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Abstract: Underwater mapping with mobile robots has a wide range of applications, and good
models are lacking for key parts of the problem, such as sensor behavior. The specific focus here is the
huge environmental problem of underwater litter, in the context of the Horizon 2020 SeaClear project,
where a team of robots is being developed to map and collect such litter. No reinforcement-learning
solution to underwater mapping has been proposed thus far, even though the framework is well
suited for robot control in unknown settings. As a key contribution, this paper therefore makes a first
attempt to apply deep reinforcement learning (DRL) to this problem by exploiting two state-of-the-art
algorithms and making a number of mapping-specific improvements. Since DRL often requires
millions of samples to work, a fast simulator is required, and another key contribution is to develop
such a simulator from scratch for mapping seafloor objects with an underwater vehicle possessing a
sonar-like sensor. Extensive numerical experiments on a range of algorithm variants show that the
best DRL method collects litter significantly faster than a baseline lawn mower trajectory.

Keywords: underwater litter; mapping; AUV simulator; deep reinforcement learning

1. Introduction

Rivers, lakes and seas are increasingly polluted by human-generated litter, which
poses an increasing challenge to biodiversity preservation. One way to solve this problem
efficiently is by using robots that can map and collect underwater waste, and the SeaClear
project (https://seaclear-project.eu, accessed on 5 May 2022) aims to develop such a robotic
team. This paper focuses on the mapping subproblem.

Classical mapping methods are nonadaptive, e.g., a lawn mower algorithm will
perform a predefined trajectory consisting of a rectangular segments and will uniformly
cover the entire map. As robotic systems, such as drones or unmanned underwater vehicles
(UUVs), have limited runtime due, e.g., to battery capacity, and may be expensive in use,
mapping must be performed efficiently and quickly. Formally, the uncertainty of the created
map, measured, e.g., by the entropy, must be reduced as fast as possible. This is achieved
by informative path planning (IPP) [1]. IPP methods are usually adaptive; they generate the
path exploiting the map information accumulated from previous observations. One of the
simplest such methods is the myopic algorithm, which chooses an action that maximizes
the information gain [2] only at the next step.

This paper is the first to propose deep reinforcement learning (DRL) for long-horizon,
nonmyopic IPP in underwater mapping. DRL is a sequential decision-making framework
that maximizes a cumulative reward signal in problems with large-scale state signals, such
as images, while the initial objective is to map litter, the DRL technique introduced works
for mapping any quantity on the seafloor. A sonar-like sensor model is used, together with
a 2.5D representation of the seafloor map in an occupancy grid format. The map height
profile, belief and entropy are all part of the state signal plugged into a convolutional
neural network.
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Two DRL algorithms, double dueling deep Q-network (DDDQN) [3] and Rainbow [4],
are applied to solve the mapping problem using a reward signal that encourages both
discovering litter and reducing map entropy. Several mapping-specific improvements are
made to the exploration schedule, to the prioritization of samples in the replay buffer [5]
and by disallowing robot collisions with the seafloor or the limits of the operating area.
Extensive experimental studies are performed where DRL is compared with the lawn
mower strategy.

1.1. Related Work

Classical, collision-free planning [6,7] or shortest-path planning, such as the well-
known Dijkstra’s method [8], do not work for IPP, since the dynamic evolution of the
overall map must be considered instead of only the state of the robot.

Instead, in recent years, evolutionary algorithms became popular in mapping. Ref-
erence [9] introduced an evolutionary strategy for mapping cyanobacteria—an aquatic
microorganism that performs photosynthesis. Instead of incrementally constructing a solu-
tion on a graph as classical planning would, [9] used a set of complete paths in continuous
space together with an evolutionary strategy to maximize information gain. Furthermore,
a replanning scheme is presented to adapt the path according to the measured data, al-
lowing automatic focus on regions of interest, while ensuring that the robot sufficiently
explores the area under study.

Another global evolutionary strategy for IPP was proposed by [10] for a drone that
moves in 3D space and maps the terrain into a 2D grid representation. In some cases, the
problem induces constraints on the starting and end position of the agent. Reference [11]
proposed an evolutionary method for this case, which used an orienteering formulation for
continuous-sampling sensors.

Since IPP can be formulated as a control problem, DRL is another good candidate to
solve it, besides evolutionary methods. DRL for active mapping was used for Lidar (Light
Detection and Ranging) sensors in [12]. There, however, the agent is moved along a known
path and only the sensor itself is rotated on this path. Finding the optimal trajectory in
IPP can also be stated as a graph search problem to be solved with RL [13]. Graph vertices
store the position of the agent, and since this position is not a Markov state signal (because,
as explained above, the map itself evolves dynamically), ref. [13] estimates Q-values using
recursive neural networks where the input is the agent’s 2D position.

All the IPP problems above were solved with Gaussian process representations of
the map. An alternative representation is the occupancy grid, where each grid cell is a
Bernoulli distributed belief on the binary occupancy. This is more interesting from the DRL
perspective because such a grid representation is analogous to the image inputs usually
employed in DRL. In this context, ref. [14] compares a DRL agent with a myopic algorithm;
DRL reaches slightly better results. The reward is the difference in entropy before and after
making an observation (similar to the information gain). The objective is to reduce the
entropy as fast as possible over the entire 2D environment with a 3× 3 pixel sensor, thus,
solving a coverage problem with obstacles.

1.2. Open Issues and Contribution

All the IPP approaches reviewed above have a key drawback: they cannot learn to
focus on regions that are a priori more likely to hold information due to features in the
environment, such as valleys where litter is likely to collect. A main question investigated
here is therefore whether it is possible to develop a DRL mapping algorithm that learns to
consider such features of the environment in order to find litter more efficiently. Indeed,
the results reported in the sequel show that, with DRL, the agent can learn to exploit such a
prior of the environment.

