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Abstract: Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely
found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have
shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that
the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have
been discovered in succession, the purpose of this paper is to review the anticancer effects of
benzophenanthridine alkaloids and explore the application potential of these natural products in the
development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys,
and Google Scholar databases. This review summarizes and analyzes the current status of research
on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine
from different sources. The research progress of the antitumor activity of natural products of
benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products
of benzophenanthridine and their related analogues were summarized, and the results directly or
indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant
tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine
alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor
resistance, and they have great application potential in the development of antitumor drugs.

Keywords: benzophenanthridines; natural products; cancer; antitumor activity; anticancer drug

1. Introduction

Tumor refers to a disease with the highest mortality rate. Under the action of a wide
variety of factors, cells in local tissues lose their normal regulation of growth at the gene
level, thus causing abnormal cell proliferation [1]. Over 60% of anticancer drugs have been
derived from natural products and natural product derivatives [2].

Figure 1 presents the structure of the benzophenanthridine compound, containing
a non-aromatic heterocycle (B ring). It is primarily distributed in papaveraceae and ru-
taceae [3]; pertains to isoquinoline alkaloids; and exhibits antitumor, antifungal, antiviral,
anti-inflammatory, immune regulation, and other pharmacological activities [4].
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Figure 1. Chemical structure of benzophenanthridine alkaloids. 

Indeed, benzophenanthridine alkaloids play an anticancer role via different mecha-
nisms. Benzophenanthridine alkaloids are capable of affecting the activity of DNA topoi-
somerase I and topoisomerase II, suppressing the rapid proliferation of tumor cells [5], 
inducing cancer cells ferroptosis [6], inhibiting the growth of tumor stem cells [7], and so 
forth. Benzophenanthridine natural products combine with negatively charged mem-
brane surfaces and proteins, and react with sulfhydryl residues of amino acids, thus inter-
fering with collagenase, tubulin assembly, Na+/K+ATP ase, as well as other functions [8]. 
The antitumor activities of benzophenanthridine alkaloids are reviewed to lay a theoreti-
cal basis for the development of novel antitumor drugs with natural benzophenanthridine 
alkaloids as the lead compounds. 
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The presence of moderate or high levels of ROS in tumor cells affects the initiation 
and proliferation of cancer to a certain extent. Benzophenanthridine natural products are 
capable of inducing, or activating different molecular signal transduction, activating pro-
teins of related pathways, or making them apoptosis by interfering with the signal path-
way of ROS, and treating and eliminating tumor cells by regulating dysfunctional proteins 
[9]. Sanguinarine (1), one of the most famous benzophenanthridine alkaloids, can act on 
ROS-dependent mitochondria to induce autophagy and apoptosis, or inhibit the mitosis 
of cancer cells by changing the acidic conditions of lysosomes and interfering with the 
formation of autophagosomes lysosomes, such that liver cancer [10] and MDA-MB-231 

Figure 1. Chemical structure of benzophenanthridine alkaloids.

Indeed, benzophenanthridine alkaloids play an anticancer role via different mecha-
nisms. Benzophenanthridine alkaloids are capable of affecting the activity of DNA topoi-
somerase I and topoisomerase II, suppressing the rapid proliferation of tumor cells [5],
inducing cancer cells ferroptosis [6], inhibiting the growth of tumor stem cells [7], and so
forth. Benzophenanthridine natural products combine with negatively charged membrane
surfaces and proteins, and react with sulfhydryl residues of amino acids, thus interfering
with collagenase, tubulin assembly, Na+/K+ATP ase, as well as other functions [8]. The
antitumor activities of benzophenanthridine alkaloids are reviewed to lay a theoretical
basis for the development of novel antitumor drugs with natural benzophenanthridine
alkaloids as the lead compounds.

2. Antitumor Activities of Benzophenanthridine Alkaloids from Natural Products
2.1. Antitumor Activities of Benzophenanthridine Alkaloids from Papaveraceae Plants
2.1.1. Antitumor Activities of Benzophenanthridine Alkaloids from Papaver SPP

Quaternary benzophenanthridine alkaloids (QBAs) primarily originate from plants of
the genus Papaver. Representative compounds comprise sanguinarine (1), chelerythrine
(2), sanguilutine (3), sanguirubine (4), chelirubine (5), chelilutine (6), and macarpine (7)
(Figure 2).
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The presence of moderate or high levels of ROS in tumor cells affects the initiation
and proliferation of cancer to a certain extent. Benzophenanthridine natural products
are capable of inducing, or activating different molecular signal transduction, activating
proteins of related pathways, or making them apoptosis by interfering with the signal
pathway of ROS, and treating and eliminating tumor cells by regulating dysfunctional
proteins [9]. Sanguinarine (1), one of the most famous benzophenanthridine alkaloids, can
act on ROS-dependent mitochondria to induce autophagy and apoptosis, or inhibit the
mitosis of cancer cells by changing the acidic conditions of lysosomes and interfering with
the formation of autophagosomes lysosomes, such that liver cancer [10] and MDA-MB-231
human breast cancer [11] can be inhibited. Sanguinarine (1) is capable of significantly
targeting ephrin type-B receptor 4 (EphB4) and hypoxia inducible factor-1α (HIF-1α) in
breast cancer, inhibiting the activation of the downstream protein signal transducer and
activator of transcription 3 (STAT3) in cells, blocking hypoxia-induced HIF-1α or STAT3
interacts, and downregulating the mRNA levels of its target genes, thus inhibiting breast
cancer cell hyperplasia [12]. In addition, in the breast cancer model, sanguinarine (1)
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has been proven to have the effects of inhibiting the metastasis of breast cancer and anti
epithelial mesenchymal transformation (EMT) [13]. A recent review article also showed that
sanguinarine (1) is a very promising therapeutic option for breast cancer [14]. Sanguinarine
(1) facilitates apoptosis in HeLa cells as a treatment for cervical cancer with an IC50 value of
3.5 µM [15]. Sanguinarine (1) exhibits anti-microtubule activity while inhibiting the binding
of colchicine and podophyllotoxin to tubulin with IC50 values of 32 µM and 46 µM. The IC50
values for chelerythrine (2) have been obtained as 55 µM and 60 µM [16]. Sanguinarine (1)
induces apoptosis in HeLa cells by upregulating the expression of the proapoptotic protein
Bax and inhibiting the antiapoptotic protein BcI-2, and 0.5 µM sanguinarine treatment leads
to a significantly reduced number of colonies formed by HeLa cells [15]. Sanguinarine
(1) is cytotoxic to different resistant cancer cell lines, and the main mechanisms of action
are the inhibition of P-glycoprotein transporters, NF-KB activation, and so forth. For
CCRF-CEM, CEM/ADR5000, U87MG, U87∆EGFR, MDA231, MDA-BCRP, p53+/+, p53−/−,
HEK293, and HEK293/ABCB5 cell lines are significantly inhibited with IC50 values of
0.3–4.1 µM [17].

