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Abstract: Studying primary melanoma and its corresponding metastasis has twofold benefits. Firstly,
to better understand tumor biology, and secondly, to determine which sample should be examined in
assessing drug targets. This study systematically analyzed all the literature on primary melanoma
and its matched metastasis. Following PRISMA guidelines, we searched multiple medical databases
for relevant publications from January 2000 to December 2022, assessed the quality of the primary-
level studies using the QUIPS tool, and summarized the concordance rate of the most reported
genes using the random-effects model. Finally, we evaluated the inter-study heterogeneity using
the subgroup analysis. Thirty-one studies investigated the concordance of BRAF and NRAS in 1220
and 629 patients, respectively. The pooled concordance rate was 89.4% [95% CI: 84.5; 93.5] for BRAF
and 97.8% [95% CI: 95.8; 99.4] for NRAS. When high-quality studies were considered, only BRAF
mutation status consistency increased. Five studies reported the concordance status of c-KIT (93%,
44 patients) and TERT promoter (64%, 53 patients). Lastly, three studies analyzed the concordance of
cancer genes involved in the signaling pathways, apoptosis, and proliferation, such as CDKN2A (25%,
four patients), TP53 (44%, nine patients), and PIK3CA (20%, five patients). Our study found that the
concordance of known drug targets (mainly BRAF) during melanoma progression is higher than in
previous meta-analyses, likely due to advances in molecular techniques. Furthermore, significant
heterogeneity exists in the genes involved in the melanoma genetic makeup; although our results are
based on small patient samples, more research is necessary for validation.

Keywords: concordance; primary cutaneous melanoma; metastasis; BRAF; NRAS; c-KIT

1. Introduction

Cutaneous melanoma (CM) is an aggressive tumor arising from the pigment-producing
cells (melanocytes) located in the skin. The incidence of melanoma has steadily increased
in many susceptible populations over the past five decades [1]. Patients diagnosed with
localized disease undergo surgical resection with a favorable prognosis [2]. However, 40%
of those patients develop metastatic disease, reducing the 5-year overall survival to less
than 30% [3,4]. Unraveling the molecular biology of CM has revolutionized treatment
with targeted therapy (BRAF and MEK inhibitors) and immunotherapy (anti-PD1 and anti-
CTLA-4 agents) [5–10]. Patients with metastatic tumors undergo molecular testing for the
BRAF V600 mutation to determine treatment options with BRAF/MEK inhibitors [7,11,12].
With the discovery of additional melanoma driver genes, strong efforts were made to
develop targeted therapies for BRAF wild-type tumors [13]. Several researchers investi-
gated potential targeted treatments for NRAS Q61 mutant melanomas. Ongoing clinical
trials tested the new treatments with MEK and CD147i inhibitors in advanced melanoma
after immunotherapy failure [14,15]. Moreover, further inhibitors are also available for
melanoma harboring an amplified c-KIT gene [16,17]. The mutations in BRAF V600, NRAS
Q61, and c-KIT occur early in melanoma development [18,19]. Consequently, if a patient
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develops a metastasis, the absence of these alterations in the primary tumor may be suf-
ficient to exclude the patient from the targeted therapies. Otherwise, an invasive biopsy
of the metastatic deposit needs to be performed. However, a meta-analysis conducted in
2017 showed an overall discrepancy rate of 13.4% of the BRAF status between the primary
melanoma and the matched metastasis [20]. Hence, it is advised to determine the BRAF
status in the metastasis deposit [21].

With advances in sequencing techniques for mutation detection, additional studies
addressed the concordance of the mutation status of primary CM and matched metas-
tasis in multiple cancer genes. However, the sensitivity of these methods for mutation
detection has not yet been compared to older techniques. Therefore, collecting up-to-date
information on the concordance status of BRAF and additional driver genes, along with
assessing the quality of the new studies, may help to redirect the diagnosis and therapeutic
decisions for CM patients. Additionally, understanding how CM tumors evolve and differ
between primary and metastatic sites is important. Thus, in this study, we aimed to sys-
tematically review all the literature and undertake the meta-analysis where appropriate in
order to determine the mutation concordance rate between primary CM and its matched
metastatic sites.