More generally speaking, no convincing application of DRL to 3D mapping has
been reported. Therefore, a key objective of this paper is to develop such an application.
Specifically, mapping is performed in a 3D environment with a 3D Bayesian sensor, using a
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2.5D representation of the surface, while the motion of the agent is restricted to a 2D plane.
Notably, due to the stochastic sensor, the problem is highly stochastic, which is known to
be challenging for DRL [15].

Finally, to solve the mapping problem using DRL, a simple simulator is needed that
cheap computationally. Existing UUV simulators [16–18] are over-dimensioned for a DRL
agent that must execute many millions of steps. The aim of these existing simulators is
not to be fast in terms of actions per second but rather to run close to real-time in robotics
simulations, e.g., the UUV simulator [16] has a real time ratio of 0.75 on an Intel i7 processor
(meaning that 0.75 s of real time are simulated in 1 s of execution time). Therefore, another
contribution of the paper is the implementation of a fast 3D simulator that can easily
perform enough steps per second to train DRL agents. The agents are trained using a set of
environments created with the help of generative adversarial networks (GANs), themselves
trained on real underwater surfaces.

1.3. Structure of the Paper

Next, Section 2 introduces the simulator, describes how it works and investigates
its speed. Section 3, briefly discusses background on DRL. Section 4 presents the DRL
application to mapping using the simulator, together with some mapping-specific DRL
improvements. Section 5 gives the experiments and discusses their results. Section 6
concludes the paper and provides ideas for future work.

2. Simulator

The simulator consists of the environment, the representation of the map, the dynamics
of the robot and the sensor model.

Environment: The map is represented as a grid. The map is loaded and created from a
heat map image, where the temperature is the height of the environment. When creating
the environment, the length, width and height of the grid are passed as arguments. Some
of the areas can be marked as litter. The 3D map then contains the following information:
0 = not occupied, 1 = occupied and 0.5 = litter (Figure 1). A reduced-complexity 2.5D
representation is also created, consisting of two matrices. One of these matrices, denoted
by Ĥ, stores the seafloor height for every 2D coordinate i, j. The other, denoted by m, is
labeled with litter. The ground truth litter map is defined as follows: mi,j = 0 = sur f ace
and mi,j = 1 = litter. After the 3D and 2.5D representations are created, the agent can be
placed at any position in the environment.

To be able to use naturally-looking maps, the initial heat map images are created using
a Generative Adversarial Network (GAN) [19] trained on on real data from the OpenTopol-
ogy website. The dataset used to train the GAN is the Salton Sea Lidar Collection [20],
which has a density of five points per square meter. This point cloud dataset was trans-
formed into an image and the naturally-structured images (which do not show a flat surface
but have some tree-like shapes) were chosen to train the GAN (Figure 2). The generated
heatmaps were transformed back into a point cloud and finally into a voxelmap.

Map representation: The real map must be differentiated from the beliefs about the map.
This difference is caused by limited range and errors in the sensor, see the sensor model
below. In particular, the sensor can give different measurement outputs when measuring
the same object from the same or a different pose. The recovery of a spatial world model
from sensor data is best modeled as an estimation theory problem.
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Figure 1. Left side: The ground truth map, where the gray areas are litter. Right side: Map discovered
by the agent. A yellow color of the voxels means there is a strong probability for no litter, and blue
means a high probability of litter. Top and center: 2D projection of the currently discovered map,
where white represents litter, and black is no litter.

Figure 2. From the left: The first two images are real data from the OpenTopology website. The last
two pictures are generated 2D images with GANs.

One of the most popular methods of probabilistically representing a map and merging
new observations is through occupancy grids. This is due to some useful properties: it is
easy to calculate an exact posterior distribution for each voxel of the map and to handle
sensor noise. In the occupancy grid, the state variable s(Ci,j) associated with the cell Ci,j is
defined as a discrete variable with two possible values, occupied and empty. In practice,
the probability that a cell is occupied is stored: bi,j = P[s(Ci,j) = o]. Then, the probability
that the cell empty is: P[s(Ci,j) = e] = 1− P[s(Ci,j) = o] [21].

Robot state: The pose P of the agent consists of a vector PT = [px, py, pz] that stores the
position of the agent and a rotation matrix PR that stores the attitude of the agent relative
to the world coordinates.

Action and transitions: The translation actions are performed in the agent’s coordinates.
Before the agent performs an action, a check is made to see if the action is legal, i.e., whether
the action would cause the agent to leave the environment or bump against the bottom.
If the action is illegal, a collision signal is sent. The actions are defined here as follows:

• Translate: forward, backward, left, right, up and down.
• Rotate: clock wise or counter clock wise around each axis.

A matrix A stores all possible actions. Each line in this matrix represents one possible
action and defines either the length d (for translations) or the angle r (for rotations) of
the action.
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A =



d 0 · · · · · · · · · 0
−d 0 · · · · · · · · · 0
0 d 0 · · · · · · 0
... −d 0 · · · · · · 0
... 0 d · · · · · · 0
...

... −d · · · · · · 0
...

... 0 r 0 0
...

...
... −r 0 0

...
...

... 0 r 0
...

...
...

... −r 0
...

...
...

... 0 r
0 0 0 0 0 −r



(1)

To calculate the new pose of the agent, when performing a transition the multiplication
of the agent attitude PR with the vector of the performed action a is added to the current
world coordinate pose PT :

P′T = PT + PR · a, (2)

e.g., to move forward on the x axis, a = [d, 0, 0]T .
If a rotation action is performed, the chosen line from the action matrix A is trans-

formed into a rotation change matrix AR, and this change in the rotation is multiplied by
the previous agent attitude matrix to get the new attitude:

P′R = PR ·AR (3)

Sensor model: The sensor model is based on a multi-beam sonar where an overall angle b̂
is covered by the angles of the combined K beams. Every beam has an opening angle ô,
and this opening angle is represented by L rays, see Figure 3.