Moreover, sanguinarine (1) exhibits strong cytotoxicity against non-small cell lung
cancer (NSCLC) with an IC50 value of 2.19 µM. Its mechanism of action is likely to be
correlated with blocking NF-κB, and Akt and ERK1 signaling pathways have a correlation
with the inhibition of cancer cell migration [18]. Sanguinarine (1) inhibits the prolifera-
tion of BGC-823 gastric cancer cells by downregulating the expression of miR-96-5p and
miR-29c-3p and upregulating the expression of MAP4K4, pMEK4, and pJNK1 protein in
gastric cancer cells BGC-823 [19]. Sanguinarine (1) inhibits human prostate cancer cells
by inducing ROS-dependent Par-4 cleavage and increasing ROS concentrations in cancer
cells. Moreover, it induces growth arrest and apoptosis of human prostate cancer cells
PC3 and DU145 with active caspases, which are activated at 2 µM concentration, such
that their colony formation can be inhibited [20]. The existing research has also suggested
that long-term treatment with sanguinarine (1) causes telomere attrition and cell growth
retardation, such that cancer cells become senescent. The main mechanisms are associated
with the downregulation of the reverse transcriptase hTERT gene expression and inhibi-
tion of telomerase activity [21]. Sanguinarine (1) induces apoptosis in human HT-29 cells,
demonstrating potential therapeutic applications in the treatment of colon cancer [22].

Sanguinarine (1) overexpresses inducing long non-coding RNA casc2 in SKOV3 cells
or inhibits the NF-KB signaling pathway, thus inhibiting SKOV3 cell growth, prolifera-
tion, migration, invasion, and so forth, while ultimately facilitating apoptosis [23]. More-
over, it enhances the sensitivity of cisplatin-resistant cells’ ovarian cancer A2780 to cis-
platin [24]. Sanguinarine (1) also has potential therapeutic effects against several cell lines
with leukemia (e.g., HL-60, drug-resistant HL-60/MX1, drug-resistant HL-60/MX2 (acute
promyelocytic leukemia), J45.01 (acute T cell leukemia), U266B1 (myeloma), CCRF/CEM,
and CEM/C1 (acute lymphoblastic leukemia)). To be specific, the most potent activity
is observed against drug-resistant HL-60/MX2 with IC50 values of 0.10 ± 0.05 [25]. San-
guinarine (1) can inhibit the migration of 786-O cells in vitro and in vivo, and reverse the
epithelial−mesenchymal transition with IC50 values of 0.5959 µM [26].

Moreover, recent research has confirmed that sanguinarine (1) is capable of inducing
H2O2-dependent cellular ferroptosis in human cervical cancer (Hela) based on a major
mechanism that is correlated with the downregulation of SLC7A11 and the depletion of
GSH [6]. Besides the above cancer cells, existing studies have found that sanguinarine (1),
which specifically targets lung cancer stem cells, is a natural anti-lung cancer drug-resistant
compound. Furthermore, sanguinarine (1) inhibits pancreatic cancer stem cells by inhibiting
the sonic hedgehog signaling pathway [27]. The therapeutic effect of sanguinarine on
various tumors has been verified at the animal level [28–30]. Overall, sanguinarine (1) has
anticancer potential and is expected to become a leading compound of anticancer natural
products [31].

Extensive research has confirmed that chelerythrine (2) is capable of affecting estro-
gen signaling pathways (e.g., the estrogen receptor ER- α 36, ER- α 66, ER-β1, and Src
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expression), inhibiting gastric cancer cell (AGS) growth proliferation, and facilitating their
apoptosis [32]. Chelerythrine (2) can act on tgfb1-erk1/2/Smad2/3-snail/ZEB1 signaling
to inhibit the progression of cell lines U251 and T98G of glioblastoma (GBM) (e.g., prolifer-
ation, migration, stemness, and invasion [33]). In addition, chelerythrine (2) also promotes
Drp1 mitochondrial translocation to enhance glioma cell lines necroptosis [34].

In human hepatocellular carcinoma (HCC), chelerythrine (2) can inhibit human hepato-
cellular carcinoma Hep3B cells by downregulating the expression of p-FAK and MMP-2/9.
Moreover, the main mechanism of action is correlated with the alteration of phospho-
inositide 3-kinase (PI3K), Akt, and the mammalian target of rapamycin (mTOR) signaling
pathways [35]. Chelerythrine (2) has exhibited anticancer activity in vivo and in vitro,
and considerable existing research has confirmed that chelerythrine can act on different
pathways (e.g., DNA, MAPK, apoptosis, ROS, cell cycle, autophagy, tumor metastasis,
and PKC) to inhibit or facilitate apoptosis in a variety of cancer cells (e.g., non-small cell
lung cancer [36], prostate cancer [37], lung adenocarcinoma [38], renal cancer [39], and
melanoma cells [40], colorectal cancer [41]), thus suggesting that the benzophenanthridine
alkaloids exhibit high anticancer activity. Previous studies have proven that chelerythrine
(2) exhibits antitumor stem cell properties, which are mediated by the downregulation
of β- Catenin expression, thus inhibiting non-small cell lung cancer stem cells [42]. Both
sanguinarine (1) and chelerythrine (2) have anticancer activities on human breast cancer
cells, but sanguinarine (1) has more potential [43]. However, chelerythrine (2) has been
reported as a promoter that can regulate c-MYC oncogenes, which has become a new
strategy to develop anticancer molecules [44].

Existing research has confirmed that the hydroxymethyl group at the C-6 position of
benzophenanthridine alkaloids takes on a critical significance to cellular activity, and the intro-
duction of different groups at the C-6 position can change their activity (Figures 3 and 4) [45].
For instance, the introduction of malonate, dialkylphosphite, and nitroalkanes significantly
enhances their cytotoxicity. Furthermore, derivatives (8–12) (Table 1) obtained after the
insertion of the electron-donating group at the C-6 position by sanguinarine exhibit higher
cellular activity than those of chelerythrine (13–16) (Table 2).
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The compounds chelerythrine (2), structurally modified to yield compounds 13–16,
sanguinarine (1), and derivatives 8–12, exhibit potent activity against Jurkat clone e6-1
and THP-1 leukemia cell lines, with IC50 values from 0.18 to 7.94 µM. Notably, most
of the activities of the above compounds are higher than those of chelerythrine (2) and
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sanguinarine (1)’s original activities, in which the IC50 values of compound 12 against the
above two leukemia cell lines reach 0.53 ± 0.05 and 0.18 ± 0.03 µM, respectively [46].

Table 1. The IC50 value of compounds 8–12.

