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Abstract: To extend the existing library of arylidenerhodanines which display a potential biological ac-
tivity, 3-N-allylthodanine 1 was condensed under Knoevenagel conditions with p-nitrobenzaldehyde
in acetic acid to afford the m-conjugated heterocyclic compound 3-allyl-5-(4-nitrobenzylidene)-2-
sulfanylidene-1,3-thiazolidin-4-one 2. Compound 2 was characterized by IR and NMR spectroscopy,
and its UV-vis spectrum was compared with that of compound 3-allyl-5-(4-methoxybenzylidene)-2-
sulfanylidene-1,3-thiazolidin-4-one 3. The molecular structure is ascertained by a single-crystal X-ray
diffraction study performed at 100 K.

Keywords: allylrhodanine; thione; crystal structure; UV-vis spectra; Knoevenagel condensation;
Hirshfeld analysis

1. Introduction

The five-membered heterocyclic compound rhodanine, also called 2-thioxo-4-thiazolidinone
(see Figure 1) and its derivatives [1] not only play a role in organic chemistry as building blocks
for further transformations but have also found application in various therapeutic areas [2,3]
due to their broad spectrum of biological and pharmacological activities. These include antidia-
betic activity [4], protein kinase inhibitors [5,6], topoisomerase II inhibition potency [7,8],
anticancer activity against MCF-7 breast cancer [9,10] and potential cholinesterase in-
hibitors [11,12]. After approval of the N-substituted rhodanine Epalrestat [13] by the Food
and Drug Administration (FDA) as an inhibitor drug for the treatment of diabetic neuropa-
thy [14], several arylidene N-substituted rhodanine derivatives have also been identified
as potential inhibitors of essential therapeutic targets such as PTP1B [15], a-amylase [16]
and a-glucosidase [17] for the clinical management of Type 2 diabetes mellitus (T2DM)
(Figure 1). Very recently, we successfully synthesized a series of novel dispirooxindoles-
based rhodanine derivatives as potent inhibitors against «-amylase enzyme with in vivo
hypoglycemic activity [18].

Arylidene-functionalized rhodanines were also recently screened to evaluate their
anticancer activity against several cancer cell lines [19,20] or their propensity as antibac-
terial, antifungal or antioxidants agents [21-23]. In this context, we have reacted a series
of 4-arylidene-5-thioxo-thiazolidin-2-ones with the secondary cyclic amine tetrahydroiso-
quinoline (THIQ) to convert them to (Z)-5-ylidene-2-aminothiazol-4(5H)-ones [18]. Some
selected compounds incorporating the rhodanine motive and displaying a pharmacological
activity are presented in Figure 1.
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Figure 1. Examples of some rhodanines displaying a biological activity.

Furthermore, rhodanine derivatives attracted the attention of coordination chemists,
since the soft C=S thione function (according Pearson’s HSAB principle) [24] readily coordi-
nates to a wide range of transition metal complexes producing complexes with Cu(I), Pd(II),
Pt(II) etc. [25-28]. The research presented here is (i) a continuation of our investigations
into the coordination chemistry of thione-type ligand on diverse metal centers [29-33] and
(if) the design of novel rhodanine-based scaffolds for probing their biological activities [18].

2. Results and Discussion

The hitherto unknown arylidene rhodanine derivate 3-allyl-5-(4-nitrobenzylidene)-
2-sulfanylidene-1,3-thiazolidin-4-one 2 was obtained by addition of p-nitrobenzaldehyde
to a solution of commercially available N-allylrhodanine 1 in acetic acid via a classical
Knoevenagel condensation route [34] (Scheme 1). Note that the synthesis of an isomer of
2 bearing the NO, group at the meta-position has been described by Ajlaoui et al. by the
reaction of N-allylrhodanine 1 with (3-nitrobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium
ylide [35] and its NH analogue 5-(3-nitrobenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one
has been isolated by Hesse using an L-proline-based deep eutectic solvent [22].

H 2 CH,COONa ?
. %N CH,COOH N \
o S—( “\—  reflux, 5h  O,N S—( \—
O,N - H,0
s 2 S

Scheme 1. Knoevenagel synthesis of N-allylrhodanine 2.