A 4-dimensional array S ∈ RK×L×3×3 is defined where the first dimension represents
the beams k, the second dimension corresponds to the rays l of each beam k, and the last
two dimensions represent the rotation of the ray relative to the agent.

The sensor array is initialized using a function M̂, which takes an axis and an angle
as input and gives a rotation matrix as output, which rotates with the input angle around
the input axis. First, the rotation for each beam k is calculated, using the separation angle s̃
between beams:

Sbeam
k = M̂(x, k̃ · s̃), k̃ = −K−1

2 , . . . , K−1
2 (4)

where k̃ gives the relative index of the beam, and the number of beams K has to be odd.
Next, for each beam k, the individual ray rotations are computed:

Sray
k,l = Sbeam

k · M̂(y, l̃ · õ), l̃ = − L−1
2 , . . . , L−1

2 (5)

where õ is the opening angle divided by the number of rays, and L is the total number of
rays per beam, which must be odd. Sray

k,l represents the ray rotation relative to the agent.
When the agent changes its attitude or its position, the full sensor array is recalculated
as follows:

Sk,l,·,· = PR · S
ray
k,l (6)

where subscript ·means that all elements along that dimension are taken, so that Sk,l,·,· is
the rotation matrix of ray k, l.
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Figure 3. The simulator has 15 beams, each represented by five rays.

Simulated sensor and map updates: To read the sensor data the simulator checks if in the
agent’s sensor range the voxels are occupied. A distance variable az is defined in the ray’s z
coordinate, which is increased in a loop with a step of 1

u voxels until the maximum sensor
range is reached. The sensor rotation matrix from the 4D array, Sk,l,·,·, is multiplied with a
vector [0, 0,−az] to check if, at the current position along the ray, the voxel is occupied; if
not, az is increased. This continues in a loop until the sensor range is reached.

If the ray hits an occupied voxel, which represents either litter or the seabed, a mea-
surement z is taken of the map m at positions i, j associated with that voxel (Figure 4).
In addition, the simulator checks whether there is another voxel above this voxel (Figure 4c).
If yes, than the surface voxel would not be reached, and thus the map would no longer
be 2.5D. Instead, this voxel is ignored. Otherwise, the belief is updated and the current
ray is marked as done (Figure 4a,b), so that it will not measure a second voxel. When a
measurement is made, a distance dk,l is taken along the ray until the point that the voxel
was hit. Note that Figure 4b shows an edge case where the ray goes “through” the upper
left voxel and hits the lower right voxel.

(a) (b) (c)

Figure 4. The lighter color visualizes which voxel is being measured. In the figures, the number of
steps per voxel is u = 3. From the left: (a) The belief of the upper voxel is updated. (b) Edge case: the
ray is going through the upper voxel but the belief of the right lower voxel is updated. (c) No voxel is
updated because the surface was not hit by a ray.

Each of these rays should represent not only the aperture where the measurement
is made but also different reflections of the signal; incorrect measurements are possible.
The probability of a correct measurement of a given ray in all beams is calculated using
an array C, which stores the values Cl for the accuracy of a measurement, which simulates
reflection depending on the angle of the opening. A decay factor ψ ∈ [0, 1] is used to
represent the decreasing accuracy of a measurement with the distance. The accuracy of the
measurement for ray l of beam k is computed as follows:

ck,l = ψdk,l · Cl (7)

where ck,l ∈ [0, 1].
The sensor makes erroneous measurements with the probability of 1− ck,l :

zk,l =

{
mi,j, with probability ck,l
1−mi,j, with probability 1− ck,l

(8)
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Given measurement zk,l , the belief is updated with the Bayesian rule:

b′i,j =
P(zk,l | mi,j = 1) · bi,j

P(zk,l | mi,j = 0)
(
1− bi,j

)
+ P(zk,l | mi,j = 1) · bi,j

(9)

A belief matrix B is defined that includes all elements bi,j.
At each step, for each location i, j, the entropy h is calculated from the belief, as follows:

hi,j = −
(
bi,j · log(bi,j) + (1− bi,j) · log(1− bi,j)

)
(10)

Notation H is an entropy matrix that includes all elements hi,j.

Speed of the simulator: The main motivation to build the simulator was speed. Figure 5
shows the dependency of the speed on the amount of rays and on the map size. In this
figure, u is 3, and the ray length/range is 11. The tests were performed while choosing
random agent actions, on a computer running Ubuntu 20.04 and having an Intel Core
i7-8565U CPU and 16GiB RAM. The smallest speed is around 100 steps per second, which
means 10,000 s (about 3 h) are needed to simulate one million samples. This is acceptable
for DRL.

Figure 5. A graphical visualization of the simulator speed depending on the map size and on the
number of rays. A sensor range of 11 was chosen with a number of steps per voxel of u = 3.

3. Background on DRL

Reinforcement learning deals with the problem of how to map situations (states s),
of a learner, called an agent, to actions ato maximize a cumulative numerical reward signal.
The agent is interacting with an environment as follows. The agent chooses actions, and the
environment is responding to those actions by presenting new states to the agent and giving
rewards R. The agent aims to maximize (in expected value) the sum of the discounted
rewards over the future trajectory [22]:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞

∑
k=0

γkRt+k+1 (11)

where G is the return, t is the time step, and γ ∈ [0, 1) is the discount factor.
If the agent is following policy π at time t, then π(a|s) is the probability that At = a

in state St = s, where a ∈ A for each s ∈ S. The value of taking action a in state s under
a policy, Qπ(s, a), is defined as the expected return starting from s, taking the action a
and thereafter following policy π [22]:

Qπ(s, a) := Eπ [Gt | St = s, At = a] (12)
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This Q-Value function satisfies a recursive relationship called the Bellman equation:

Qπ(s, a) = ∑
s′∈S

Pa
ss′

(
r(s, a) + γ · ∑

a′∈A
π(a′ | s′)Qπ

(
s′, a′

))
(13)

where Pa
ss′ is the transition probability of landing in state s′ when starting in state s and

taking action a. Moreover, r is a reward function that generates the received reward R
when taking action a in state s.