Compound R
IC50 Value

Jurkat Clone e6-1 THP-1

Sanguinarine / 1.56 ± 0.09 1.60 ± 0.13

Compound 8
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5.64 ± 0.20 5.88 ± 0.07

Sanguinarine (1), chelerythrine (2), sanguilutine (3), sanguirubine (4), chelirubine (5),
and macarpine (7) (Figure 1) exhibit antitumor activity against various cancer cell lines,
including human leukemia (e.g., HL-60, THP-1, MT-4, CEM, and U937), human prostate
cancer (e.g., DU-145, LNCaP, and PC3), human epidermoid carcinoma (e.g., A431, nheks,),
human pancreatic cancer (e.g., AsPC-1 and BXPC-3), human melanoma (e.g., M4Beu, A372,
OCM-1), human non-small cell lung cancer (A549), human breast cancer (e.g., MCF-7 and
MDA-MB-231), human ovarian adenocarcinoma (OVCAR-3), cervical cancer (e.g., hen-16-2
and HeLa), human colon cancer (e.g., HCT-116, SW480), and human gastric cancer cells
(BGC-823) with IC50 values < 10 µM [47].
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Sanguinarine (1), chelerythrine (2), chelirubine (5), macarpine (7), and sanguirubine (4)
inhibit HL-60, KF-II, A431, and HeLa activity with IC50 values ≤ 0.7 (µg/mL). Of these,
macarpine (7) shows the optimal activity, with IC50 values against four cell lines (µg/mL)
followed by 0.012, 0.013, 0.024, and 0.015 [48].

Sanguinaria canadensis L. can extract and purify sanguilutine (3). Some research has
suggested that the antiproliferative activities of sanguilutine (3) and chelilutine (6) are
related to the induction of oxidative stress. As indicated by the results, against three
different cancer cell lines, HeLa, A2780, and HL-60, the IC50 values of sanguilutine range
from 0.04 to 0.46 (µg/mL), and the IC50 values of chelilutine (µg/mL) range from 0.16 to
0.84 [49].

Hammerová, Jindřiš Ka et al. [50] further elucidated the mechanism of sanguilutine (3)
in inducing apoptosis in melanoma cells. As a result, sanguinarine caused a decrease in
the mitochondrial membrane potential and levels of antiapoptotic proteins of the bcl-2
protein family, BCL XL, and myeloid cell leukemia protein 1 (Mcl-1), as well as downreg-
ulated levels of the X-linked inhibitor of apoptosis protein (XIAP) to facilitate melanoma
cell apoptosis.

2.1.2. Antitumor Activities of Benzophenanthridine Alkaloids from Corydalis
saxicola Bunting

The 6-acetyl-5,6-dihydrosanguinarine (17), 8-acetyldihydrochelerythrine (18), and
dihydrochelerythrine (19) (Figure 5) are isolated from Corydalis saxicola Bunting, and the
above alkaloids have some antitumor effects on squamous cell carcinoma, lung cancer, and
liver cancer of the tongue. To be specific, the mechanism of action against human tongue
squamous cell carcinoma may be inhibiting NF-κB activation, downregulating BcI-2 protein
expression on mRNA, and reducing telomerase activity; inhibiting non-small cell lung
cancer A549 cell proliferation, migration, and inducing apoptosis; inhibiting proliferation
and migration and upregulating the intracellular NF-κB p65 expression of the subunit [51].
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Feng Qin et al. [52] extracted and isolated two novel dimeric benzophenanthridine
alkaloids (20, 21) (Figure 6) from Corydalis saxicola, which comprised a mixture of ben-
zophenanthridine and protoberberine passing between the 6, 12 C-C σ Bond direct coupling
generation. Compounds 20 and 21 inhibited T24 cells with IC50 values of 13.26 µM and
9.45 µM.
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2.1.3. Antitumor Activities of Benzophenanthridine Alkaloids from Chelidonium

Sakineh Kazemi noureini et al. [53] have indicated that chelidonine (22) (Figure 7)
can inhibit MCF-7 in a dose-dependent manner, including cell senescence, apoptosis
of autophagic syncytial cells by inhibiting telomerase activity, and chelidonine (22) at
a 0.05 µM concentration, thus inducing senescence in MCF-7 cells with an LD50 value
of 8 µM. Chelidonine (22) is capable of inhibiting the pharmacological activity of the
NRAS activator stk19 kinase. It inhibits arginine, lysine, and leucine (Q61R, Q61K, and
Q61L) in NRAS mutant melanoma at glutamate 61 (Q61), thus inhibiting the downstream
signaling pathways of RAS proteins (e.g., Raf/MEK and P13K-AKT). As a result, cellular
senescence and apoptosis are caused. Chelidonine inhibits STK19 kinase with an IC50
value of 123.5 ± 19.3 Nm [54]. Csomós, I., et al. [55] have indicated that chelidonine (22)
arrests the G2/S phase of melanoma cells by inhibiting the phosphorylation of complexine
and serine in the STAT3 signaling pathway in human melanoma cells, thus inhibiting
melanoma. The inhibition effect is significant at 1 µg/mL concentration. It has also been
documented that chelidonine (22) can inhibit growth, invasion, angiogenesis, and suppress
gene expression in head and neck cancer cell lines. At 10 µg/mL, it significantly inhibits
FADU, HLaC78, HlaC79, and HLaC79-Tax cell lines [56]. Radim havelek et al. [57] indicated
that chelidonine (22) can inhibit the cell cycle of leukemic T cells in different p53 states
while suppressing tubulin polymerization in A549 cells. The IC50 value of different tumor
suppressor proteins of the p53 gene for MOLT-4, HL-60, U-937, Raji, Jurkat, and others
ranges from 2.2 to 5.0 µM. For non-small cell lung cancer cells (NSCLC), chelidonine (22)
has strong inhibitory effects, which are achieved primarily through the ability to selectively
inhibit the EGFR phosphorylation and inhibit mitochondrial function in EGFR double
mutant cells. The IC50 of chelidonine after 72 h treatment of various NSCLC cell lines
(e.g., H1975, PC9, H460, and H358) ranges from 2.58 to 12.77 µM. Against A549, CCD19 is
less active with IC50 value > 20 µM [58]. Chelidonine (22) can induce cell death in T98G
cells through two apoptotic pathways: caspase-dependent and caspase-independent. As a
result, cell mitosis is arrested, thus causing cell death, and inhibiting human glioblastoma.
0.6 µM of chelidonine (22) can significantly inhibit the G2/M phase of mitosis in T98G
cells [59]. Lenvatinib is capable of enhancing the apoptosis of HCC cells by chelidonine (22),
thus inhibiting the epithelial mesenchymal transition (EMT)-related factor of HCC cells
based on the possible mechanism. Moreover, chelidonine inhibits HCC cells MHCC97-H
and LM-3 with IC50 values of 7.72 µM and 6.34 µM [60]. Chelidonine (22) can inhibit the cell
cycle of leukemic T cells in different p53 states while suppressing tubulin polymerization in
A549 cells, and the IC50 values of different tumor suppressor proteins’ p53 gene for MOLT-4,
HL-60, U-937, and Raji range from 4.8 to 8.3 µM [51].
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Havelek R. et al. [61] have indicated that homochelidonine (23) (Figure 8) induces
apoptosis and arrests the G2 phase mitotic cell cycle in cancer cells, and 20 µM homocheli-
donine (23) inhibits the cell growth of SK-BR-3, HepG2, and MCF-7 by over 50%.
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Acetyldihydrosanguinarine (24), 6-ketenesanguinarine (25), and demethylsanguinar-
ine (26) (Figure 8) are isolated from Corydalis bungeana Turcz. Xiyun Ye et al. [62] deter-
mined the cytotoxic activity of the above two compounds against A549, HT-29, kb16, and
P-388 cell lines, respectively, and their ED50 (µg/mL) values reach 1.840, 1.600, 0.340, and
0.051, respectively.