The structure of 2 was established using spectroscopic characterization and elemental
analysis. On the infrared spectrum, an intense band at 1700 cm ™! is associated with the
carbonyl group and the thiocarbonyl vibration is observed at 1217 cm~!. The NO stretching
bands of the nitro group are located at 1509 and 1327 cm ! and the v(C=C) appear near
1590 cm ™! (see Figure S1). The H-NMR recorded in dg-DMSO (Figure 2) reveals the aryl
signals as doublets at 6 7.91 and 8.36 ppm. The chemical shift in the vinyl proton at § 7.93
indicates that the exocyclic double bond has a Z-configuration, as already observed for
other 5-arylidene rhodanines described in the literature [6]. Its signal appears at a lower
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field than that of the E-isomer due to the stronger deshielding effect of the carbonyl group
compared to the sulfur atom [36]. Four multiplets between 4.90-5.90 ppm are assigned
to the allyl group. A pseudo doublet of triplet is present at 6 4.67 for the NCH,, resulting
from 3] and 4] allylic couplings of 5.2 and 1.4 Hz, respectively. The terminal vinyl gives
rise to two broad doublets of doublets at 6 5.17 and 5.21 ppm with trans and cis coupling
across the double bond of 17.7 (H1H2) and 10.9 (H'1H2) Hz. The two doublets at 6 5.15
and 5.22 are broad with a small coupling of 1.2 Hz. These apparent quartets result from a 4]
allylic coupling with H3 and a geminal ?] coupling between H1H’1s with similar values.
(Figure 1). The proton-decoupled '*C NMR spectrum (Figure 3) reveals the presence of
two signals at 4 193.2 and 166.9 ppm attributed to the thiocarbonyl and carbonyl groups
of the rhodanine moiety. A resonance at 6 46.7 corresponds to NCH>, and olefinic carbon
appears at 118.4 (C1) and 130.6 (C2, C7).
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Figure 2. 'H NMR spectra (400 MHz, DMSO-dg) of compound 2 at 298 K.

The UV-vis spectrum of highly r-conjugated 2 bearing a strongly electron-withdrawing
NO;,-group exerting a -M effect is shown in Figure 4. For comparison, we have also recorded
the benzylidene derivative 3 bearing a MeO-group (+M effect) at the para-position of the
aryl cycle [34]. This literature-known compound has been synthesized using the same
experimental procedure described for 2 in 84% yield. The superposition of their UV-vis
spectra reveals a bathochromic shift in the absorption bands for 2 compared to 3, indicating
that the NO,-group causes a diminution in the energetic gap between the frontier orbitals
HOMO-LUMO with respect to the methoxy group. The UV-vis spectra recorded in solvents
of different polarity are shown in the Supplementary Materials as Figure S2. We tentatively
attribute the adsorption bands presented in Table 1 as n-7* and 71-7t* transitions but exclude
a push—pull effect despite the strong acceptor propensity of the p-nitro group.

Table 1. Absorption data of compounds 2 and 3 in CH,Cl, at 298 K.

Comp. Absorption: Aps nm (¢ X 10-3M~1em—1)
2 239 (5.5), 281 (6.7), 303 sh (4.8), 381 (17.9), 399 sh (16.0)
3 242 (2.8), 262 (3.2), 294 (6.1), 313 sh (3.6), 399 (18.1)
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Figure 3. 13C NMR spectra (100 MHz, DMSO-dg) of compound 2 at 298 K. The DMSO-dg¢ signal has

been cut off.
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Figure 4. Superposition of the normalized absorption spectra recorded of 2 and 3 in CH,Cl, at 298 K.