The optimal Q-value function Q∗ gives the best Q-values obtainable under any policy:

Q∗(s, a) = max
π

Qπ(s, a) (14)

and satisfies the Bellman optimality equation:

Q∗(s, a) = ∑
s′∈S

Pa
ss′

(
r(s, a) + γ ·max

a′∈A
Q∗
(
s′, a′

))
(15)

Once Q∗ is available, choosing actions that are greedy in this Q-function leads to a
(deterministic) optimal policy, which achieves the objective:

π∗(s, a) =

{
1 for some a ∈ arg maxa′ Q∗(s, a′)
0 otherwise

(16)

The temporal difference (TD) is an important concept in online RL. Denote the Q-
function at step t by Qt, and then, given an action at in state st, the TD is defined as:

δt = Rt+1 + γ max
a′

Qt(st+1, a′)−Qt(st, at) (17)

and can be understood as a sample of the difference between the right-hand side and
the left-hand side of the Bellman optimality Equation (15), when applied to the current
Q-function. To learn now the Q-values, they can be updated over time using the TD as an
error signal:

Qt+1(st, at) = Qt(st, at) + αδt (18)

where α is the learning rate. This algorithm is called Q-learning.
Consider next the problem of selecting the actions during learning. To solve it, one

must address the so-called exploration–exploitation problem. Exploration allows the agent
to collect new experiences to improve the accuracy of the estimated Q-values, whereas
exploitation chooses the greedy action, thus, exploiting the agent’s current Q-value estimate.
The epsilon-greedy strategy solves the exploration–exploitation dilemma in the following
way. It chooses a random action at at timestep t (explores) with probability ε and otherwise
chooses the greedy action (exploits):

at =

{
a uniformly distributed random action, with probability ε

arg maxa Qt(st, a), with probability 1− ε
(19)

A widely used approach is to start with ε = 1, and over time decrease it until close
to 0.

Deep reinforcement learning uses deep neural networks (deep NNs) to estimate the
Q values. Denote by Θ the parameters of the NN and by Q(s, a, Θ) the corresponding
approximate Q-value function. In the case of the DDDQN [3] and Rainbow [4] algorithms
that will be used, two networks are employed. The reason is that taking an action with
the highest noisy Q-value in the maximum application within the TD, using the “normal”
parameters Θ, would lead to overestimation of the Q-Values. To solve this, the algorithms
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compute the maximum in the TD using another set of parameters Θ+, which give the
so-called target network [23]:

δ+ = Rt+1 + γ max
a′

Q
(
st+1, a′, Θ+

)
−Q(st, at, Θ) (20)

Usually, Θ+ is a delayed version of Θ, updated only from time to time.
To update Θ, observed transitions are stored in an experience replay buffer, and various

forms of gradient descent are performed on a loss signal that involves the TD of so-called
minibatches of transitions sampled from the buffer. The math is given in the specific case of
prioritized experience replay (PER) [5], which is the concept of giving priority to transitions
with a large TD error δ+, instead of sampling transitions uniformly randomly. The TD
error intuitively indicates how “surprising” or wrong the prediction was, and the NN
trains more often (with a higher priority) on the transitions, which was more surprising.
The probability of sampling transition with index i is:

P(i) =
pρ

i

∑k pρ
k

(21)

where pi > 0 is the priority of transition i. The prioritization is rank-based where pi =
1

rank(i) , where rank(i) is the rank of transition i when the replay memory is sorted according

to the TD magnitudes | δ+i |. The exponent α determines how much prioritization is used,
with ρ = 0 corresponding to the uniform case.

Prioritizing transitions causes bias because it changes the distribution. To compensate
for this bias, importance-sampling (IS) weights are used:

wi =

(
1
N

1
P(i)

)β̂

(22)

where P is the probability to sample a transition i and N is the current replay buffer size.
IS is annealed by increasing β̂ from β̂0 to 1, which means its effect is felt more strongly at
the end of the learning. This is because the unbiased nature of the updates in DRL is most
important near convergence [5].

Finally the loss function l for training the network can be defined. This loss function is
computed over mini-batches B and consists of the weighted mean square TD error:

l =
1
| B | ∑

i∈B
wiδ

2
i (23)

4. Application of DRL to Underwater Mapping

To apply DRL to the mapping problem, the state, actions and reward signals are first
defined. Then, the methodological improvements made to the DRL algorithms are explained.

State: The state s of the agent is a tuple composed of the pose P, the belief B, the entropy H
and the height Ĥ :

s =
〈
P, B, H, Ĥ

〉
(24)

The state is normalized between −1 and 1 to help the neural network learn. To do so the
pose P is split into PT (position) and PR (rotation):

sN =

〈 PN
T = ( PT

P̂max
− 0.5) · 2,

PN
R = (PR

2π − 0.5) · 2,
BN = (B− 0.5) · 2,

HN = (− H
log(0.5) − 0.5) · 2,

ĤN = ( Ĥ
Ĥmax

)− 0.5) · 2

〉
(25)
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where P̂max is the size of the environment, Ĥmax is the maximum height of the environment,
and operations are applied element-wise.

This state is used to create the input of the neural network. In order to take advantage
of the spatial dependency of the information, a convolutional neural network is used.
However, since there is also a spatial dependency between the pose/attitude and the
entropy/belief/height, the pose information is not connected with a dense layer after the
convolution layers, as would be the classic idea. Instead, this information is added in two
more channels in the first convolution layer, see Figure 6. In this way, the Neural Network
can already make some connections between the position and the belief/entropy/height in
the first layer of the NN.

