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Abstract: The biologically significant phenomenon that the fetus can survive immune attacks from
the mother has been demonstrated in mammals. The survival mechanism depends on the fetus and
placenta actively defending themselves against attacks by maternal T cells, achieved through the
localized depletion of the amino acid L-tryptophan by an enzyme called indoleamine 2,3-dioxygenase.
These findings were entirely unexpected and pose important questions regarding diseases related
to human pregnancy and their prevention during human pregnancy. Specifically, the role of this
mechanism, as discovered in mice, in humans remains unknown, as does the extent to which im-
paired activation of this process contributes to major clinical diseases in humans. We have, thus,
elucidated several key aspects of this enzyme expressed in the human placenta both in normal and
abnormal human pregnancy. The questions addressed in this brief review are as follows: (1) local-
ization and characteristics of human placental indoleamine 2,3-dioxygenas; (2) overall tryptophan
catabolism in human pregnancy and a comparison of indoleamine 2,3-dioxygenase expression levels
between normal and pre-eclamptic pregnancy; (3) controlling trophoblast invasion by indoleamine
2,3-dioxygenase and its relation to the pathogenesis of placenta accrete spectrum.

Keywords: indoleamine 2,3-dioxygenase; placenta; trophoblast; pre-eclampsia; placenta accreta
spectrum; human pregnancy

1. Introduction

The enzyme indoleamine 2,3-dioxygenase (IDO) (EC 1.13.11.42), widely expressed in a
variety of tissues of mammals, catalyzes the oxidative cleavage of the essential amino acid
L-tryptophan [1]. One tissue with particularly high activity is the human placenta [2]. With
regard to the role of placental IDO, Munn et al. established the hypothesis in mouse that
expression of this enzyme at the maternal–fetal interface regulates the maternal immune
response to the fetal allograft and prevents its immunological rejection [3]. We showed that
the same mechanism is available at the maternal–fetal interface of human pregnancy as in
mice [4]. Thus, IDO-mediated localized depletion of tryptophan in human pregnancy can
regulate proliferation of human peripheral blood mononuclear cells at the maternal–fetal
interface [5].

The maternal syndrome of pre-eclampsia is a major complication of human pregnancy
with significant morbidity and mortality. Although the cause of pre-eclampsia is still
unknown, there is strong evidence linking the clinical condition to abnormalities in placen-
tal development, leading to increased oxidative stress [6,7] and dysfunction in maternal
endothelial cells [8]. In addition to endothelial dysfunction, systemic activation of maternal
inflammatory cell populations has been observed [9]. Munn et al.’s hypothesis suggests
that placental IDO suppresses the maternal immune response against the fetus by depleting
tryptophan at the maternal–fetal interface. It is possible to suggest that alterations in IDO
activity or levels in the placenta may be involved in the pathogenesis of pre-eclampsia.

Placenta accreta spectrum (PAS) is a serious complication of pregnancy in which
trophoblasts invade the myometrial layer. In normal implantation, trophoblast invasion
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into the maternal tissue is thought to be controlled by mechanisms in the decidual layer [10].
Immune cells, including macrophages and uterine natural killer cells, colonize the decidua
and have been thought to be involved in the control of trophoblast invasion [11]. It has
been suggested that tryptophan depletion by IDO expressed in decidual macrophages may
be involved in inducing apoptosis of extravillous cytotrophoblast cells and controlling
trophoblast invasion [12].

IDO is being investigated for its involvement not only in reproductive biology but
also in various pathophysiological conditions of medical importance, such as inflammatory
and autoimmune diseases, infectious diseases, neuropathology, cancer, and organ trans-
plantation [13–16]. This brief review aims to focus on discussing the expression of IDO in
the human placenta and its involvement in normal and abnormal human pregnancy.

2. Indoleamine 2,3-Dioxygenase (IDO)

The enzyme IDO is a heme-containing protein that catalyzes the oxidative cleavage of
the pyrrole ring of the indole nucleus of various indoleamines derivatives (e.g., tryptophan,
5-hydroxytryptophan, tryptamine and serotonin) (Figure 1) upon the insertion of two
oxygen atoms of molecular oxygen [1]. IDO is widely expressed in a variety of tissues
of mammals such as rabbit [17], rat [18], mouse [19], and humans [2]. One tissue with
particularly high activity is the human placenta [2]. Although the precise physiological
roles of IDO are still unknown, the enzyme is induced under pathological conditions
including virus infection [20], parasitic infestation [21], and tumor transplantation into
allogenic animals [22,23], resulting in the rapid degradation of tryptophan to kynurenine
in the infected or the tumor cells. Interferon-γ, which has potent immunomodulatory and
antiproliferative effects, strongly induces the expression of the gene encoding IDO [24]. The
antiproliferative effect of interferon-γ on tumor cells and its inhibitory effect on intracellular
pathogens are thought to be, at least in part, due to the depletion of the essential amino
acid L-tryptophan following induction of IDO.
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Figure 1. Structure of tryptophan analogues.

