table S2. OER data obtained
from the corresponding LSV curves, Table S3. Comparison of some reported HER electrocatalysts in
1 M KOH.
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