The pose is passed as a 2D matrix (2.5D representation) where the normalized height
of the agent is stored at the x,y coordinate of the agent. This works only when the agent’s
position and actions are integers. If the pose or actions were continuous, all three values
(x, y and height) would have to be added instead. The rotation matrix is centered at the
x,y position of the underlying channel. To ensure the rotation matrix fits at all positions,
the channel is padded.

Figure 6. Representation of the state: The belief, height, entropy, position of the agent and attitude of
the agent are each a 2D matrix. The picture illustrates how the kernel of the convolutional network
connects the spatial information of the state already in the first layer.

Actions: The actions are those defined in the robot model of Section 2.

Reward: The goal of the agent is to find the litter as fast as possible. In general, rewards
can be defined based on the belief and the entropy of the map. To help the agent learn,
rewards are provided both for finding litter and for exploring the map.

Due to the stochastic sensor model, if all the voxels were considered when computing
the rewards, the variance would be large. To see why, assume ck,l = c for all k, l. Then,
for one ray, the observation z is either 0 or 1, leading to high variance. For many rays,
the count of the average of the rays that are correct tends to c. This makes belief updates
more predictable on average, and hence rewards and Q-values have less variance. Many
rays can thus reduce the variance but they are making the calculations slower.

Even if many rays are used, the agent could rotate so that only a few rays hits the
voxels, and thus the variance of a measurement would increase again. This can lead to the
fact that, even after converging to the real Q value, a high TD error is still observed due
to the noise in the measurements. A second problem that appears due to variance is that
the algorithm will prioritize from the experience replay buffer a measurement with a high
variance, instead of a state with a “real” high error.

To reduce the variance without unduly increasing the number of rays, the rewards are
defined so that the agent only receives a reward from a voxel once if the agent is (virtually)
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sure that it has identified this voxel as a litter (high value of the belief; component RL) or
that it has discovered the voxel (low value of the entropy; component RH):

RL =
1
l ∑

i,j
I
(

b′i,j ≥ 0.999∧ (i, j) /∈ L
)

(26)

RH =
1
h ∑

i,j
I
(

h′i,j ≤ 0.001∧ (i, j) /∈ D
)

(27)

RC =

{
−1, if crash
0, otherwise

(28)

R = RL + RH + RC (29)

Here, I is an indicator function (equal to 1 when the argument is true). M represents
the 2.5D grid of voxels, and L ⊆ M represents voxels, which are labeled by the agent as
litter. After receiving the reward RL, the voxels are added to the set L. The same applies
for the entropy, where D ⊆ M represents discovered voxels. After receiving the reward
RH for these voxels, they are added to the set D. l and h are parameters for the reward
function. RC is a collision penalty, when a collision is triggered by the environment. Note
that reward computation uses the belief and entropy after the Bayes update (b′ and h′).

Entropy-dependent exploration: In this environment, states are similar at the beginning,
e.g., for the first state of the trajectories, the entropy and belief are similar (uniform belief
with high entropy). As the trajectories of the agent get longer and it discovers more of
the map at various locations, the states become more unique. This poses an exploration
problem. For this reason, instead of only exploring at the beginning and decreasing the
linearly as in traditional DRL [24], exploration is also made dependent on the entropy left
on the map:

ε =
θ

H(s)
(30)

where θ is an exponentially decreasing parameter over time and H(s) is the sum of entropy
over the whole map.

Modified PER: Unlike classic DRL tasks (e.g., Atari games), here the agent receives nonzero
rewards in almost every state. At the beginning of a trajectory, as the locations that are easy
to discover are found, high Q-Values are seen, which then decrease progressively. As a
consequence, the TD-error δ at the beginning of a trajectory is also greater, which increases
the probability that PER chooses an early sample of a trajectory to train the NN, at the
expense of later samples that may actually be more unique and, therefore, more relevant.
To avoid this, the TD-error is normalized by the Q-value before using it for PER:

δN =
(R + γ maxaQ′(s′, a, Θ+))−Q(s, a, Θ)

Q(s, a, Θ)
(31)

Collision-free exploration: By default, the agent can collide with the seafloor or with
the borders of the map (operating area). Any such collision leads to termination of the
trajectory, with a poor return, which is hypothesized to discourage the agent from visiting
again positions where collisions are possible. This means both that the Q-values are
estimated poorly for such positions and, in the final application of the learned policy, that
those positions are insufficiently visited to map them accurately.

To confirm this, a simpler 2D grid problem was solved with Rainbow, where the agent
is represented as a blue pixel and the obstacles are colored white; see Figure 7. The goal is
coverage, i.e., to reduce the entropy over the whole map. A simple sensor model is used
where, with every visit of a cell, the entropy decreases by 80% in that cell. When the agent
hits an obstacle or the border of the environment, the episode ends.
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Figure 8 shows some images of the remaining entropy of the environments from
Figure 7, after the agent executes its policy in each of those environments. Clearly, the agent
struggles to visit positions that are prone to collisions. An extreme case is when the agent
must traverse a long tunnel where collisions are possible at each step, as in Figure 7a.

(a) (b) (c) (d)

Figure 7. Examples of gridworld environments where the white color represents obstacles and the
blue pixel is the agent. Each subfigure is a different environment.

(a) (b) (c) (d)

Figure 8. Solutions learned to a coverage problem for the environments above. The maps correspond
one-to-one to those above. The lighter the gray color, the more entropy remains at this position at the
end of the trajectory. Each subfigure is a different environment.

To eliminate the imbalanced visiting frequencies of environment positions, the method
will exploit the fact that the dynamics of the agent and the topography of the environment
are known in advance. Therefore, when the agent chooses an action that would lead to a
collision, the collision is predicted, and the action is forbidden. Instead, a random legal
action is chosen.