A novel IDO isozyme has been identified and designated as indoleamine 2,3-dioxygenase-
2 (IDO2) [25,26]. The original IDO is now referred to as indoleamine 2,3-dioxygenase-
1 (IDO1). While these two proteins exhibit similar enzymatic activities, their distinct
expression patterns within tissues suggest unique roles for each protein [25,27]. Due to
the recent identification of IDO2, the physiological role of IDO has not been categorized
into that of IDO1 and IDO2, and the term “IDO” in most published studies may imply a
collective functional activity of IDO.

With regard to the role of placental IDO, Munn et al. [3] proposed the hypothesis that
expression of this enzyme at the maternal–fetal interface is crucial to avoid immune rejec-
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tion of the fetal allograft. To examine this hypothesis, they treated pregnant mice (carrying
syngeneic or allogeneic fetuses) with 1-methyl-tryptophan (Figure 1), a pharmacological
agent that inhibits IDO activity [28]. They observed that treating pregnant mice with the
inhibitor resulted in rapid T cell-induced rejection of allogeneic concepti (but not syngeneic
ones). However, fetal allograft rejection was not observed when RAG-1 (recombination
activating gene 1)-deficient mothers, unable to develop lymphocytes, were treated with
1-methyl-tryptophan. They also demonstrated that adoptive transfer of splenocytes from
genetically modified mice caused fetal allograft rejection in these mothers lacking lympho-
cytes. This rejection occurred when the cells specifically targeted a paternally inherited fetal
MHC class I alloantigen. They next showed that massive deposition of complement and
hemorrhagic necrosis occurred at the maternal–fetal interface when pregnant mice carrying
an allogeneic fetus were exposed to 1-methyl-tryptophan and that this inflammation is
driven by T cell recognition of fetal antigens [29]. Moreover, this complement deposition
and fetal allograft rejection occurred in the absence of maternal B cells, suggesting that
complement activation was antibody-independent. Thus, by catabolizing tryptophan, the
mouse conceptus suppresses T cell activity and defends itself against rejection. However,
several issues arise from their hypothesis, such as how the developing fetus is well supplied
with tryptophan when cells at the maternal–fetal interface degrade it. It is possible that
IDO-mediated tryptophan catabolism may produce an immunosuppressive metabolite.
Quinolinic acid, for example, is a potent neuroexcitatory toxin that putatively could serve
as a mediator of cell destruction in a variety of neurodegenerative disorders [30]. Addition-
ally, IDO-mediated tryptophan catabolism consumes oxygen radicals [1] and this might
influence T cell responsiveness.

In human tissue, IDO is detectable immunohistochemically from day 6 human blasto-
cysts and thereafter throughout pregnancy in syncytiotrophoblasts, cytotrophoblasts, and
macrophages in the villous stroma and in the fetal membranes [4]. Other tryptophan catab-
olizing enzymes in humans are tryptophan 2,3-dioxygenase (EC 1.13.11.11) and tryptophan
hydroxylase (EC 1.14.16.4) (Figure 2). Tryptophan 2,3-dioxygenase is found only in the
liver and is induced by administration of tryptophan. Tryptophan hydroxylase, which is
expressed by neuronal cells of the brain and adrenal gland, is the first step in the synthesis
pathway for serotonin and its derivatives.
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3. Paradox of Immunological Tolerance toward the Fetus during Pregnancy

