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Abstract: The titanium amidate compound bis(N-tert-butylacetamido)(dimethylamido)(chloro)titanium
was synthesized by the protonolysis of tris(dimethylamido)(chloro)titanium and structurally character-
ized by 1H and 13C NMR spectroscopy as well as X-ray diffraction. The compound does not appear to
react cleanly nor readily with routine alkylating agents such as sec-butyllithium, benzyl potassium, or
trimethylsilyl methyllithium.
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1. Introduction

Hydrophosphination remains one of the most atom-economical and efficient ways of
forming P–C bonds, though challenges still exist [1,2]. Catalytic hydrophosphination has
been observed with many metals [3], though examples involving titanium are limited in
both scope and conversion [4–6]. Previous work with triamidoamine-supported titanium
compounds showed that while the alkyl derivative was active for catalytic hydrophos-
phination, the titanium phosphido derivative was inactive [7]. However, this compound
was capable of undergoing insertion at the Ti–P bond with a variety of polar, unsaturated
substrates. A developing hypothesis in this area is that a metal–phosphido compound is an
essential precursor, partly because it can be photoexcited to substantially enhance activity
compared to thermal catalysis, but it also affords the opportunity for direct mechanistic
analysis [8–10]. Therefore, a revised ligand set on titanium was proposed to yield a Ti–P
bond to study the potential insertion of nonpolar substrates. The expected general synthe-
sis, a transmetallation between a titanium(IV) halide and R2P– reagent, tends to reduce
titanium [11]. Thus, a more robust route involving the protonolysis of a titanium alkyl
precursor was explored. The ideal general method is outlined in Scheme 1.
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enhance activity compared to thermal catalysis, but it also affords the opportunity for 
direct mechanistic analysis [8–10]. Therefore, a revised ligand set on titanium was 
proposed to yield a Ti–P bond to study the potential insertion of nonpolar substrates. The 
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reagent, tends to reduce titanium [11]. Thus, a more robust route involving the 
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outlined in Scheme 1. 
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Scheme 1. General scheme for the synthesis of titanium phosphido compounds from a simple 
titanium precursor. 

2. Results 
Treatment of (NMe2)3TiCl with 2 equiv. of N-tert-butyl acetamide in toluene solution 

affords a dark-red solution. When the solvent and volatile residue are removed and the 
resultant residue is crystallized from a concentrated n-pentane solution, dark-red crystals 
of the title compound are obtained in a 90% isolated yield (Scheme 2). As seen in Figure 
1, the spectra are simple, with characteristic signals in the 1H NMR spectrum, including 
methyl resonances for the dimethylamido ligand (δ = 3.58) and resonances for amidate 
methyl (δ = 1.67) and tert-butyl (δ = 1.16). The 13C{1H} NMR spectrum was similarly simple 
in assignment, drawing particular attention to the amidate carbon resonance at δ = 176.33. 
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Scheme 1. General scheme for the synthesis of titanium phosphido compounds from a simple
titanium precursor.

2. Results

Treatment of (NMe2)3TiCl with 2 equiv. of N-tert-butyl acetamide in toluene solution
affords a dark-red solution. When the solvent and volatile residue are removed and the
resultant residue is crystallized from a concentrated n-pentane solution, dark-red crystals of
the title compound are obtained in a 90% isolated yield (Scheme 2). As seen in Figure 1, the
spectra are simple, with characteristic signals in the 1H NMR spectrum, including methyl
resonances for the dimethylamido ligand (δ = 3.58) and resonances for amidate methyl
(δ = 1.67) and tert-butyl (δ = 1.16). The 13C{1H} NMR spectrum was similarly simple in
assignment, drawing particular attention to the amidate carbon resonance at δ = 176.33.
These data allowed for the assignment of this product and an assessment of purity, which
was acceptable for further use.
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These data allowed for the assignment of this product and an assessment of purity, which 
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Scheme 2. The synthesis of 1. 
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Figure 1. Representative NMR spectra of compound 1 in benzene-d6 solution. The (a) 1H NMR 
spectrum and (b) 13C{1H} NMR spectrum of 1. 