However, naively adding only the legal-action transition to the replay buffer would be
problematic, because then the agent cannot learn to avoid the illegal transition and, there-
fore, will often get stuck by repeatedly “attempting to collide”. To solve this, the illegal
transition is also stored in the buffer, followed immediately by the legal transition, see
Figure 9. Since the illegal transition is terminal, the next-state Q-value is always 0 irrespec-
tive of the actual next state, and thus the two transitions are in fact not connected during
learning. Learning can therefore proceed correctly, without having to change the structure
of the replay buffer.
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Transition Transition Transition Transition Transition
S A R D S S S S SA A AAR R R RD D D D
s0 s1 s2 s2 s3 s4

Illegal action

a0 a1 a2.0 a3a2.1r0 r1 r2-1 r3F TF FF

new branch

Figure 9. The structure of the PER for collision-free exploration. To save memory, every state is
stored only once, linked to the next state in the trajectory. When a collision occurs, both the illegal
transition (s2, a2.0, r = −1, done = True, s2) is stored, and immediately after it, the legal transition
that is actually performed in the environment, (s2, a2.1, r2, done = False, s3). The dummy next state
s2 in the illegal transition is irrelevant, because the transition is terminal, and the next-state Q-values
are always zero.

Overall, this change should enable the agent to more often reach positions previously
deemed too dangerous, while simultaneously lengthening the episodes, which makes them
more informative.

5. Experiments and Discussion

The DRL agents were trained on 220 maps, generated with GANs (Section 2). These
maps were also rotated and mirrored to obtain, in total, 1660 different maps. The validation
dataset contains 40 maps that are based on real data and different from the training maps.
The DRL maps are lower resolution and obtained by resizing the original maps.

A number of 63 voxels were labeled as litter in every map. The litter is placed with a
higher probability in deeper regions so that the agent can learn the connection “valley =
higher reward”. Note that uniformly distributed litter would lead to a less interesting map
coverage problem. The litter is placed starting from the deepest layer until the predefined
amount of 63 pieces of litter are placed. By layer, the probability of a voxel being litter is,
starting from the deepest layer, 60%, 43%, 30%, 21%, 14%, 10% and 7% (see also Figure 10).
The litter is resampled at each episode from the described distribution; therefore, maps are
different in terms of litter placement even when the shape of the seafloor repeats.

Figure 10. Distribution of litter for the experiment. More litter (gray voxels) was placed in the deeper
layers (valleys) than in the higher layers.

It is important to note that training on a variety of different maps, with random litter
positions—with each combination leading to a different MDP—followed by validation on
a different set of such MDPs, is a nonstandard and challenging way of applying DRL.

As a baseline against which all DRL results are compared, a lawn mower (LM) algo-
rithm was employed. This is an effective algorithm to solve a coverage problem, because it
reduces efficiently the entropy over the full map. Moreover, since there are no crossings
of the trajectory, no unnecessary steps are taken. The LM starts in the corner of the map
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(x = 0, y = 1) and goes once through the whole map, by moving forward until end of the en-
vironment, moving three steps south, running backwards until the end of the environment,
moving three steps south and repeating until the end of the map.

During DRL training, in all cases, the improved exploration Formula (30) is used.
The PER buffer stores 1.5 million transitions and to optimize the NN the Adam opti-
mizer [25] is used. The agent is initialized in random initial positions on the map.

During validation, the initial position of the DRL agent is the middle of the map,
since from there, it can move fast to other locations. For both the DRL and LM agents,
the same seed is used for placing the litter on the 40 validation maps so that the comparison
is performed on identical maps. Moreover, collisions are not permitted during validation.
Instead, if the action given by DRL is illegal, a random legal action is chosen instead.
The reason for this is to ensure that the trajectory always has enough steps to properly
compare to the LM.

In the sequel, experiments will be performed with two different types of DRL agents:
double dueling deep Q-networks (DDDQN) in Section 5.1 and Rainbow in Section 5.2.

5.1. DDDQN Results and Discussion

The DDDQN experiments are run with a relatively informative sensor with a large
number of rays and relatively small maps of 27× 27× 24 voxels. Specifically, the agent’s
sensor has 15 beams, each with 5 rays, with a decay factor ψ = 0.99, and the ray accuracy
array is C = [0.83, 0.9, 0.95, 0.9, 0.83]. The problem is further simplified so that the agent
only has four translation actions (it moves in 2D in a single plane at altitude 14); rotation
and moving up and down are disabled.

The Adam optimizer [25] has a small learning rate
(
10−7). The maximum length of

an episode is 800 steps. The parameters for the reward function are l = 10 and h = 100.
The network structure can be seen in Figure 11.

4 27

Input

64 11

Conv.
5x5

128 9

Conv. 3x3

256 8

Conv 2x2

51
2

51
2

4

1

4

output

Figure 11. Network structure for the DDDQN experiments.

In what follows, we first verify whether the TD-error normalization (31) has benefits,
in a simpler coverage problem. Then, once that is established, the full-blown experiment is
run where the DDDQN agent is compared with the LM.

Normalization of the TD error in PER: For this experiment only, several simplifications
are performed. Only discovered voxels are rewarded, and a penalty is given when the
agent crashes, R = RH + RC, while the litter component RL is ignored, meaning that only a
coverage problem is solved. Two agents are run, one with the normalized TD errors (31)
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and the other without, over the same amount of steps (10 million). Collisions are allowed
during validation.

During the experiment, the episodes of the agent using normalized TD errors were
increasing in length. During the time, that the classic agent needed to made 50,000 episodes,
the normalized-TD agent performed 46,500 episodes. Furthermore, the amount of dis-
covered voxels (that have less than 0.001 entropy left) was around 11% higher with the
normalized TD. Classic PER discovered in average 421.82 voxels whereas with normalized
TD errors the agent discovered 466.48 voxels. Note that, if the same amount of episodes
were taken for both agents instead of the same amount of steps, the normalized agent
would have a greater advantage.