It is recognized as paradoxical that a genetically different mammalian conceptus, ex-
pressing both paternal and maternal gene products, evades any maternal immune response
during pregnancy. Medawar [31] proposed three hypotheses to explain this paradox of
maternal immunological tolerance to the fetus: anatomical separation of mother and fe-
tus, antigenic immaturity of the fetus, and suppression or modification of the maternal
immune system. The first two hypotheses cannot fully explain fetal allograft survival, as
the maternal–fetal interface is not an absolute barrier and fetal cells can migrate into the
maternal circulation [32]. The second hypothesis is also nearly ruled out because both fetal
and placental cells express major histocompatibility complex molecules (MHCs) [33,34].
Therefore, major interest has been focused on the third mechanism, where the survival
of the genetically different fetus depends on active defense by the fetus and placenta
against attack by maternal immune cells. The following are among the processes proposed
which allow the maternal immune system to be tolerant of the fetal allograft. Progesterone,
which is synthesized at high rates in the placenta, has been shown to reduce the immune
response [35]. Immunosuppressive molecules may be expressed on the placental surface,
e.g., the nonclassical MHC class I antigen human leukocyte antigen (HLA)-G is expressed
by the syncytiotrophoblast. Binding of natural killer cells to this molecule may down-
regulate its activity [36], e.g., the Fas ligand (or CD95 ligand) expressed on the surface
of the syncytiotrophoblast induces the apoptosis of activated T cell by binding to its Fas
receptor (or CD95) [37,38]. It has also been suggested that the population of helper T cells,
namely, Th1 and Th2 balance, has an implication for maintaining normal pregnancy which
is chiefly viewed as Th2-type T helper cell response predominant [39,40]. Munn et al. [3]
added IDO as a new candidate to the list of potential immunosuppressive mechanisms
in pregnancy. These authors’ hypothesis is that in the mouse, the expression of IDO, a
major tryptophan-catabolizing enzyme, in the placenta is crucial to prevent immunological
rejection of the fetal allograft. They suggested that T cells are inhibited by a mechanism
involving IDO-dependent localized depletion of tryptophan at the site of placentation.

However, it seems likely that by themselves, none of these mechanisms will be suffi-
cient to explain the maternal immune tolerance to the allogeneic fetus. Integration of these
and other mechanisms is almost certainly required for the success of mammalian viviparity.

4. Localization and Characterization of Human Placental IDO

We have previously demonstrated that in the first trimester, placenta immunohisto-
chemical staining for IDO was found in syncytiotrophoblast, extravillous cytotrophoblast
and macrophages in the villous stroma [4]. Staining was also seen in the glandular epithe-
lium and stromal cells of the first trimester decidua [41]. Sedlmayer et al. [42] also found
IDO to be strongly expressed in the glandular epithelium with some positive cells in the
decidual stroma. They did, however, find that staining of the syncytiotrophoblast was
comparatively rare. Interestingly, both of these studies used the same monoclonal anti-
body as IDO [43]. The question of trophoblastic expression of IDO has been a continuous
controversial issue.

As mentioned above, a novel IDO isozyme was identified and assigned the name
IDO2, while the original IDO is referred to as IDO1 [25,26]. We therefore mapped the
immunohistochemical distribution of the IDO1 and IDO2 proteins at the human maternal–
fetal interface using a rare early pregnancy sample from a women at seven weeks of
gestation who underwent hysterectomy for cervical cancer with gestational sac in utero [44].

Obvious expression of IDO1 and IDO2 is seen at the maternal–fetal interface in the
seven-week placenta (Figure 3). There is strong expression of IDO1 on the glandular ep-
ithelium, endothelium of spiral artery, and on CD68-positive macrophages in the decidua
with little immunopositivity in the villous core (fetal vessel endothelial cells). The cellular
expression of IDO2 shows obvious syncytiotrophoblastic expression. The results of the
immunohistochemistry mentioned above were obtained using the antibody to either hu-
man IDO1 or IDO2 raised against a recombinant protein for each enzyme, respectively.
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The previous studies, including ours, were conducted before discovery of IDO2, and the
authors used the monoclonal antibody to IDO prepared by Takikawa et al. [43] for immuno-
histochemical analysis [4,42,45,46]. Since Takikawa’s antibody to human IDO was raised
by using human IDO protein purified from human placenta, it is possible that this antibody
may react with both IDO1 and IDO2 proteins, potentially accounting for the discrepant
result described above.