2. Methods

We conducted this systematic review and meta-analysis in accordance with the
Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guide-
lines. The preregistered protocol is available at PROSPERO under the protocol number
CRD42022327641, accessed on 15 May 2022 and available from: https://www.crd.york.ac.
uk/prospero/display_record.php?ID=CRD42022327641.

2.1. Search Strategy and Eligibility Criteria

A comprehensive search strategy was employed to ensure the inclusion of relevant
studies. We performed an initial search in Embase to detect the relevant keywords in
the titles and the abstracts. The primary search terms used in Embase were “genetic
features”, “primary cutaneous melanoma” and “metastatic melanoma”. The obtained
synonymous terms from Embase were then added to enhance the search strategy. Articles
published from 2000 to December 2022 were searched in the following databases: Medline,
Embase, Web of Science, and the Cochrane Central Register of Controlled Trials. The
search strategies are available in Supplementary Material Table S1. Two independent
reviewers (C.Z. and T.K.) evaluated the titles and abstracts of the identified studies in
separate EndNote libraries. Discrepancies were discussed with a third reviewer (A.M.).
Inclusion criteria consisted of studies that compared the genetic patterns between primary
CM and the matched metastasis within the same patient. Studies that only included uveal
and mucosal melanoma were excluded, as well as conference abstracts and case studies.

2.2. Data Extraction and Quality Assessment

Full-text screening of all the relevant articles was conducted by two reviewers (C.Z.
and T.K.). Data extraction was independently performed by the two reviewers (C.Z. and
T.K.) using a customized data extraction Excel sheet. The following information was
extracted from each study: The first author’s name and their affiliated country, the year
of the publication, the technique used to determine the mutation status, the analyzed
genes, the total number of patients, and the number of patients with concordant status
for each gene. To assess the quality of each included study, one reviewer (T.K.) used the
Quality in Prognosis Studies (QUIPS) tool [22] and discussed the outcomes with a second
reviewer (A.M.) to ensure consensus. This tool consists of six domains: Study participation,
study attrition, prognosis actor measurement, study confounding, statistical analysis, and
reporting. For each domain, the score was assigned: High risk of bias = 0, moderate risk of
bias = 0.5, and low risk of bias = 1. Studies with a total score of ≥4 were considered high
quality, whereas studies with a total score of <4 were considered low quality.

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022327641
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022327641
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2.3. Outcome of Interest

The outcome of interest in the meta-analysis is defined as the concordance rate of
the mutation status between the primary cutaneous melanoma and their paired distant
metastasis in each single gene. For this study, we considered meta-analysis only for the
genes that were reported in more than ten studies. Therefore, we conducted the meta-
analysis for BRAF V600 and NRAS Q61 mutations. We reported the available data regarding
additional genes in a systematic manner.

2.4. Pathway Analysis

To determine if the mutations are associated with pathways that may be involved
in the metastasis progression, we used the web-free server g:profiler [23] to identify the
possible pathways associated with the mutated genes that we mutated in both primary and
metastasis. We selected the top three pathways with the highest p-value. g:profiler output
list details are presented in Supplementary Material Figure S1.

2.5. Statistical Analysis

Differences in the concordance of BRAF status between male and female patients were
assessed using a Student’s t-test. Random-effects meta-analysis models were used to pool
the concordance rate and the confidence interval (CI) across all the studies for each gene
(BRAF and NRAS) because combining all the genes may be biased. Freeman–Tukey double
arcsine transformation was applied to weigh the individual studies [24]. To assess the
heterogeneity across the studies, we performed a chi-square test to estimate the I2 statistic
(0–100%, 0% indicated no heterogeneity).

To explain potential sources of heterogeneity, pre-specified potential effect modifiers,
such as the technique of detecting the mutation (molecular vs. immunohistochemistry) and
the study quality (QUIPS total score), were considered. Subgroup analyses were used to
calculate the concordance rates for each group. Small study effects and publication bias
were assessed using funnel plots and Egger’s test (Supplementary Material Figure S2). The
analyses were performed using the meta [25] and the metaphor packages [26]. All the
analyses were done in R version 4.2.13.