DDDQN versus LM: Figure 12 shows the comparison between the LM and DDDQN
agents, this time for the full litter-discovery problem. As shown in Table 1, the DRL agent
finds around 56% of the litter, while the LM-agent finds 98% of the litter at the end of the
trajectory. On the other hand, the DDDQN agent finds after 50 steps on average around
4% more litter. Moreover, the large difference in the variance is remarkable: in the worst
trajectory, after 120 steps (half of the trajectory) the DDDQN agent found at least 11 L
whereas the LM-agent found 0.

Note that Table 1 centralizes all the results obtained from now on, and it will be
referenced repeatedly.

Figure 12. The results of the agents on the 40 validation maps, in the case with map size 27× 27× 24
maps. Left: LM agent. Right: DRL agent.

Overall, if the objective is to discover all the litter, the LM agent behaves better than
DDDQN. By investigating, one reason was found to be that the DDDQN agent started with
time to have a growing oscillation; thus, visiting the same regions many times without
efficiently reducing the entropy. This is illustrated in Figure 13. Other possible reasons
include an insufficiently powerful network or algorithm, which leads to the next section.

Figure 13. The agent starts to exhibit growing oscillation.
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5.2. Rainbow Experiments and Discussion

As the DDDQN agent did not provide satisfactory results, several changes were made.
First, the DRL algorithm was changed to a better one, called Rainbow [4]. Compared to
DDDQN, Rainbow adds two key elements. (i) Instead of learning the expected Q-values,
the agent learns a distribution over these Q-values [26].

This should help in mapping, since the noisy sensor and the litter distribution lead
to significant stochasticity in the problem. (ii) To improve exploration, the last layer is
modified to be a so-called noisy layer [27], without removing the custom exploration
probability (30). Some retuning was needed after changing the algorithm. To prevent the
PER from getting overly filled with states where the agent is oscillating between certain
positions, the maximum trajectory length was reduced from 800 to 400 steps. The learning
rate of the Adam optimizer was increased to

(
10−6). All agents were trained over 10 million

steps and after 5 million steps exploration was disabled. Moreover, the final state was not
labeled as “done” when the agent exceeds the maximum number of steps, which could
also have caused problems during the DDDQN experiments.

Secondly, the network was made deeper, for reasons that will be detailed later. Deeper
networks however tend to overfit and therefore to be unhelpful in DRL [28]. In computer
vision, this problem is addressed with batch normalization, which was shown to smooth
the optimization landscape, stabilizing gradient estimation [29]. Unfortunately, batch
normalization causes instability in DRL, and instead an approach recently suggested by [30]
is applied here: spectral normalization of network weights. Spectral normalization in DRL
is most efficient on the largest fully connected layer, which is one after the last convolution
layer. To handle the gradient vanishing problem, residual blocks [31] are added.

Thirdly, from time to time, some oscillations appear that lead to the agent getting stuck
in a valley containing large quantities of litter. The impact of this during validation was
reduced as follows. Consider the condition: in the last 22 steps, the agent revisited the
same position more than five times. If this condition is encountered, the algorithm declares
an oscillatory regime and, instead of applying the DRL policy, applies random actions until
the condition becomes false. This simple change improves results by around 5%.

Finally, the mapping problem difficulty is increased, because—as confirmed towards
the end of this section—even in the simpler problem from Section 5.1 better results are
obtained with the new method. The size of the environment was increased from 27× 27× 24
to 32× 32× 24 voxels, and the sensor size was reduced from 15 beams × 5 rays to 15× 3,
with an accuracy array C = [0.9, 0.95, 0.9]. This poorer sensors makes it more difficult to
find litter. The action space was increased from 4 to 8, and thus the agent can now also
move diagonally in the plane.

The rest of the settings stay the same as for DDDQN.
In the remainder of this section, the following experiments are run. First, the baseline

LM performance is reported for the new, more difficult problem. Then, since the reward
function (25) is rather complicated, an attempt is made to simplify it, and it is shown that
performance decreases. Similarly, to justify the use of the deep network, an experiment is
run that shows performance is poorer with a typical, shallow DRL network. In the end,
as a final improvement, collision-free training is performed using the method in Section 4.
All results reported are on the 40 validation maps.

LM baseline: With the new configuration, the LM needs 350 steps to finish its trajectory.
Figure 14 shows that on average 52.7 L items are found by the LM. During the first 31 steps,
the agent does not find much litter. The reason for that is the poorer sensor, which must see
again the same region to become sure that certain voxels are litter.
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Figure 14. The results with the LM agent on 32× 32× 24 maps with the 15× 3 sensor.

The impact of entropy in the reward function: An investigation was conducted to deter-
mine whether the entropy component is needed in the reward function. Figures 15a–c show
results with no entropy component (corresponding to entropy parameter h→ ∞ in (25)),
with h = 100 (a low influence of entropy) and with h = 10 (a larger influence of entropy).
The litter parameter l is always 1.

When the rewards only include litter found, Figure 15a shows that the performance is
good in the beginning but that the final amount of litter found is small, likely because the
agent quickly becomes stuck, focusing only on the litter in a certain region. Figure 15b,c
show that rewarding the reduction of entropy is beneficial, likely because entropy reduction
pushes the agent to explore the map further.

(a) (b)

(c)

Figure 15. Rainbow agent performance for varying entropy influence on the rewards. From the left:
(a) No entropy reward. (b) Entropy reward parameter h = 100. (c) h = 100.