To assign the connectivity of 1, an X-ray structural study was undertaken. 
Diffraction-quality plates of 1 formed upon cooling a saturated solution of 1 in n-pentane 
at −40 °C. The connectivity of this complex is shown in Scheme 3. Selected bond lengths 
and angles are reported in Table 1. Titanium adopts a pseudo-octahedral geometry with 
some distortion due to the ancillary ligands’ geometry. The short Ti–N bond distance 
(1.8759(14) Å) and the sum of angles on nitrogen (359.7(1)°) for the terminal 
dimethylamido ligand indicate a significant π donation from nitrogen to titanium. The Ti–
N bond distance is similar to bond lengths reported by Schafer in their compound bis(N-
2,6-diisopropylphenylpivalamido)bis(dimethylamido)titanium, specifically Ti–N = 
1.8778(12) Å [12]. The Ti–Cl bond 2.3142(8) Å of 1 is slightly longer than that reported by 
Schafer in their compound bis(N-2,6-diisopropylphenylpivalamido)bis(chloro)titanium, 
which is Ti-Cl = 2.2459(12) Å [12]. This feature may be attributed to the limited π donation 
of the chloro ligand, which would be a less favorable π donor than the cis dimethylamido 
ligand. Indeed, the Ti-Cl bond length is similar to that reported by Stahl in their 
(pentamethylcyclopentadienyl)bis(N-phenylacetamido)(chloro)titanium Ti-Cl = 2.358(1) 
Å [13], which would show a similar limited π donation due to competition from the 
ancillary Cp* ligand. Further, an examination of the amidate ligands shows that the Ti-O 
bond is shorter than the Ti-N bond, which is reflective of titanium’s oxophilicity and is in 
line with previously reported titanium amidates [13–18]. 
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Figure 1. Representative NMR spectra of compound 1 in benzene-d6 solution. The (a) 1H NMR
spectrum and (b) 13C{1H} NMR spectrum of 1.

To assign the connectivity of 1, an X-ray structural study was undertaken. Diffraction-
quality plates of 1 formed upon cooling a saturated solution of 1 in n-pentane at
−40 ◦C. The connectivity of this complex is shown in Scheme 3. Selected bond lengths
and angles are reported in Table 1. Titanium adopts a pseudo-octahedral geometry with
some distortion due to the ancillary ligands’ geometry. The short Ti–N bond distance
(1.8759(14) Å) and the sum of angles on nitrogen (359.7(1)◦) for the terminal dimethy-
lamido ligand indicate a significant π donation from nitrogen to titanium. The Ti–N
bond distance is similar to bond lengths reported by Schafer in their compound bis(N-2,6-
diisopropylphenylpivalamido)bis(dimethylamido)titanium, specifically Ti–N = 1.8778(12)
Å [12]. The Ti–Cl bond 2.3142(8) Å of 1 is slightly longer than that reported by Schafer
in their compound bis(N-2,6-diisopropylphenylpivalamido)bis(chloro)titanium, which
is Ti-Cl = 2.2459(12) Å [12]. This feature may be attributed to the limited π donation
of the chloro ligand, which would be a less favorable π donor than the cis dimethy-
lamido ligand. Indeed, the Ti-Cl bond length is similar to that reported by Stahl in their
(pentamethylcyclopentadienyl)bis(N-phenylacetamido)(chloro)titanium Ti-Cl = 2.358(1)
Å [13], which would show a similar limited π donation due to competition from the ancil-
lary Cp* ligand. Further, an examination of the amidate ligands shows that the Ti-O bond
is shorter than the Ti-N bond, which is reflective of titanium’s oxophilicity and is in line
with previously reported titanium amidates [13–18].
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Table 1. Selected bond lengths and angles for 1.

Distance (Å) Angle (Degrees)

Ti1–N1 1.8759(14) C2–N1–C1 111.85(15)

Ti1–O2 1.9795(12) C2–N1–Ti1 128.56(12)

Ti1–O1 1.9925(12) C1–N1–Ti1 119.29(12)

Ti1–N2 2.1921(13) N1–Ti1–Cl1 100.41(4)

Ti1–N3 2.2052(14) O2–Ti1–Cl1 106.11(4)

Ti1–Cl1 2.3142(8) O1–Ti1–Cl1 92.93(3)

Ti1–C3 2.5033(16) N2–Ti1–Cl1 153.45(4)

Ti1–C9 2.5072(16) N3–Ti1–Cl1 91.50(4)

3. Discussion

The purpose of preparing compound 1 was to advance in the synthetic path outlined
in Scheme 1. Unfortunately, compound 1 does not cleanly nor readily react with routine
alkylating agents, including sBuLi, benzyl potassium, or trimethylsilyl methyllithium. In
light of the difficulty in following the early steps in the proposed synthetic pathway, it is
apparent that other titanium compounds are doubtlessly more amenable to the proposed
protocol. At present, alternative derivatives are under exploration for the aforementioned
experiments and application to hydrophosphination catalysis.