3. Results
3.1. Search Results and Studies Characteristics

The PRISMA flowchart of the selection process is presented in Figure 1. A total
of 2466 studies (after excluding duplicates) were identified from the selected databases.
Screening and evaluation of eligibility criteria resulted in 40 studies being considered for
qualitative assessment, with 31 included in the quantitative assessment. The majority of
studies included in the meta-analysis (25) focused mainly on BRAF concordance status. For
the studies that included mucosal or uveal melanomas, we only extrapolated the mutation
data of patients with CM.
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Figure 1. PRISMA flow diagram of the literature search.

3.2. The Genetic Concordance between Primary Cutaneous Melanoma and Matched Distant Metastasis

The concordance in patients with cutaneous melanoma was reported mainly in the
melanoma driver genes. Twenty-five studies [27–51] compared the mutation status of BRAF
with the median concordance rate of 88% (range 56–100, total patients = 1220) (Table 1).
BRAF was mainly reported as either muted in position V600 or wild type. NRAS status
was the second most highly reported gene in 14 studies [28,30,32,38,43,45,48–55] (Table 2),
with a median concordance of 97% (range 85–100, total patients = 629), and the mutation
site was mainly focused on the protein position Q61. c-KIT concordance was reported in
3 studies [32,38,49] with a median concordance rate of 100% (range 88–100, total patients = 44)
(Table 3). Finally, the concordance of the TERT promoter was reported in two studies [45,50],
and the media concordance was 64% (range 55–68, total patients = 53) (Table 4).
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Table 1. Characteristics of the studies included in the meta-analysis for BRAF concordance rate.

Study Country Technique Total
Cohort (n)

Patients with
Concordant Status

(n)

Risk of Bias
Score (Study

Quality)

Omholt et al., 2003 [27] Sweden PCR 50 48 5 (high)

Yancovitz et al., 2012 [29] USA MS-PCR 18 10 4 (high)

Colombino et al., 2012 [28] Italy ADS 99 87 2.5 (low)

Heinzerling et al., 2013 [31] Germany PCR 11 7 1 (low)

Zebary et al., 2013 [32] Sweden PCR 16 16 4 (high)

Colombino et al., 2013 [30] Italy ADS 236 208 3 (low)

Saroufim et al., 2014 [33] Lebanon PCR 27 20 4.5 (high)

Nardin et al., 2015 [36] France Pyrosequencing 25 23 6 (high)

Satzger et al., 2015 [39] Germany Ultra-deep NGS 75 71 6 (high)

Riveiro-Falkenbach et al., 2015 [37] Spain Cobas + IHC 140 117 5 (high)

Bradish et al., 2015 [34] USA PCR 25 21 5 (high)

Eriksson et al., 2015 [35] Sweden IHC 63 59 4 (high)

Sakaizwa et al., 2015 [38] Japan DS 25 22 3 (low)

Yaman et al., 2016 [40] Turkey Pyrosequencing + IHC 47 40 5 (high)

Bruno et al., 2017 [41] Italy PNA, IHC, capillary seq 14 9 2 (low)

Hannan et al.,2017 [42] Ireland PCR and IHC 42 36 5.5 (high)

Kaji et al., 2017 [43] Japan MassARRAY 17 9 3.5 (low)

Yang et al., 2018 [45] USA IHC and direct + Sanger
sequencing 43 42 6 (high)

Cormican et al., 2018 [46] Ireland PCR and IHC 53 53 5.5 (high)

Nielsen et al., 2018 [44] Denmark Cobas test and IHC 80 79 5.5 (high)

Manca et al., 2019 [48] Italy Targeted NGS 41 39 5.5 (high)

Ito et al., 2019 [47] Japan IHC 31 28 4 (high)

Mejbel et al., 2019 [49] USA NGS 3 3 2.5 (high)

Pellergrini et al., 2020 [51] Italy PCR and IHC 30 26 5.5 (high)

Chang et al., 2020 [50] USA SNaPshot assays, Sanger
sequencing, MS PCR 12 10 4 (high)

ADS: automated direct sequencing, DS: direct sequencing, IHC: immunohistochemistry, MS-PCR: methylation
specific PCR, NGS: next-generation sequencing.