As a rule of thumb for selecting the reward parameters l and h, a roughly equal ratio
of litter and entropy rewards in (25) is recommended:

1
l ∑i,j I

(
b′i,j ≥ 0.999∧ (i, j) /∈ L

)
1
h ∑i,j I

(
h′i,j ≤ 0.001∧ (i, j) /∈ D

) ≈ 1 (32)

The absolute magnitudes of l and h will likely depend on the map size and on the
amount of litter.
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Deep versus shallow network: To check whether the complexity of the network in
Figure 16 is justified, here a shallower network is used, show in Figure 17. This net-
work structure is appropriate for Atari games, the usual DRL benchmark. It has fewer
layers with larger convolutional kernels. The results in Figure 18 and Table 1 show that this
shallow network finds after 50 steps only 11.88 L on average and after 350 steps 36.78 L on
average. The deeper network finds after 50 steps 19.3 L and after 350 steps 46.25 L.
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Figure 16. Network used for Rainbow.
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Figure 17. Shallow network structure with an input of size 4× 32× 32.

Figure 18. The results with the Rainbow agent and the shallow network. Here, h = 100.

A question arises: why does a network structure widely used in DRL for Atari games
not deliver good results in mapping? One explanation could be that in Atari games, images
have a relatively simple structure (e.g., player ship and targets) and a few relatively simple
feature detectors suffice to parse this structure. In contrast, in mapping, the seafloor profile,
belief and entropy can all be arbitrarily complex surfaces. Therefore, it pays to have a larger
amount of smaller convolutional kernels that are stacked in more layers.

To understand why smaller kernels may be beneficial, consider the case of a discrete
kernel where the weights are 0 or 1. Then, with a 5 × 5 kernel the NN would need
225 = 33,554,432 kernels to parse all possible configurations that may occur at the input of
the first layer. In contrast, with 3× 3 kernels only 29 = 512 configurations exist; thus, fewer
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kernels will suffice. However, to identify larger-scale structure in the map, the smaller
kernels must be stacked in more layers, which shows the need for a deeper network.

Collision-free exploration: For the final experiment, the following question was asked:
could the collision and oscillation-avoidance measures, applied so far during validation,
also help during training? Recall that, instead of simply avoiding collisions, the agent must
additionally learn about them; therefore, the collision transitions are added to the PER as
explained in Section 4.

The results with this additional improvement are shown in Figure 19 and Table 1.
Clearly, the latest Rainbow agent is always better than the LM: it both finds significantly
more litter early on and increases the total amount of litter found. This is because the
agent learns to exploit the prior that deeper regions contain more litter, see Figure 20 for a
representative trajectory of this agent.

We also verified that this improvement holds for the simpler mapping problem used
for DDDQN. Figure 19b shows the results, where again the collision-free Rainbow agent
beats LM decisively early on, without a large drop in performance at the end. This justifies
solving the increased-complexity task with Rainbow.

(a) (b)

Figure 19. (a): The results of the collision-free Rainbow agent with the 3× 15 sensor on 32× 32× 24
maps. (b): The results of a similar agent but with the 5× 15 sensor on 27× 27× 24 maps (the version
used for DDDQN).

Table 1. Numerical comparison between all the agents , in terms of how fast they find litter early on
(after 50 steps) and the total amount of litter found at the end of the trajectory. The smaller-map results
are given above the double line, and the larger-map results below this line. The cyan background
highlights the best agent for each type of map. In all the experiments the amount of false-positive
findings were between 0.15 and 0.4 L items on average, i.e., very low.

Agent
50 Steps End of Trajectory

Litter % Litter %

LM 14.5 23% 62.0 98%

DDDQN l = 10, h = 100 16.9 27% 35.5 56%
Deep Rainbow l = 1, h = 25; no coll. 30.1 48% 56.4 90%
LM 4.5 7% 52.7 84%

Deep Rainbow l = 1, no entropy (h→ ∞) 17.2 27% 39.3 62%

Deep Rainbow l = 1, h = 10 15.6 25% 48.2 77%

Deep Rainbow l = 1, h = 100 19.3 31% 46.3 73%

Shallow Rainbow l = 1, h = 100 11.9 19% 36.8 58%
Deep Rainbow l = 1, h = 25; no coll. 24.4 39% 55.4 88%
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20. Visualization of the best agent’s trajectory using a sequence of snapshots (b–i). The first
map (a) shows the ground truth (recall that litter is gray, low beliefs are yellow, and large beliefs are
blue). The agents moves from the center directly to a valley where it finds large quantities of litter (b).
Note that in (c), the agent does not take the shortest path to the next valley, likely because it is more
efficient to approach the valley from one side instead of driving directly into the middle and then
measuring parts of the valley twice.

6. Conclusions and Future Work
6.1. Summary and Main Findings

This paper presented some first deep reinforcement learning results for underwater
mapping. Several mapping-specific improvements were made to the DRL methods: a way
to connect the pose of the agent efficiently in the convolution layer, a modified exploration
schedule, normalization of the Q-values in prioritized experience replay and a technique to
avoid collisions during learning while still learning from them.

To apply DRL, it was necessary to develop a new simulator for mapping with an
autonomous underwater vehicle, which models a sonar-like sensor and is fast enough to
provide the amount of samples required in a reasonable time.
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After making the necessary improvements to a Rainbow DRL agent, it obtained
decisively better performance than a lawn mower baseline. Moreover, experiments showed
that a deeper network is useful in mapping (as opposed to a shallow network typically used
in classical DRL) and that it is important to take entropy into account in the reward function.

6.2. Limitations and Future Work

To reduce the required number of samples for learning, future work could integrate
all available model knowledge on the motion of the vehicle and focus learning only on
the unknown part: the sensor model. This will also help to integrate any priors on the
distribution of target objects that may be available prior to the experiment.

The agent and sensor models are currently quite simple, and it will be interesting to
find more realistic models that are still computationally efficient enough to be useful for
DRL. Along a similar line, it is important to see if the simplified-model DRL policies are
applicable to more realistic mapping simulators or to a real system. The limitation to 2.5D
maps means that objects in the water column cannot be mapped. Extending the framework
to full 3D learning would be useful in practice but computationally challenging.
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