4. Materials and Methods

(NMe2)3TiCl was synthesized using the literature methods [19]. NMR spectra were
collected using a Bruker AXR 500 MHz spectrometer (Bruker Corporation, Billerica, MA,
USA) in a benzene-d6 solution and are reported with reference to residual solvent signals
(δ = 7.16 and 128.0).

4.1. Synthesis of N-tert-Butyl Acetamide

Adapted from the literature procedure [20], a 500 mL Schlenk flask was charged with
ca. 200 mL of diethyl ether, 9.6 mL of tert-butylamine (92 mmol), and 13.4 mL of triethy-
lamine (96 mmol, 1.05 equiv). To this mixture, acetyl chloride (6.3 mL, 88 mmol, 0.96 equiv)
was added dropwise, forming a thick colorless precipitate. The solution was stirred for ca.
2 h, after which the reaction mixture was filtered, the solid residue was washed with diethyl
ether (2 × 50 mL), and the filtrate and ether washings were combined and concentrated to
yield 9.43 g of crude product (93%). The crude product was subjected to recrystallization
from a dichloromethane/heptane solvent system to yield 8.7 g off-white/light-pink crystals
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(86%). Purity was confirmed by 1H NMR spectroscopy, demonstrating that the obtained
product yielded matching data to those from the literature preparation used [20].

4.2. Synthesis of (ON)2Ti(NMe2)(Cl) (1)

In a nitrogen-filled glovebox, a 50 mL round-bottomed flask was charged with 606 mg
of (NMe2)3TiCl (2.82 mmol), and this was dissolved in ~30 mL of toluene. To this reaction
mixture, 657 mg of solid N-tert-butyl acetamide was added (5.64 mmol, 2 equivalents) in
one portion. The solution rapidly became deep red and was stirred for ca. 22 h, after which
the volatile components were removed under reduced pressure to yield a deep-red residue.
The residue was redissolved in ~5 mL n-pentane, and this solution was kept at −40 ◦C for
ca. 16 h to yield 902 mg of deep-black-red crystals (2.54 mmol, 90%). Diffraction-quality
crystals were obtained from this pentane crystallization. 1H NMR (500 MHz): δ 3.57 (s,
6H, Ti–N(CH3)2), 1.68 (s, 6H, acetyl-CH3), 1.16 (s, 18H, NC(CH3)3). 13C NMR (126 MHz): δ
176.33, 52.40, 47.12, 30.36, 20.23.

4.3. X-ray Structure Determination

A Bruker APEX 2 CCD platform diffractometer [Mo Kα (λ = 0.71073 Å)] was used to
collect X-ray diffraction data at 150(2) K. A suitable purple plate was mounted on a MiTiGen
Micromount with Paratone-N cryoprotectant oil. Cell refinement and data reduction were
performed with SAINT V8.37A [21]. Absorption correction was performed using SADABS-
2016/2 [22]. The structure was solved by direct methods and standard difference map
techniques and was refined by the least-squares procedure using the ShelXT 2014/15 [23],
ShelXL-2018/3 [24], and ShelXle Qt 6.4.0 [25] software packages; the results were visualized
with ORTEP [26]. All non-hydrogen atoms were solved anisotropically, and hydrogen
atoms were calculated using a riding model.

Crystal data (Supplementary Materials) for C14H30ClN3O2Ti (M = 355.76 g/mol): mon-
oclinic, space group C2/c (#15), a = 29.831(8), b = 10.125(3), c = 14.075(4), β = 114.948(3),
V = 3854.5(19), Z = 8, T = 150(2) K, MoKα (λ = 0.71073 Å), ρcacl = 1.226; 22,430 reflections were
measured (3.01◦ < 2θ < 57.41◦ (0.74 Å), and 4734 were unique (Rint = 0.0511, Rsigma = 0.0403),
which were used in all calculations. The final R1 was 0.0325 and wR2 = 0.0903 (I ≥ 2σ(I)). Full
crystallographic information can be found in the Cambridge Crystallographic Data Center,
deposit number 2332945.

Supplementary Materials: The mol file, cif data and check cif report are available online.
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