2.1.4. Antitumor Activities of Benzophenanthridine Alkaloids from Corydalis

Corynoline (27) (Figure 9) is a natural product derived from the traditional Chinese
medicine Corydalis. It significantly inhibits the cell cycle and induces apoptosis in melanoma
cells B16F10 and A375 in vivo, with an IC50 value of 6.16 µM. The IC50 value of A375 reaches
5.56 µM. The mechanism between them is correlated with the upregulated gene expression
of Bax and cleavage of Caspase-3 [63].
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Corygaline A (28) (Figure 9), isolated from Corydalis bungeana Turcz, refers to a hexahy-
drobenzophenanthridine alkaloid with an unusual carbon skeleton. Corygaline A (28) is
capable of inhibiting the NO production in LPS-activated RAW264.7 macrophages with an
IC50 value of 2.9 µM. Moreover, it is independent of dose [64].

Acetylcorynoline (29) (Figure 9), originating from the rhizome of the natural plant
Corydalis incisa, inhibits the mitotic process of cancer cells by affecting chromosomes,
spindles, and the cytoplasm during mitosis, which eventually arrests the mitotic process
and induces apoptosis. The mitotic process of the cells is significantly inhibited by 10 µM
acetylcorynoline. Acetylcorynoline (29) potently inhibits human colon carcinoma HCT-116,
lung adenocarcinoma cell NCI-H23, lung carcinoma H460, as well as cervical carcinoma
TuWi with EC50 values < 20 µg/mL [65].

As shown in Figure 10, dehydroambiguanine A (30) and (6R, 13S, 14S)-ambinine (31)
are extracted from Corydalis ambigua subsp. Amurensis. As indicated by the result, both
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alkaloids can inhibit the proliferation of tumor cells during activity tests. They exhibit
strong activity against the human colon cancer cell line HCT-116, dehydroambiguanine A
(30) with an IC50 value of 49.8 ± 4.79 µM. Furthermore, (6R, 13S, 14S)-ambinine (31) is less
active (IC50 values > 200 µM) [66].
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2.1.5. Antitumor Activities of Benzophenanthridine Alkaloids from Macleaya cordata

The benzophenanthridine alkaloids cordatine (32) and 6-methoxyldihydrochelerythrine
(33) in Figure 11 are extracted from the fruits of Macleaya cordata. Hui Liang Zou et al. [67]
determined the cytotoxic activity of the above two benzophenanthridine alkaloids against
MCF-7 and SF-268 through the MTT assay. As revealed by the results, the IC50 value
of cordatine (32) against MCF-7 cells is 34.78 mM, and that against SF-268 cells reaches
11.79 mM. Furthermore, the IC50 value of 6-methoxydihydrochelerythrine (33) reaches
21.45 mM and 4.28 mM, respectively.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 26 
 

 

lung adenocarcinoma cell NCI-H23, lung carcinoma H460, as well as cervical carcinoma 
TuWi with EC50 values < 20 µg/mL [65]. 

 
Figure 9. Benzophenanthridine alkaloids from corydalis. 

As shown in Figure 10, dehydroambiguanine A (30) and (6R, 13S, 14S)-ambinine (31) 
are extracted from Corydalis ambigua subsp. Amurensis. As indicated by the result, both 
alkaloids can inhibit the proliferation of tumor cells during activity tests. They exhibit 
strong activity against the human colon cancer cell line HCT-116, dehydroambiguanine A 
(30) with an IC50 value of 49.8 ± 4.79 µM. Furthermore, (6R, 13S, 14S)-ambinine (31) is less 
active (IC50 values > 200 µM) [66]. 

 
Figure 10. Benzophenanthridine alkaloids from Corydalis ambigua subsp. Amurensis. 

2.1.5. Antitumor Activities of Benzophenanthridine Alkaloids from Macleaya cordata 
The benzophenanthridine alkaloids cordatine (32) and 6-methoxyldihydrochel-

erythrine (33) in Figure 11 are extracted from the fruits of Macleaya cordata. Hui Liang Zou 
et al. [67] determined the cytotoxic activity of the above two benzophenanthridine alka-
loids against MCF-7 and SF-268 through the MTT assay. As revealed by the results, the 
IC50 value of cordatine (32) against MCF-7 cells is 34.78 mM, and that against SF-268 cells 
reaches 11.79 mM. Furthermore, the IC50 value of 6-methoxydihydrochelerythrine (33) 
reaches 21.45 mM and 4.28 mM, respectively. 

Ethoxysanguinarine (34) is derived from Macleaya cordata (Willd) r. br., and ethox-
ysanguinarine (34) inhibits the anchorage-dependent and anchorage-independent growth 
of breast cancer cells by inducing cell autophagy by upregulating the activity of AMP-
activated protein kinase (AMPK). Ethoxysanguinarine (34) exhibits strong activity against 
seven breast cancer cell lines (including MCF-7, sk-br3, MDA-MB-231, MDA-MB-436, 
MDA-MB-468, MDA-MB-453, and MDA-MB-435S) with IC50 values from 2.63 to 9.15 µM 
[68]. Recently, a study showed that it inhibits the viability of MCF-7 and MDA-MB-231 
human breast cancer cells and induces apoptosis via a mechanism related to a Hakai-re-
lated signaling pathway [69]. 

 

Figure 11. Benzophenanthridine alkaloids from the fruits of Macleaya cordata.

Ethoxysanguinarine (34) is derived from Macleaya cordata (Willd) r. br., and ethoxysan-
guinarine (34) inhibits the anchorage-dependent and anchorage-independent growth of
breast cancer cells by inducing cell autophagy by upregulating the activity of AMP-
activated protein kinase (AMPK). Ethoxysanguinarine (34) exhibits strong activity against
seven breast cancer cell lines (including MCF-7, sk-br3, MDA-MB-231, MDA-MB-436, MDA-
MB-468, MDA-MB-453, and MDA-MB-435S) with IC50 values from 2.63 to 9.15 µM [68].
Recently, a study showed that it inhibits the viability of MCF-7 and MDA-MB-231 hu-
man breast cancer cells and induces apoptosis via a mechanism related to a Hakai-related
signaling pathway [69].