Expression of IDO2 in syncytiotrophoblasts is also confirmed functionally by im-
munohistochemistry of kynurenine. Kynurenine is the immediate downstream product
of IDO-mediated tryptophan catabolism. Immunostaining for kynurenine is found in
the syncytiotrophoblast and in the glandular epithelium and some cells (extravillous cy-
totrophoblasts) in the decidua. This kynurenine immunoreactivity has essentially the
same localization as that of IDO1 and IDO2, indicating that the IDO proteins appear to
be functional enzymes. Interferon-γ added to placental villous explant culture markedly
stimulated expression level of both mRNA and immunoreactivity of IDO1. In contrast,
IFN-γ showed no stimulatory effect on both mRNA expression level and immunoreactivity
of IDO2 [44].
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5. Tryptophan Catabolism by Placental IDO in Human Pregnancy: A Comparison of
Normal Pregnancy and Pre-Eclampsia

In healthy pregnant women tryptophan concentration in blood declines progressively
as a function of gestational age, and the decrease has been postulated to be related to the
maternal immune response to the fetus [47,48]. Considering that the maternal syndrome of
pre-eclampsia is distinguished by an excessive systemic inflammatory response induced by
pregnancy [49], it is plausible that placental IDO may exhibit reduced efficacy in modulating
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local and, consequently, circulating tryptophan concentrations in these pregnancies. We
investigated placental IDO activity and indices of tryptophan catabolism, specifically
the ratios of the IDO product (plasma kynurenine) to substrate (plasma tryptophan), in
pregnant women with and without pre-eclampsia, as well as in nonpregnant women of
reproductive age [50].

Table 1 summarizes the results of high-performance liquid chromatography analysis
of tryptophan and kynurenine concentrations in plasma. Samples from 12 women with
pre-eclampsia, 12 appropriately matched women with normal pregnancy, and 9 healthy
nonpregnant women were studied. Pre-eclampsia was defined as new hypertension
(diastolic > 90 mmHg) accompanied by new proteinuria after 20 weeks of gestation. The
normal pregnant and pre-eclamptic women were well matched for age, parity, and gestation
age. The concentrations of plasma tryptophan were significantly lower in pregnant women
compared to nonpregnant women, regardless of their pregnancy status. Furthermore,
women with normal pregnancies exhibited significantly lower tryptophan concentrations
than those with pre-eclampsia. Plasma kynurenine concentrations showed the converse
patterns; hence, the ratios of plasma kynurenine to tryptophan, an index of tryptophan
catabolism, were significantly increased in normal pregnant women compared either to
women who were not pregnant or to women with pre-eclampsia. The ratios of kynurenine
to tryptophan for women with pre-eclampsia were not different from those for women
who were not pregnant.

Table 1. Tryptophan and kynurenine concentrations and the ratio of kynurenine to tryptophan [50].

Normal Pregnancy
(n = 12)

Pre-Eclampsia
(n = 12)

Nonpregnant
(n = 9)

Tryptophan (µM) 32.7 ± 4.8 42.8 ± 6.9 * 53.0 ± 9.8 †,‡

Kynurenine (µM) 1.12 ± 0.17 1.02 ± 0.22 1.17 ± 0.28
Kynurenine/tryptophan 0.034 ± 0.004 0.024 ± 0.005 * 0.022 ± 0.004 ‡

* p < 0.001 compared with normal pregnancy (Wilcoxon test). † p < 0.001 compared with pre-eclampsia
(Mann–Whitney U-test). ‡ p < 0.001 compared with normal pregnancy (Mann–Whitney U-test). Values are
given as mean ± SD.

The IDO activities in fresh placental villous tissue were significantly lower in pre-
eclampsia compared to normal pregnancy (normal pregnancy, 0.48 ± 0.06 nmol/mg pro-
tein/min; pre-eclampsia, 0.29 ± 0.04 nmol/mg protein/min). When villous tissue explants
were cultured for 36 h with interferon-γ at 1000 unit mL−1 (the condition maximally stim-
ulating IDO activity), both IDO activity (normal pregnancy, 1.58 ± 0.04; pre-eclampsia,
0.76 ± 0.14 nmol/mg protein/min) and the percentage stimulation (normal pregnancy,
329.1 ± 43.3; pre-eclampsia, 258.8 ± 48.3) were still significantly lower in villous tissue
from pre-eclampsia than was found for tissue from normal pregnancy. Consequently
tryptophan concentration in the conditioned medium was higher when culture had been
conducted using villous tissue from pre-eclampsia as compared with that from normal
pregnancy either in the presence or in the absence of interferon-γ. When peripheral blood
mononuclear cells were cultured in the conditioned medium of villous tissue explants,
inhibition of peripheral blood mononuclear cell proliferation activity was less with medium
previously conditioned by culture of villous explants from pre-eclampsia [50]. These dif-
ferences are more marked in media conditioned in the presence of interferon-γ. Flow
cytometric analysis showed that proliferation of CD4 positive T helper lymphocytes is
specifically suppressed by IDO-mediated tryptophan depletion [5].