Three studies [43,48,49] compared the mutational status between primary melanoma
and their matched metastasis tumors in multiple cancer genes. Details of each gene are
described in Table 4. Most of the reported mutated genes were reported in both the primary
and metastasis tissues, except KRAS G12A and NEK E379K mutations that were found in
primary tumors and CCND1 G103R in the metastasis tumor. To understand the role of these
mutations, we looked at their possible association with pathways known in cancer progres-
sion. Most of the genes are involved in proliferation, cell cycle, and cellular senescence.
The details of the pathways analysis are reported in Supplementary Material Figure S1.
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Table 2. Characteristics of the studies included in the meta-analysis for NRAS concordance rate.

Study Country Technique Total Cohort (n) Patients with
Concordant Status (n)

Risk of Bias
Score

Demunter et al., 2001 [52] Belgium DOP-PCR 9 9 1

Omholtet al., 2002 [53] Sweden PCR and SSCP 54 53 5

Akslenet al., 2005 [54] Germany SSCP 15 15 3

Colombino et al., 2012 [28] Italy ADS 99 94 2.5

Colombino et al., 2013 [30] Italy ADS 233 226 3

Zebary et al., 2013 [32] Sweden PCR 16 16 4

Uhara et al., 2014 [55] Japan PCR 35 34 2.5

Sakaizawa et al., 2015 [38] Japan DS 25 24 3

Kaji et al., 2017 [43] Japan
Sequenom
MelaCarta

MassARRAY
17 17 3.5

Yang et al., 2018 [45] USA Direct and Sanger
sequencing + IHC 43 42 6

Manca et al., 2019 [48] Italy Targeted NGS 41 35 5.5

Mejbel et al., 2019 [49] USA NGS 3 3 2.5

Pellergrini et al., 2020 [51] Italy PCR and IHC 30 26 5.5

Chang et al., 2020 [50] USA
SNaPshot assays,

Sanger sequencing,
MS PCR

12 12 4

ADS: automated direct sequencing, DS: direct sequencing, IHC: immunohistochemistry, DOP-PCR: degenerate
oligonucleotide-primed polymerase chain reaction, MS PCR: methylation-specific polymerase chain reaction,
SSCP: single-strand conformational polymorphism.

Table 3. Characteristics of the studies reporting the c-KIT status.

Study Name Country Technique Population
Cohort (n)

Patients with
Concordant Status (n) Risk of Bias Score

Zebary et al., 2013 [32] Sweden Sequencing 16 16 4

Sakaizawa et al., 2015 [38] Japan DS 25 22 3

Mejbel et al., 2019 [49] USA PCR 3 3 2.5

DS: direct sequencing, PCR: polymerase chain reaction.

Table 4. Reported additional genes for the concordance between the primary melanoma and
matched metastasis.

Study Total
Patient Gene Mutation N Mutated

Primary
N Mutated
Metastasis

N Mutated
Samples

N
Concordant

Patients

Chang et al., 2020 [50] 11 TERT promoter
(146 C > T) 4 11 * 15 6

Yang et al., 2018 [45] 41 TERT promoter N/A N/A N/A 28

Kaji et al., 2017 [43]

17 CDK4 R24C 1 2 3 0

17 KRAS G12A 1 0 1 0

17 NEK10 E379K 1 0 1 0

17 EPHB6 G404S 2 1 3 1
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Table 4. Cont.

Study Total
Patient Gene Mutation N Mutated

Primary
N Mutated
Metastasis

N Mutated
Samples

N
Concordant

Patients

Manca et al., 2019 [48]

41 TP53 V216M 0 2 2 0

41 TP53 R158C 0 1 1 0

41 MAP2K1 Q46Tter 0 1 1 0

41 MAP2K1 Q110Ter 0 1 1 0

41 PTEN G127 0 1 1 0

41 PTEN Q110ter 0 1 1 0

41 CCND1 G103R 0 1 1 0

41 CDKN2A G23S 1 0 1 0

41 CDKN2A R131H 1 0 1 0

41 PIK3CA T1031I 1 0 1 0

41 PIK3CA G1049S 1 0 1 0

41 TP53 E286K 1 2 3 0

41 TP53 R196L 1 0 1 0

41 MAP2K1 Q383ter 1 0 1 0

41 MAP2K1 Q243Ter 1 0 1 0

41 MAP2K1 Q354ter 1 1 2 0

41 RB1 Q354ter 1 1 2 0

41 PTEN G165R 1 0 1 0

41 CDKN2A A40V 1 1 2 1

41 PIK3CA V344M 1 1 2 1

41 TP53 R196Ter 1 1 2 1

41 TP53 P278L 1 1 2 1

41 TP53 P278S 1 1 2 1

41 PIK3CA V344A 2 0 2 0

Mejbel et al., 2019 [49]