Five dihydrodibenzophenanthridine alkaloids, termed maclekarpine A–E (35–39)
(Figure 12), are isolated from the fall back roots of Macleaya cordata. The alkaloids maclekarpine
A–E (35–39) exhibit high antitumor activity and have an inhibitory effect on several human
cancer cells (e.g., human colon cancer cell line HCT-8, human hepatoma cell line BEL-7402,
human gastric cancer cell line BGC-823, human ovarian cancer cell line A2780, as well as
human lung cancer cell line A549). Maclekarpine A (35) exhibits excellent activity against
BGC-823 with an IC50 value of 0.7 µM, except that maclekarpine B (36) is inactive. The IC50
value of maclekarpine C (37) ranges from 1.6 to 3.4 µM. Maclekarpine D (38) IC50 values
range from 0.2 to 2.0 µM. Maclekarpine E (39) has a significant inhibitory activity against
BGC-823 with the IC50 value of 0.1 µM [70].

(±)-macleayin A (40, 41) and (±)-macleayin B (42, 43) in Figure 13 originating from
Macleaya cordata (Willd.) r. br. are enantiomeric natural dimeric alkaloids. (±)-macleayin
A (40, 41) are prepared by coupling dihydrosanguinarine with allocryptamine through
the 6,13′-C-C bond, and (±)-macleayin B (42, 43) are synthesized by coupling dihy-
drosanguinarine with proto opioid through a 6,13′-C-C bond. In the in vitro activity test,
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(±)-macleayin A and (±)-macleayin B have significant inhibitory effects on cancer cell
HL-60 with IC50 values from 3.51 to 9.64 µM. Macleayin A exhibits the optimal activity,
while the IC50 values of sanguinarine and allocryptophylline reach 7.71 and 7.18 µM,
respectively [71].
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Figure 13. Benzophenanthridine alkaloids from Macleaya cordata (Willd.) r. br.

The natural benzophenanthridine alkaloids (−)-macleayin C (44), (+)-macleayin C (45),
(−)-macleayin D (46), (+)-macleayin D (47), (−)-macleayin E (48), and (+)-macleayin E (49)
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(Figure 14) with enantiomers originate from Macleaya cordata. They are novel compounds
comprising dihydrophenanthridine alkaloids with phenylpropane. Among the cytotoxic
activities, (−)-macleayin C (44) and (+)-macleayin C (45) are more active against HL-60
cancer cells with IC50 values of 12.13 and 10.15 µM, respectively. (−)-macleayin D (46),
(+)-macleayin D (47), (−)-macleayin E (48), and (+)-macleayin E (49) significantly inhibit
HL-60 and A549 cancer cells with IC50 values from 18.46 to 35.26 µM [72].
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Figure 14. Benzophenanthridine alkaloids from Macleaya cordata.

Bis-[6-(5,6dihydrochelerythrinyl)] ether (50) (Figure 15) refers to a benzophenanthri-
dine benzophenanthridine alkaloid dimer originating from the roots of M. microcarpa. It
exhibits favorable cytotoxic activity against human cancer cell lines (e.g., HCT-8, BEL-7402,
BGC-823, and A2780) with IC50 values of 1.6, 2.1, 0.1, and 1.6 µM, respectively [43]. More-
over, existing research has indicated that the natural benzophenanthridine dimeric alkaloid
(+)-1,3-bis (8-hydro) (51) exhibits antitumor activity [73].

2.2. Antitumor Activities of Benzophenanthridine Alkaloids from Plants of the Genus Tanneraceae

Jie Jiang et al. [74] isolated and extracted two benzophenanthridine alkaloids with
anticancer activity dihydrosanguinarine (52) and dihydrochelilutine (53) (Figure 16) from
Thalictrum microgynum Lecoy ex Oliv. Dihydrosanguinarine (52) inhibits pancreatic can-
cer cells by downregulating mut-p53 or wt-p53 protein expression and regulating the
RAS/Raf/MEK/ERK pathway, and the mechanism may be correlated with inducing apop-
tosis in PANC-1 and SW1990 cells and triggering cell cycle arrest in PANC-1 cells [75].
Dihydrosanguinarine (52) at 5 µM concentration significantly inhibits human promyelocytic
leukemia HL-60 cells with p < 0.001 while reducing cell survival [76].
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2.3. Antitumor Activities of Benzophenanthridine Alkaloids from Rutaceae
2.3.1. Antitumor Activities of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium

Nitidine chloride (54), a herb derived from the root of Zanthoxylum avicennae, exhibits
anti-inflammatory, antifungal, anti-HIV, and antimalarial biological activities and shows
high activity against tumor cancer cells [77], as indicated by the IC50 values (µM) against
four cancer cell lines (including HepG2, A549, NCI-H460, and CNE1) that reach 1.40 ± 0.16,
1.88 ± 0.24, 2.35 ± 0.35, and 1.85 ± 0.08, respectively. Pan X et al. [78] have confirmed
that nitidine chloride (54) can inhibit the protrusion formation and partial proteolytic
activity of MMP-9 and MMP-2 in a dose-dependent manner; reduce the PDGF-induced
phosphorylation of c-Src, FAK, and MAPKs; and decrease AP-1 transcriptional activity to
inhibit the human breast cancer MDA-MB-231 cell line. Nitidine chloride (54) can inhibit
HepG2, HCCLM3, and Huh7 growth, arrest G1/s cell cycle, inhibit proliferation, induce
apoptosis, and suppress the expression of cegf-a and VEGFR2 in HCC cells in vitro and
in vivo by activating the mitochondria-dependent pathway [79]. Huaping Mou et al. [80]
have suggested that nitidine chloride (54) can inactivate S-phase kinase-associated protein
2 (Skp2) to inhibit ovarian cancer, mainly downregulating Skp2 expression and enhancing
the sensitivity of ovarian cancer cells to nitidine chloride, in which p < 0.05. Nitidine
chloride (54) is capable of inhibiting renal cancer cell 786-O and A498 cells, as confirmed by
cell viability and flow cytometric apoptosis analysis. Its mechanism is primarily induced
by downregulating the signaling process of p53, BcI-2, caspase-3, and inhibiting ERK [81].
Nitidine chloride (54) can induce autophagy and apoptosis of ovarian cancer cells through
various signaling pathways, such as Akt/mTOR. It may become a potential target for
ovarian cancer chemotherapy [82].