The level of IDO mRNA expression was decreased by 44.2% in fresh villous tissue from
pre-eclampsia compared with that from normal pregnancy [50]. The regulation of the IDO
mRNA expression by interferon-γ in the pre-eclamptic placenta is also disturbed. Specifi-
cally, interferon-γ does not induce the expression of the gene in the same way as it does in
normal pregnancies (normal pregnancy, 2.1-fold; pre-eclampsia, 1.7-fold), although in pre-
eclampsia, interferon-γ does activate expression of other genes (i.e., signal transducer and
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activator of transcription1 and tryptophanyl-tRNA synthetase) normally. Signal transducer
and activator of transcription1 is required for interferon-γ-dependent transcription [51],
and tryptophanyl-tRNA synthetase expression is also induced by interferon-γ through
the same pathway as IDO [52]. These observations specifically implicate the IDO gene in
the etiology of pre-eclampsia. The results of sequencing of the IDO gene in babies from
pre-eclamptic pregnancies show that sequences corresponding to the promoter region in
which signal transducer and activator of transcription1 binding site, interferon-γ activation
site [53], or interferon-stimulated response element [54] is present, and exon 1 to exon 10 of
the human IDO gene [55] appear normal.

6. Placental IDO and Trophoblast Invasion: Implications for the Pathogenesis of PAS

In normal implantation, trophoblast invasion into the maternal tissue is thought to be
controlled by mechanisms in the decidual layer [10]. During implantation, cytotrophoblast
cells of chorionic villi contact the maternal decidua and differentiate into extravillous
cytotrophoblast cells and invade across the maternal decidua as interstitial extravillous
cytotrophoblasts. Factors responsible for regulating the extent of extravillous cytotro-
phoblast invasion are poorly understood [11]. In vitro experiments demonstrated that IDO
expressed by macrophages have the potential to actively induce apoptosis in extravillous
cytotrophoblast cells by IDO-mediated tryptophan depletion [12]. They suggested that
tryptophan depletion by IDO expressed in decidual macrophages in vivo also may be
involved in inducing apoptosis and controlling trophoblast invasion.

It is well recognized that a cesarean delivery is one of the predisposing factors for
placental pathologies, including PAS, in subsequent pregnancies. Placental implantation
at the site of a previous cesarean scar is an extremely serious complication of pregnancy
in which trophoblasts invade the myometrial layer, resulting in placenta accreta and
percreta. We therefore redefine in vivo IDO localization using a rare early pregnancy
sample from a woman at 9 weeks of gestation who underwent hysterectomy for placental
implantation on the scar of a previous cesarean section [56]. This case, thus, sheds light on
the pathophysiology of placental implantation over a previous cesarean scar.

The section of this sample includes the placental–decidual interface as well as my-
ometrial tissue, and at a scar of cesarean section, decidual tissue was disrupted between
placental villous tissue and myometrium (Figure 4A). These were used for immunohis-
tochemical analysis. IDO immunoreactivity was seen to be strongly expressed on the
glandular epithelium in the decidua (Figure 4B(a)). Some IDO-positive cells were also
seen in the decidual stroma, which are CD68-positive macrophages. HLA-G-positive ex-
travillous cytotrophoblast cells were observed only within the decidua and they did not
invade the myometrium; however, extravillous cytotrophoblast cells obviously invaded the
myometrium at a site of cesarean scar where decidual tissue was not present (Figure 4B(b)).

To further confirm the possibility that IDO regulates trophoblast invasion, we con-
ducted a co-culture experiment with trophoblast cells (HTR-8/SVneo cells) and cells
(Ishikawa cells) that overexpressed IDO. This experiment utilized a transwell migration
assay, involving two medium-filled chambers separated by a porous membrane. When
trophoblast HTR-8 cells were co-cultured with cells overexpressing IDO, trophoblast mi-
gration was suppressed compared to when trophoblast cells were co-cultured with cells
not expressing IDO. This co-culture experiment also suggests that IDO expressed in the
decidua may be involved in controlling trophoblast invasion.
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7. Conclusions