3 RAC1 P29S 0 1 1 0

3 CTNNB1 S37F 1 0 1 0

3 HNFA1 A269T 1 0 1 0

3 TP53 H179Y 1 1 * 2 1

* (patients with multiple metastases).

3.3. The Genetic Concordance between Primary Cutaneous Melanoma and Matched Distant
Metastasis According to Metastatic Site and Gender

To determine the impact of the metastatic site and gender on the concordance rate
between primary melanoma and metastatic deposit, we extracted data on the tissue type of
the metastasis (Table 5) and patient gender (Table 6) from each study. However, due to the
unavailability of data for NRAS and KIT, we could only report the data for BRAF.

The lymph node (excluding sentinel lymph node) was the most commonly reported
metastatic site, with eight studies encompassing 262 patients. The skin was the second most
frequently reported site, with six studies comprising 84 patients. Other metastatic sites,
including visceral, brain, and subcutaneous locations, were reported in limited studies,
with 50, 29, and 18 patients, respectively. The concordance rates for BRAF according to
gender were reported in 5 studies. Although males represented a slightly larger proportion,
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no statistically significant difference in the concordance rate between females and males
was observed (p-value = 0.19).

Table 5. Concordance studies by metastatic site.

Study
Lymph Node

Metastasis
Brain

Metastasis
Visceral

Metastasis
Subcutaneous

Metastasis

Skin
Metastasis/
Other Type

Concordance Rate % (Concordant Cases/Total Cases)

Heinzerling et al., 2013 [31] - - - - 100 (7/7)

Zebary et al., 2013 [32] 100 (15/15) - - - 100 (1/1)

Colombino et al., 2013 [30] 90 (109/120) 92 (22/24) 93 (37/40) - 77 (40/52)

Saroufim et al., 2014 [33] 89 (16/18) - - 67 (4/6) 50 (2/4)

Nardin et al., 2015 [36] 100 (14/14) - 80 (4/5) 92 (11/12)

Bradish et al., 2015 [34] - 50 (2/4) - - 92 (11/12)

Yaman et al., 2016 [40] 83 (34/41) - - - -

Kaji et al., 2017 [43] 53 (9/17) - - - -

Manca et al., 2019 [48] 94 (17/18) - 100 (3/3) - -

Pellergrini et al., 2020 [51] 89 (17/19) 100 (1/1) 50 (1/2) - 88 (7/8)

Total samples in all studies 262 29 50 18 84

Table 6. BRAF concordance rate by gender in the reported studies.

Study Risk of
Bias Score

Total
Cohort (n)

Total
Females (n) Total Males (n)

Concordant
Female

Patients (n)

Concordant
Male

Patients (n)

Heinzerling et al., 2013 [31] 1 11 7 5 4 4

Saroufim et al., 2014 [33] 4.5 27 7 19 5 15

Bradish et al., 2015 [34] 5 25 13 11 11 9

Yaman et al., 2016 [40] 5 47 18 29 14 26

Kaji et al., 2017 [43] 3.5 17 9 8 3 5

Total 127 54 72 37 59

Concordance rate %
(p-value = 0.19) 68.5 81.9

3.4. Meta-Analysis of the Concordance Rate for BRAF and NRAS

We assessed the concordance rate for BRAF in 1220 patients and for NRAS in 629 patients
(Figures 2 and 3). We calculated the concordance rate separately for wild-type versus
mutated status for each gene. Because we focused on cutaneous melanoma in this study,
we excluded uveal and mucosal melanoma patients in five studies [23,25,28,35,38].