To complete the characterization of this compound, we examined 2 crystallizing in the
monoclinic space group P2;/c by an X-ray diffraction study performed at 100 K. As shown
in Figure 5, the two cycles linked through the C6=C7 double bond are almost coplanar
including the nitro group (torsion angle: 5.81(5)°); the allyl substituent points out of this
plane in a perpendicular manner (torsion angle C4N1C1C2 93.6°). The C8 atom of the
six-membered benzylidene cycle and the S1 atom are cis-arranged with respect to the C6=C7
double bond. Overall, the structure resembles those of other benzylidenerhodanines found
in the Cambridge Structural Database (CSD) such as 3-allyl-5-(3-methoxybenzylidene)-2-
sulfanylidene-1,3-thiazolidin-4-one (refcod GACVOY) [37], 3-allyl-5-(4-fluorobenzylidene)-
2-sulfanylidene-1,3-thiazolidin-4-one (refcod ISAMIA) [38], 3-allyl-5-(4-chlorobenzylidene)-
2-sulfanylidene-1,3-thiazolidin-4-one (refcod JADVUI) [39] and 5-benzylidene-3-(prop-2-
en-1-yl)-2-sulfanylidene-1,3-thiazolidin-4-one (refcod QIBKOE) [35]. Other crystallographi-
cally characterized N-allyl rhodanines containing five-membered heterocycles within their
framework are 2-thio-3-allyl-5-(2-(3'methylthiazolidinylidene))-thiazolidine-2,4-dione (ref-
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cod SALAZO) [40] and (E)-3-Allyl-5-(2-thienylmethylene)-2-thioxo-1,3-thiazolidin-4-one
(refcod MUGFUR) [41]. Particularly noteworthy is the occurrence of an intramolecular
C-H--- S contact between the H9 atom attached at C9 of the aromatic cycle and S1 forming
a pseudo-six-membered cycle with d(C-H ---S) 2.51 A, with the angle C-H ---S being 133.4°.
This kind of contact is also observed in the structures JADVUI (dC-H ---S 2.55 A, angle 133°)
and GACVOY (dC-H ---52.55 A, angle 133°) [37].

Figure 5. Molecular structure of 2. Selected bond lengths (A) and angles (deg) of 2. Apart from
H7 and H9, all other H atoms are omitted for clarity. S1-C6 1.7536(16), S1-C4 1.7614(16), S2-C4
1.6227(16), N1-C4 1.375(2), N1-C1 1.472(2), C1-C2 1.375(2), C2—-C3 1.314(3), N1-C5 1.388(2), C5-012
1.217(2), C5-C6 1.487(2), C6-C7 1.346(2), C7—C8 1.458(2); C3-C2-C1 127.19(16), C2-C1-N1 113.87(14),
C1-N1-C4 122.77(14), N1-C4-52 127.50(13), N1-C4-51 110.22(11), C4-51-C6 92.80(8), S1-C6-C5
109.14(11), S1-C6-C7 130.41(12), C6~C5-N1 110.90(13), C6-C7-C8 130.11(14), O2-N2-03 123.61(14).

In the packing (Figure 6), several secondary weak intermolecular interactions are present
such as C-H contacts with the NO, group of neighbored molecules (dC13-H13. .. 02! 2.505(11) A,
angle 153.4°, symmetry code '1 + x, ,1 + z) and (AC3-H3B... 032 2.70(2) A, angle 162.0°, sym-
metry code 21-x,1-y,-z). Furthermore, a shorter C-H --O contact occurs with the carbonyl C=0
(dC10-H10-----O1' 2.4260(13) A, angle 130.7°). An intermolecular C-H ---S contact occurs be-
tween a CH group of the allyl substituent and the thione function (dC2-H2-----S23 2.9259(5) A,
angle 144.0°, symmetry code 1 + x,1/2 — y, —1/2 + z). As observed for the p-chloro deriva-
tive [39], the cohesion of the crystal structure also is ensured by an 7-7 stacking interaction
between individual molecules forming inversion dimers. The centroid-to-centroid separation
between two stacked benzylidene rings amounts to 3.7986(12) A (see Figure S3).

Figure 6. OLEX-generated view of the unit cell of 2 indicating the m—t stacking interaction between
individual molecules [42].
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These interactions have also been assessed by means of a Hirshfeld surface analysis
using the CrystalExplorer17 software (Figure 7) [43,44]. The Hirshfeld surface was mapped
over dnorm in the range from —0.2156 to —1.1392 (arbitrary units). The corresponding
fingerprints plots are presented in the Supplementary Materials (Figure S4).

Figure 7. View of the Hirshfeld surface of compound 2 revealing some loose contacts in the
crystal structure.