In cancer cell proliferation, nitidine chloride (54) can serve as a potent inhibitor while
inhibiting cell growth, apoptosis, migration, and invasion in glioblastoma cell lines by
downregulating the expression of calmodulin-dependent protein kinase III, which may be
correlated with the activation of Cdc20 oncoprotein expression [83]. Moreover, osteosar-
coma cells can be inhibited by nitidine chloride (54), and Hui Xu et al. [84] have indicated
that nitidine chloride (54) inhibits the growth, migration, and invasion and induces the
apoptosis of osteosarcoma cells through an MTT assay and flow cytometric analysis. The
mechanism may be correlated with the inhibition of sin1 expression in osteosarcoma cells.
As revealed by the result, nitidine chloride (54) inhibits rectal cancer HCT-116 cells by
inhibiting the phosphorylation pathway of ERK, and the mechanism is the upregulation
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of the expression of Bax, p53, and the downregulation of the expression of caspase-3,
caspase-9, and BcI-2 [85]. Hyoung Yang et al. [86] have found that nitidine chloride (54)
inhibits human oral squamous cell carcinoma (OSCC) by inhibiting the signal transducer
and activator of transcription 3 (STAT3), and the main mechanism is the downregulation of
myeloid cell leukemia-1 (MCl-1) protein in HSC-3 and HSC-4 by inhibiting the STAT3 path-
way. Furthermore, acute myeloid leukemia (AML) can be inhibited by nitidine chloride (54)
by inhibiting the phosphorylation of Akt and ERK. Its main mechanism is to downregulate
cyclin B1, CDK1, and BCl; upregulate p27 and Bax in AML cells; inactivate PARP; and
activate caspase-3-related signaling pathways [87]. Existing research on the anticancer
effect of nitidine chloride (54) has suggested that it is capable of inhibiting leukemia (CML)
by downregulating the expression of proto oncogene c-myc, and the possible mechanism
of action of nitidine chloride (54) is to induce apoptosis and upregulate caspase-3 and
PARP-1 in K562 cells, thus enhancing the effect of imatinib on K562 cells [88]. Nitidine
chloride (54) is also active against BRCA1-deficient cancer cells. Existing research has sug-
gested that bicarbonate chloride (DSBs) is also active at 0.2 µM, thus significantly inhibiting
MDA-436BRCA1-KO cells (p ≤ 0.001), and 0.4 µ m is significantly (p ≤ 0.001) resistant to
HCC1937-BRCA1−/− inhibition [89].

Some studies have indicated that bicarbonate chloride (54) exhibits antitumor stem
cell properties (e.g., inhibiting the epithelial mesenchymal transition (EMT) and inhibiting
glioma stem cell properties through the JAK2/STAT3 signaling pathway [90]). Bicarbonate
chloride (54) also exhibited dose-dependent anti-liver cancer stem cell activity, which was
confirmed in nude mice experiments [91]. Furthermore, nitidine chloride (54) inhibits the
epithelial mesenchymal transition process while suppressing tumor stem cell properties in
breast cancer cells through the hedgehog signaling pathway [92]. In the in vitro activity
study, nitidine chloride (54) inhibited bladder cancer cells by downregulating the expression
of Lymphocyte antigen 75 (LY75) [93].

Avicine (55) and nitidine chloride (54) (Figure 17) are two types of benzophenanthri-
dine alkaloids derived from the roots of Zanthoxylum avicennae that serve as cholinesterases
(AChE), monoamine oxidases A (Maos), and A β 1–42 targeted inhibitors. Erika Plaza
et al. [79] analyzed the IC50 values for inhibiting EeAChEH, rAChE, EqAChE, MAO A,
and MAO B using avicine (55) and nitidine chloride (54). The IC50 values (µM) of avicine-
inhibited AChEW as 0.15 ± 0.01, 0.52 ± 0.05, and 0.88 ± 0.08 reach 0.41 ± 0.02, and the
inhibition Maos IC50 values (>100 µM). However, the IC50 values (µM) of nitidine chloride-
inhibited AChE reach 0.65 ± 0.09, 1.25 ± 0.09, and 5.73 ± 0.60, and those of inhibition
MAOs IC50 values reach 1.89 ± 0.17 and >300 µM.
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Figure 17. Benzophenanthridine alkaloids from Zanthoxylum rhoifolium.

Buegenine (56) (Figure 18), derived from Zanthoxylum buesgenii, is cytotoxic in nine
cancer cell lines, including leukemic cancer cells CCRF-CEM and CEM/ADR5000, breast
cancer cell MDA-MB231 and its resistant subline MDA-MB231/BCRP, colon cancer cell
HCT-116p53+/+ and its resistant subline HCT-116p53−/−, glioblastoma U87MG and its
resistant subline U87MG∆EGFR, HepG2 hepatoma cells, and AML12 normal liver cells. It
exhibits high activity with IC50 values less than 65 µM. Notably, buegenine (56) exhibits
better activity against drug-resistant CEM/ADR5000 cell lines than doxorubicin [94].
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originating from compound 65 through structural modification, enhances the inhibition 
selectivity of tyrosine DNA phosphodiesterase 1 (TDP1), with an IC50 value of 1.7 ± 0.24 
µM. It is also capable of inhibiting the enhancement of DNA topoisomerase IB (TOP1) 
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chains exhibit poor activity, which may be correlated with poor cell permeability [96]. 

Figure 18. Benzophenanthridine alkaloids from Zanthoxylum buesgenii.

A wide variety of benzophenanthridine alkaloids (Figure 19) have been extracted
by Deng, Y’s group [95] in Zanthoxylum avicennae from Yunnan Province, and their an-
tileukemic cell line HLa activity in vitro is determined, with better activity of boccono-
line (60), zanthoxyline (61), nitidine chloride (54), chelerythrine (2), and their IC50 values
(µM) in the order of 7.65 ± 0.11, 24.94 ± 1.99, 3.59 ± 0.82, and 15.52 ± 0.26. Nitidine
chloride (54) results in significant S-phase arrest and induces apoptosis in HEL cells, thus
becoming a promising potential antileukemic candidate. Furthermore, other alkaloids
2-(5,6-dihydrochelerythrine-6-ylethyl acetate) (57), 6-acetonydihy–drochelerythrine (58),
the activities of 6 β-hydroxymethyldihydronitidine (59), o-methylzanthoxyline (62), rhoifo-
line B (63), and n-nornitidine (64) are less weak with IC50 values higher than 30 µM.
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Figure 19. Benzophenanthridine alkaloids from Zanthoxylum avicennae.

The natural product rhoifoline B (63) is structurally modified to obtain compound 65
(Figure 20) with the hydroxy substitutions at the 11-position. Compound 66 (Figure 20),
originating from compound 65 through structural modification, enhances the inhibition se-
lectivity of tyrosine DNA phosphodiesterase 1 (TDP1), with an IC50 value of 1.7 ± 0.24 µM.
It is also capable of inhibiting the enhancement of DNA topoisomerase IB (TOP1) activity,
thus effectively inhibiting MCF7, A549, H460, and HepG2 cells. The structure–activity
relationship study indicates that the 11 hydroxyl groups of compound 65 are replaced
by different chemical structures. For instance, compounds with triazole branched chains
exhibit poor activity, which may be correlated with poor cell permeability [96].
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Two benzophenanthridine alkaloids with cytotoxic activity against a variety of hu-
man cancer cell strains, zanthocadinanine C (70) and 7-methoxy-8-demethoxynitidine (71) 
(Figure 22), are isolated from the traditional drug Zanthoxylum nitidum (Roxb.) DC. Zan-
thocadinanine C (70) and 7-methoxy-8-demethoxynitidine (71) exhibit cytotoxic activity 
against five human cancer cell lines KB, MCF-7, LNCaP, HepG-2, and lu-1, whereas the 
alkaloid 7-methoxy-8-demethoxynitidine (71) has high activity with IC50 values from 10.3 
to 12.6 µM. Furthermore, zanthocadinanine C (70) is less active with IC50 > 100 µM [98]. 
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Dihydronitidine (72) (Figure 23), a benzophenanthridine alkaloid, is isolated from 
Zanthoxylum. Dihydronitidine exhibits high antitumor activity, and its mechanism may be 
the regulation of cell cycle-related genes CDK2 and CCNE in tumor cells and the upregu-
lation of the expression of relevant genes of apoptosis. For six different cancer cell lines, 
including lung cancer cell A549, colon adenocarcinoma cell COLO-201, pancreatic cancer 
cell MIA-PaCa2, epidermoid carcinoma cell A431, gastric cancer cell KATO III, and breast 
cancer cell SKBR-3, the ED50 values of dihydrobifrontal bases range from 0.19 to 4.60 
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Figure 20. Study on structure–activity relationship of rhoifoline B.