The pooled random effects concordance rate for BRAF was 89.4% [95% CI: 84.5; 93.5]
and 97.8% [95% CI: 95.8; 99.4] for NRAS. The heterogeneity between studies was high for
the BRAF concordance rate (I2 = 74%, p < 0.01). However, for NRAS, the risk of bias was
low (I2 = 7%, p = 0.38).
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Figure 2. Results of the BRAF meta-analysis. Twenty-five studies were included to pool the concor-
dance rate of BRAF status [27–51], red square: point estimate of each study, and grey diamond: sum-
mary estimate of the total studies.
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3.5. Subgroup Analysis According to the Technique and QUIPS Tool Score

The mutation status of BRAF and NRAS in the reported studies may be affected by
the study design and the techniques used for mutation detection. For BRAF detection,
16 studies utilized molecular-based techniques, two utilized IHC, and seven used both.
The pooled BRAF concordance rate was 86.4% [95% CI 79.6; 92.1] with a molecular-based
technique, 92.8% [95% CI: 86.3; 97.5] with IHC, 81.9% [95% CI: 82.2; 98.4] with IHC, and
a molecular-based technique combined. However, these differences were statistically
insignificant (p-value = 0.24) (Figure 4). We did not perform subgroup analyses based on
detection techniques on NRAS concordance because most of the studies used molecular-
based techniques.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 6 
 

 

 
Figure 4.  Figure 4. Subgroup analysis for BRAF concordance rate based on mutation detection methods.

Studies with molecular-based technique only [27–34,36,38–40,43,48–50], studies with molecular-based
+ immunohistochemistry-based technique [37,41,42,44–46,51], studies with immunohistochemistry-
based technique only [35,47], red square: point estimate of each study, and black rhomb: summary
estimate of each subgroup.
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Other confounders, such as sample collection, analysis interpretation, and the type
of statistical tests in the individual studies, may affect the mutation detections and, subse-
quently, the concordance rate. Therefore, we performed a subgroup analysis based on the
QUIPS score for BRAF and NRAS concordance rates (Figures 5 and 6). The pooled concor-
dance rate for BRAF was 91.4% [95% CI: 86.7; 95.3] for studies with a high QUIPS score
(≥4) and 81.0 [95% CI: 68.1; 91.6] for studies with a low QUIPS score (<4), (p-value = 0.03).
The pooled concordance rate for NRAS was 95.7% [95% CI: 89.7; 99.5] for studies with a
high QUIPS score (≥4) and 99.1% [95% CI: 97.3; 100] for studies with a low QUIPS score
(<4). This difference was statistically insignificant (p-value = 0.38).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 6 
 

 

 

Figure 5.  Figure 5. Subgroup analysis of the BRAF concordance rate based on QUIPS score. Low-risk bias
studies were [27,29,32–37,39,40,42,44–48,50,51], high-risk bias studies were [28,30,31,38,41,43,49], red
square: point estimate of each study, and black rhomb: summary estimate of each subgroup.
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Figure 6.  Figure 6. Subgroup analysis of the NRAS concordance rate based on QUIPS score. High-risk bias

studies were [28,30,38,43,49,52,54,55], low-risk bias studies were [32,45,48,50,51,53], red square: point
estimate of each study, and black rhomb: summary estimate of each subgroup.

4. Discussion

In this study, we comprehensively analyzed the current knowledge on the concordance
of mutated genes between primary CM and their matched metastasis. Most of the reviewed
studies focused on the concordance of BRAF mutation status because it has clinical value in
the treatment decision for BRAF inhibitors. The second-most studied gene was NRAS. The
overall pooled concordance rates for BRAF and NRAS status were high (88.8% and 97.2%,
respectively). However, the reported concordance rates in the individual studies varied
widely, ranging from 56% to 100% for BRAF and 85% to 100% for NRAS. Among the factors
that could explain this wide range are: Mutation detection technique, gender, metastatic
site type, and study quality. We observed that all these factors were of influence on the
concordance rate. First, we explored the impact of mutation detection techniques. For
BRAF, the concordance rate was higher when an IHC-based technique was used (92.8%)
and lower when molecular-based techniques were used (86.4%). Although we could not
explore the effects of gender and metastatic sites with significant power, we did see for
BRAF concordance rate the most discordant cases in the direction of female sex and skin as
a metastatic site.