3. Materials and Methods

All reagents were purchased from commercial suppliers and used as received. 'H
and '3C NMR spectra were recorded on a Brucker AC 400 (Bruker, Wissembourg, France)
spectrometer at 400 and 100 MHz, respectively. The infrared spectrum was recorded
on a Vertex 70 spectrometer (Bruker, Wissembourg, France) in ATR mode. UV-Visible
spectra were obtained on a VARIAN-Cary 300 array spectrophotometer (Varian, Melbourne,
Australia). Elemental analyses were performed on a Thermo Fisher Flashsmart CHNS
elemental analyzer.

A mixture of 3-allylrhodanine (1.73 g, 10 mmol), anhydrous sodium acetate (0.82 g,
10 mmol) and 4-nitrobenzaldehyde (1.90 g, 12.5 mmol) was refluxed in 10 mL of glacial
acetic acid for 5 h. After cooling, yellow crystals were collected by filtration and washed
with H,O (2 x 5 mL), EtOH (2 x 5 mL) and Et,O (5 mL). Yield: 95%. Anal. Calc. for
C13H19N>O3S, M.W = 306.37 g.mol_l): C,50.97; H, 3.29; N, 9.14; S, 20.93%. Found: C,
50.99; H, 3.38; N, 9.28; S, 20.87%. IR-ATR: 1700 v(C=0), 1217 v(C=S) cm~!. 'H NMR
(DMSO-dg) at 298 K: 5 4.66 (td, 3] = 5.2, 4] = 1.4, 2H;3, NCH,), 5.17 (dd, 3] = 17.7, ] = 1.2,
H1,=CH,), 5.21 (dd, 3] = 10.9, ] = 1.2, H1/, =CH,), 5.85 (tdd, 3] = 17.7, 3] = 10.9, 4] = 5.2,
H2, =CH), 7.91 (d, 3] = 8.82, 2H9, Ar-H), 7.93 (s, H7, =CH), 8.35 (d, %] = 8.82, 2H10, Ar-H)
ppm. 3C NMR (DMSO-dg) at 298 K: § 46.7 (C3), 118.4 (C1), 124.9 (C9), 127.2 (C6), 130.5
and 130.6 (C7, C2), 132.0 (C10), 139.6 (C8), 148.2 (C11), 166.9 (C5), 193.2 (C4) ppm.

Since the grown single crystals of 2 used for the determination of the crystal structure
were quite small, CuK« radiation was employed instead of MoK« radiation. A suitable crys-
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tal was mounted on an Bruker APEX-II CCD diffractometer Crystal data for C13H;9N>O3S;:
M =306.35 g.mol !, plate-shaped dark yellow crystals, crystal size 0.90 x 0.55 x 0.14 mm?,
monoclinic, space group P21 /ca =7.8215(4) A, b = 26.4778(17) A, ¢ = 7.1851(4) A, o = 90°,
B = 116.5790(10)°, y = 90°, V = 1130.75(13) A3, Z = 4, Dy = 1.529 g/cm?, T = 100 K,
Rq1 = 0.0360, Rw, = 0.0966 (all data) for 2726 reflections with I > = 20 (I) and 2832 in-
dependent reflections, GOF = 1.060 Largest diff. peak/hole/e A~3 0.406/—0.313. The
structure was solved using intrinsic phasing and refined using full-matrix least-squares
against F? (SHELXT, SHELXL 2015) [45,46]. The data were collected using graphite-
monochromated CuKy radiation [ = 1.54178 A and have been deposited at the Cambridge
Crystallographic Data Centre as CCDC 2327984. (Supplementary Materials). The data
can be obtained free of charge from the Cambridge Crystallographic Data Centre via
http:/ /www.ccde.cam.ac.uk/ getstructures.

4. Conclusions

We have shown that arylidenerhodanine 2 is easily accessible in high yields and
crystallographically evidenced that this m-conjugated heterocycle features both intra- and
intermolecular secondary interactions. We are currently exploring the propensity of this
compound to act as an S-donor ligand in coordination chemistry.

Supplementary Materials: CIF file, Check-CIF report, UV-Vis and IR spectra and Hirshfeld finger-
print plots. Figures S1-54.
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