In Figure 21, the benzophenanthridine alkaloids 8-acetyldihydrocheleryrhtine (67),
arnottianamide (68), and 8-oxochelerythrine (69) with anticancer effects are extracted
and isolated from Zanthoxylum paracanthum kokwaro. Several studies have found that
8-acetyldihydrocheleryrhtine (67), arnottianamide (68), and 8-oxochelerythrine (69) can
inhibit human breast cancer cell line HCC-1395 and human prostate cancer cell DU 145. The
IC50 value for 8-acetyldihydrochelerythrine (67) reaches 9.99 µg/mL and 66.82 µg/mL. To
be specific, the IC50 value of zanthoxylamide (68) reaches 38.34 µg/mL and 84.31 µg/mL.
The IC50 value of 8-oxovalerythrine (69) reaches 14.09 µg/mL and 63.41 µg/mL [97].
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Figure 21. Benzophenanthridine alkaloids from Zanthoxylum paracanthum Kokwaro.

Two benzophenanthridine alkaloids with cytotoxic activity against a variety of hu-
man cancer cell strains, zanthocadinanine C (70) and 7-methoxy-8-demethoxynitidine (71)
(Figure 22), are isolated from the traditional drug Zanthoxylum nitidum (Roxb.) DC. Zan-
thocadinanine C (70) and 7-methoxy-8-demethoxynitidine (71) exhibit cytotoxic activity
against five human cancer cell lines KB, MCF-7, LNCaP, HepG-2, and lu-1, whereas the
alkaloid 7-methoxy-8-demethoxynitidine (71) has high activity with IC50 values from 10.3
to 12.6 µM. Furthermore, zanthocadinanine C (70) is less active with IC50 > 100 µM [98].
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Figure 22. Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb.) DC.

Dihydronitidine (72) (Figure 23), a benzophenanthridine alkaloid, is isolated from
Zanthoxylum. Dihydronitidine exhibits high antitumor activity, and its mechanism may
be the regulation of cell cycle-related genes CDK2 and CCNE in tumor cells and the up-
regulation of the expression of relevant genes of apoptosis. For six different cancer cell
lines, including lung cancer cell A549, colon adenocarcinoma cell COLO-201, pancreatic
cancer cell MIA-PaCa2, epidermoid carcinoma cell A431, gastric cancer cell KATO III, and
breast cancer cell SKBR-3, the ED50 values of dihydrobifrontal bases range from 0.19 to
4.60 µg/mL [99].
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Noravicine (73) (Figure 23), a benzophenanthridine alkaloid isolated from the roots
of nitidum needles of Zanthoxylum avicennae, exhibits strong cytotoxicity against Ball-1
cancer cells with IC50 values of 74.8 ± 5.93 µM [89].

The isolated benzophenanthridine alkaloids extracted from Zanthoxylum integrifoli-
olum are isodecarine (74), 8-Demethyloxychelerythrine (75), Norchelerythrine (76), Oxy-
chelerythrine (77), Decarine (78), Dihydrocherythrinylacetaldehyde (79), and
6-Acetonyldihydrochelerythrine (80) (Figure 24). Compounds 74–80 exhibit potent tox-
icity against P-388 and HT-29 cancer cell lines with ED50 values from 1.15 to 10.30 µg/mL,
where dihydrocherythrinylacetaldehyde (79) exhibits the optimal activity, with ED50 values
of 1.15 and 4.08 µg/mL, respectively [100].
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The alkaloid zanthoisobutylamide A (81) (Figure 25), isolated from Zanthoxylum
nitidum roots by extraction, refers to a dihydrobenzophenanthridine alkaloid dimer linked
with an unsaturated alkylamide through a C-6 bond. Zanthoisobutylamide A (81) potently
inhibits human epidermal carcinoma A431 cells with the IC50 value of 29.75 µg/mL [101].

Isoarnottianamide (82) and heitziquinone (83) (Figure 25) refer to a new class of
benzophenanthridine alkaloids. To be specific, heitziquinone (83) was isolated from the
subfractions of isoarnottianamide (82), and its toxic activity against RAW 264.7 cells was
examined [102].

2.3.2. Antitumor Activities of Benzophenanthridine Alkaloids from Fagaropsis

Fagaridine chloride (84) (Figure 26), a benzophenanthridinium natural product iso-
lated from Fagara tessmannii, has shown promising antitumor effects, and the mechanism
is correlated with the activation of caspases, the alteration of MMPs, and the secretion
amount of ROS. Fagaridine chloride (84) exhibits potent cytotoxicity against several cancer
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cell lines (e.g., CCRF-CEM cells, CEM/ADR5000 cells, MDA-MB-231-pcDNA3 cells, MDA-
MB-231-BCRP clone 23 cells, HCT-116p53 +/+, HCT-116p53−/− cells, U87.MG cells and
counterparts U87.MG∆EGFR, and HepG2 cells). The IC50 values range from 1.69 to 63.38
µM. Furthermore, it exhibits strong cytotoxicity against CCRF-CEM cells, CEM/ADR5000,
and U87.MG cells [103].
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NK-109 (85) (Figure 26) refers to a benzophenanthridinium salt alkaloid that is struc-
turally similar to fagaridine but contains a phenolic hydroxyl substitution at C-7. It is a
topoisomerase II inhibitor with better activity. Its metabolites are less toxic to host cells
and exhibit significant antitumor activity in clinical trials [104], and NK-109 (85) exhibits
significant inhibitory activity against a mixture of HeLa S3 cells and human liver S-9 with
IC50 values of 0.08 µg/mL [105] and 0.32 µM [104]. The IC50 values for K562/ADM cells,
adrr MCF7 cells, PC-9/CDDP cells, and SKOV3/VP cells are obtained as 0.045, 0.42, 0.19,
and 0.21 µg/mL, respectively [106]. Research has shown that 6-substituted derivatives
of NK-109 will affect their antitumor activity. The 8-O-substituted derivatives partially
inhibit biological reduction. Bulky hydrophobic substituents will weaken activity, while
hydrophilic substituents show similar activity as NK-109. The 5-substituted derivatives
show strong activity [104].