Only five studies [43,45,48–50], with study sizes ranging from 3 to 41 participants,
analyzed the variability in the mutation profiles using panel cancer driver genes. The
alterations in TERT, CDKN2A, TP53, RPPIK3CA, and EPHB6 were simultaneously detected
in matched primary and metastasis tumors, albeit in only a small subset of patients. In
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contrast, other mutated genes were found exclusively in either primary or metastatic tu-
mors. Predominantly, the majority of the genes displaying alterations were associated
with critical pathways involved in tumor invasion, including those regulating prolifera-
tion, cell cycle, and apoptosis. This is in line with the current knowledge on melanoma
progression [56–58]. In essence, investigating the sequential acquisition of mutations will
be required to fully identify the key driver mutations that are responsible for the processes
of invasion, adaptation, and, ultimately, melanoma metastasis dissemination [59].

CM presents cancer with a very high tumor mutational burden (TMB) [60]. This
characteristic may lead to polyclonal formation within the individual primary melanoma
tumor. In other words, a primary tumor can comprise a mixture of cells presenting different
genetic profiles of the same gene, with the ability to metastasize to other tissue organs [61].
Two studies showed intratumoral heterogeneity within the same melanoma samples for
BRAF and TERT mutation status using different micro-dissected regions of the same
sample [29,50]. A meta-analysis reported similar observations when investigating EGFR
and KRAS mutation status in matched primary tumors and distant metastasis of non-small
cell lung cancer, which is also considered a tumor with a TMB [62]. Thus, intratumoral
heterogeneity may be a common feature of high-TMB tumors. In our study, we also
showed that additional mutations in genes such as KRAS and NEK10 were likely to be seen
in primary melanoma. In contrast, mutations in genes such as TERT and CCND1 were
likely present in metastasis. Thus, we highlight the need to investigate the clonality of
more melanoma-specific genes, especially in the case of building metastasis risk prediction
models that are based on the genetic profile of primary tumors, as the primary tumors may
contain driver genes that are irrelevant for the recurrence of the metastasis. For example,
Chang et al. have shown that within the same melanoma patients, the primary tumor had
a BRAF mutant status, but the metastatic tumor had lost this mutation and acquired a new
mutation in the TERT promoter [50]. As a result, a metastasis risk prediction model based
on the BRAF mutation status of the primary tumor would not be accurate for this patient.
Therefore, it is essential to develop metastasis risk prediction models that take into account
the intratumoral heterogeneity of melanoma tumors. This could be done by sequencing
multiple regions of the primary tumor or by sequencing both the primary and metastatic
tumor tissues.

The accuracy of the mutation detection technique may have an effect when comparing
the mutation status [63,64]. Bruno et al. tested the concordance of BRAF status between
25 paired primary and matched melanoma samples by applying both IHC and real-time
PCR. Their study showed that IHC was more effective in detecting the signal of mutated
BRAF V600E [41]. This finding suggested that IHC is the stable method for the BRAF
testing method, especially for detecting the most common BRAF mutation, V600E. From
a molecular point of view, IHC is subject to some limitations. For instance, IHC can
be subjective as the pathologist’s interpretation affects the results. IHC may not detect
mutations in all cases, particularly when the tumor sample is small or if the mutation
is present in only a small percentage of tumor cells [65]. At the same time, molecular-
based techniques such as real-time PCR are more objective and sensitive than IHC [66].
In the daily practice of BRAF testing, molecular techniques are considered the golden
standard [67].

The tumors can evolve over time, and new mutations can arise in the metastases.
Thus, the time to metastasis, which is defined as the time between the primary tumor
and the metastasis tumor biopsy, may also affect the mutation concordance rate. In our
study, we were unable to analyze the impact of time on metastasis as there were not
enough eligible studies. It is essential to mention that no new studies have reported more
extensive information on the timing of metastasis since the previous meta-analysis of
BRAF [20]. In colorectal cancer, the concordance rate of KRAS status decreases when the
time to metastasis increases [68,69]. Thus, it is recommended to perform more frequent
surveillance for patients with a longer time to metastasis, as they may be at higher risk for
developing metastases with a different KRAS mutation status [68].
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The metastatic site plays a crucial role in changing the mutation status between
matched primary and metastasis melanoma tumors. Firstly, the microenvironment of the
metastasis site can exert a unique selection pressure on the melanoma cancer site. In other
words, the metastasis tissue site can offer distinct biochemical, immune, and structural
conditions that differ from the skin site. This means the melanoma cells can adapt and
acquire new mutations to thrive in the specific microenvironment of the metastasis site.
For example, the melanoma cells that metastasize to the brain may develop mutations
that evade the immune system, as the brain is an immune-privileged site [70]. Melanoma
that metastases to the lung may develop mutations that allow it to resist the effects of
chemotherapy, as the lung is a vascularized organ [71].