Experiments described in this short review were conducted to investigate the role of
the placental enzyme IDO in normal and abnormal human pregnancy. We demonstrated
the obvious expression of IDO1 and IDO2, a more recently identified novel isoform of
IDO, at the human maternal–fetal interface at seven weeks of gestation obtained from
hysterectomy for cervical cancer with a pregnancy in situ. The findings of our study,
that the distribution of IDO2 are dissimilar to those of IDO1 at the human maternal–fetal
interface, suggest involvement of IDO2 in normal human pregnancy. We would like to
suggest that IDO2 expressed in the syncytiotrophoblasts is responsible for regulating
maternal immune response to the fetal allograft at the maternal–fetal interface. That the
IDO2 may be involved in immune evasion by tumor has also been suggested in tumor
biology [26].

Our study showed that in pre-eclamptic placenta there is suppressed expression of pla-
cental IDO and its regulation by interferon-γ are disturbed. Consequently IDO-mediated
inhibition of peripheral blood mononuclear cell proliferation activity is less in pre-eclampsia.
In the peripheral blood of women with pre-eclampsia leukocyte (including lymphocyte)
activation is known to be exaggerated compared with that in normal pregnancy [49,57].
These findings therefore provide evidence for a connection between abnormal regulation of
the maternal inflammatory response in pre-eclampsia and disrupted IDO-mediated manip-
ulation of tryptophan at the maternal-fetal interface. Flow cytometry analysis showed that
it is CD4-positive lymphocytes which are specifically influenced by IDO-mediated trypto-
phan depletion [5]. Helper T cells are major source of cytokines and further subdivided
into Th1 and Th2. Healthy pregnancy is chiefly regarded as Th2 dominant phenomena; a
strong Th2 response is necessary to modify the Th1 cellular response in utero to reduce the
risk of miscarriage [58]; Th1 is predominant in pre-eclamptic pregnancy [59]. It is possible
to speculate that disturbed regulation of IDO by cytokines is related to abnormal setting
of the pathway of T helper cell differentiation which is likely to underlie the abnormal
inflammatory response in pre-eclampsia.

The reason for the reduced expression level of IDO in pre-eclamptic placenta has yet
to be determined. However, it is probable that the elevated plasma tryptophan concen-
tration in women with pre-eclampsia, along with tryptophan-dependent proliferation of
lymphocytes, suggests a causative link between suppressed IDO expression and the exag-
gerated inflammatory response observed in this maternal syndrome. A proposal for the
role of placental IDO in suppressing the maternal systemic inflammatory response during
human pregnancy and in the pathogenesis of pre-eclampsia is illustrated in Figure 5 [50].
If the IDO-mediated mechanism were not present, the systemic inflammatory response
would be exaggerated. In normal pregnancy, placental IDO suppresses this exaggerated
inflammatory state to a normal level. However, in pre-eclampsia, decreased placental IDO
activity is not sufficient to suppress the immune inflammatory response to the level found
in normal pregnancy. These assumptions also raise the possibility that novel therapeu-
tic interventions in pre-eclampsia might be effectively focused on manipulating plasma
tryptophan concentration.

It has been suggested in an in vitro model that IDO-mediated tryptophan depletion
induces apoptosis of extravillous trophoblast cells, thereby controlling trophoblast invasion
and leading to normal placentation [12]. We have shown, using a cesarean scar pregnancy
specimen, that IDO expressed in the decidua may control extravillous cytotrophoblast
invasion at the site of implantation, and absence of its expression may be involved in the
pathogenesis of over-invaded placenta [56]. We identified certain features of cesarean
scar pregnancy that could help in understanding the mechanism of PAS. However, it is
uncertain if cesarean scar pregnancy is representative of all PAS cases, as our data are based
on a single case. Further research is required, but this case allowed us to add IDO to the list
of mechanisms causing abnormal placental implantation.
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Although there are still fundamental questions about the role of IDO in human preg-
nancy, we think that the data described in this short review by studying IDO expression at
the maternal–fetal interface and its involvement in the pathogenesis of pre-eclampsia and
PAS may help address some of these. The most straightforward experimental strategy to
delineate the significance of IDO in mammalian reproductive physiology and the patho-
genesis of pathological pregnancy might be the use of knockout animals for this enzyme.
In humans, no nucleotide polymorphism of the gene encoding these enzymes has been
reported; this needs to be studied, particularly in relation to pathological human pregnancy.
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