The natural product fagaridine chloride (84) is structurally modified to compounds
dihydrofagaridin (86), 5,6,7,10-tetrahydro-8-methoxy-5-methyl-2,3-methyl-enedioxy-7,10-
dioxobenzophenanthridine (87), and 10- hydroxyfagaridinetosylate (88) (Figure 27). The
compounds dihydrofagaridin (86), 5,6,7,10-Tetrahyd ro-8-methoxy-5-methyl-2,3-meth- yl-
enedioxy-7,10-dioxobenzo[c]phenanthridine (87), and 10-hydroxyfagaridinetosylate (88)
significantly inhibit non-small cell lung cancer cell line A-549, ovarian cancer cell line
SKOV-3, colon cancer cell line HCT-15, colon cancer cell line XF-498, and melanoma cell
line SK-Mel-2 [107].
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2.3.3. Antitumor Activities of Benzopheridine Alkaloid from Toddalia

Benzophenanthridine alkaloid, 8-acetonyldihydronitidine (89), extracted from Toddalia
asiatica, can induce p53 expression, enhance caspase-3 activity, and exhibits good antitumor
activity. It is capable of significantly inhibiting colorectal cancer HCT-116 and tumor cell
proliferation and inducing apoptosis in vivo, with an IC50 value of 12.91 µM [108].

Benzophenanthridine alkaloids 8-methoxynorchelerythrine (90), 11-demethylrhoifoline B
(91), 8-methoxynitidine (92), 8-acetylnorchelerythrine (93), 8,9,10,12-tetramethoxynorchelerythrine
(94), isointegriamide (95), pancorine (96), 8-methoxychelerythrine (97), oxynitidine (98), and
oxysanguinarine (99) (Figure 28) are extracted from Toddalia asiatica. Studies have shown
that the above compounds could inhibit eight types of human tumor cell lines in vitro,
including A549 (human lung cancer), BGC-823 (human gastric cancer), HCT-15 (human
colon cancer), Hela (human cervical cancer), HepG2 (human liver cancer), MCF-7 (human
breast cancer), SK-MEL-2 (human skin cancer), and SGC-7901 (human gastric cancer). Their
IC50 values range from 1.3 to 17.8 µg/mL [109].
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Some derivatives (100, 101, 102) (Figure 29) originate from the benzophenanthridine
natural product oxynitidine (98) after semi synthetic structure modification. W.-L. Tang
et al. [110] had suggested that the derivatives of oxynidine are capable of inhibiting the
growth and proliferation of human cancer cells and inducing apoptosis by inhibiting the
activity of DNA topoisomerase IB (TOP1). For HCT-116, MCF-7, DU145, and A549 cancer
cell lines, the GI50 ± SD of camptothecin (CPT) (µM) reaches 0.009, 0.012, 0.21, and 0.099,
respectively. As the derivatives of topoisomerase IB inhibitors 100, 101, and 102, they
inhibit the GI50 ± SD of HCT-116, and MCF-7, DU145, and A549 (µM), respectively, reach
0.29, 0.10, 0.014, and 0.98; 0.036, 0.090, 0.002, and 0.97; 0.076, 0.34, 0.018, and 0.79. Compared
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with camptothecin, compounds 100, 101, and 102 have better efficacy in the treatment for
DU145 cancer cells.
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3. Conclusions and Perspectives

The natural benzophenanthridine alkaloids have aroused increasing attention for their
extensive and significant biological activities and favorable therapeutic effects in many
aspects (e.g., anti-inflammatory, antitumor, antibacterial, and antifungal). Natural ben-
zophenanthridine alkaloids (e.g., sanguinarine, chelerythrine, and nitidine) have achieved
a high potential application value and bright application prospect. Studies have shown the
potential therapeutic effects of 90 natural benzophenanthridine alkaloids on tumor cells,
including human leukemia (e.g., HL-60, THP-1, MT-4, CEM, and U937), human prostate
cancer (e.g., DU-145, LNCaP, and PC3), human epidermoid cancer (e.g., A431 and nheks),
human pancreatic cancer (e.g., AsPC-1 and BXPC-3), human melanoma (e.g., M4Beu, A372,
and OCM-1), human non-small cell lung cancer (A549), human breast cancer (e.g., MCF-7
and MDA-MB-231), human ovarian adenocarcinoma (OVCAR-3), cervical cancer (hen-16-2,
HeLa), human colon cancer (HCT-116, SW480), human gastric cancer cell (BGC-823), etc.
Moreover, the anticancer activity of various natural benzophenanthridine alkaloids has
been verified in animal anticancer experiments. For instance, sanguinarine (1) exhibits
antitumor properties against human and rodent breast cancer cells in vitro and in vivo.
Nitidine chloride reduced the tumor volume and weight by inhibiting ERK, STAT3, and
SHH pathways and regulating Bcl-2, Bax, CDK1, and VEGF pathways in mouse experi-
ments [96]. Moreover, the activity of a few natural benzophenanthridine alkaloids is better
than that of marketed drugs. For instance, burgenine (56) is more active than Doxorubicin in
drug-resistant CEM/ADR5000 cell lines. Oxynitidine derivatives 100, 101, and 102 exhibit
better inhibitory activity on DU145 cells than camptothecin (CPT). Existing research has
suggested that natural benzophenanthridine alkaloids exhibit extensive anticancer activity.

Natural benzophenanthridine alkaloids have promising applications in the fight
against the drug resistance of tumors. For instance, NK-109 (85) exhibits strong cyto-
toxicity to drug-resistant cell lines K562/ADM, AdrR MCF7, PC-9/CDDP, and SKOV3/V,
with IC50 values of 0.045, 0.42, 0.19, and 0.21 µg/mL, respectively, and the drug molecule
has entered the clinical research stage. In addition, the natural products of benzophenan-
thridine exhibit significant cell activity against cancer stem cells. Sanguinarine (1) exerts a
specific targeting effect on lung cancer stem cells, and it is a natural drug-resistant com-
pound against lung cancer. In addition, sanguinarine (1) inhibits pancreatic cancer stem
cells by inhibiting the sonic hedgehog signaling pathway. Chelerythrine (2) downregulates
β- Catenin, thus inhibiting non-small cell lung cancer stem cells. Nitidine chloride (54)
inhibits epithelial mesenchymal transformation (EMT) and glioma stem cell characteristics
by the JAK2/STAT3 signaling pathway. Furthermore, it exhibits a dose-dependent anti-
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hepatoma stem cell activity, as confirmed in nude mouse experiments. Moreover, it can
inhibit the epithelial mesenchymal transformation of breast cancer cells and suppress the
characteristics of tumor stem cells through the hedgehog signaling pathway. Ferroptosis
takes on critical significance in the treatment of cancer stem cells [111]. Recent research
has revealed that sanguinarine (1) can induce H2O2-dependent cell ferroptosis in human
cervical cancer (HeLa) by downregulating SLC7A11 and GSH [6].
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