The overall study quality had no significant effect on the concordance rates of NRAS
mutation status. Yielding that the reliability of NRAS mutation status determination
was fairly consistent across studies, regardless of their quality ratings. However, we
observed higher concordance rates for BRAF mutation status in studies rated as high
quality compared to studies rated as low quality. These findings suggest that beyond
mutation detection techniques, other factors such as patient selection and time and type
of fixation, as well as improper tumor sampling, may affect the concordance rate of the
mutation profile [72]. From a biological standpoint, it is worth noting that both BRAF
and NRAS mutations are present in nevi, suggesting that such mutations might represent
early events that could already be present in all tumor cells. This is also supported by the
results seen in immunohistochemistry (IHC) [29,73]. It appears that, based on the available
data, discrepancies in the current literature may be attributed to sample management and
mutation detection techniques rather than being solely due to tumor heterogeneity. Refining
and standardizing sample collection and analysis procedures are crucial to enhancing the
accuracy and consistency of mutation profiling in melanoma cancer research. Ultimately,
this leads to more reliable insights into this complex disease.

Our study has several limitations; firstly, the original studies that we included in our
meta-analysis for BRAF and NRAS status were relatively small, which limited the power of
our study to detect statistically significant results. Secondly, most of the included studies
used different criteria to select patients, mainly for the metastasis tumor (lymph node or
distant metastasis). Lastly, we did not have access to clinical data for all of the patients
in the original studies, which prevented us from analyzing the effect of clinical variables,
such as the tumor thickness and the presence of the ulceration, on the concordance rate.
Despite these limitations, our study presents the first meta-analysis that pooled the NRAS
concordance rate in matched primary and metastasis of cutaneous melanoma. This is
an important finding, as NRAS mutations are responsible for a significant proportion of
melanomas, but no well-established NRAS-targeted therapies are yet known. In addition to
the updated data about the pooled BRAF concordance rate from the previous meta-analysis.

Our results consolidate the evidence of the mutation concordance between primary
melanoma and matched metastasis. We demonstrated a high concordance for BRAF and
NRAS mutation status. We observed that the BRAF concordance rate is higher than reported
in the last systematic review. This finding may suggest that advances have been made in
molecular techniques and IHC techniques. Nevertheless, further investigations are required
to comprehend the intricacies of melanoma, including its genetic heterogeneity and the
complex interaction of multiple genes driving the metastatic progression. Expanding
the scope of our study is essential to attaining a comprehensive understanding of tumor
heterogeneity and the genetic changes that take place throughout the metastatic evolution
of melanoma. This should include not only a wider range of genes but also the integration
of more clinical information, as these multi-faceted forms of research will aid in uncovering
the complexities of the genetic landscape of melanoma.

5. Conclusions

The complete explanation of the genomic background behind melanoma pathogenesis
remains elusive. This study presents a summary of current understanding regarding



Int. J. Mol. Sci. 2023, 24, 16281 15 of 18

the clonal relatedness of mutated genes in primary cutaneous melanoma and matched
tumors. We draw attention to the knowledge gap regarding the genetic heterogeneity
of melanoma-specific genes, which could serve as a valuable tool in identifying suitable
patients for trials testing possible new targeted therapies. Furthermore, we found that
CM presents a significant concordance in BRAF status between primary and metastatic
tumors than in previous meta-analyses, probably due to technical advances, although a
minority of patients showed inconsistencies. Therefore, we propose that molecular testing
in metastatic tissue is a more appropriate method for determining BRAF status to tailor
the treatment decision, although it is still reasonable to use the primary tumor in cases of
difficulty. Further research should investigate the factors causing these discrepancies and
the feasibility of using other molecular markers with BRAF status to better stratify patients
for melanoma treatment.
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