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Abstract: Evaluation of the deviation zone based on discrete measured points is crucial for quality
control in manufacturing and metrology. However, deviation-zone evaluation is a highly nonlinear
problem that is difficult to solve using traditional numerical optimization methods. Swarm intelli-
gence has many advantages in solving this problem: it produces gradient-free, high-quality solutions
and is characterized by its ease of implementation. Therefore, this study applies an improved Harris
hawks algorithm (HHO) to tackle the problem. The average fitness is applied to replace the random
operator in the exploration phase to solve the problem of conflicting exploration strategies due
to randomness. In addition, the salp swarm algorithm (SSA) with a nonlinear inertia weight is
embedded into the HHO, such that the superior explorative ability of SSA can fill the gap in the
exploration of HHO. Finally, the optimal solution is greedily selected between SSA-based individuals
and HHO-based individuals. The effectiveness of the proposed improved HHO optimizer is checked
through a comparison with other swarm intelligence methods in typical benchmark problems. More-
over, the experimental results of form deviation-zone evaluation on primitive geometries show that
the improved method can accurately solve various form deviations, providing an effective general
solution for primitive geometries in the manufacturing and metrology fields.

Keywords: Harris hawks optimization; salp swarm algorithm; minimum-zone evaluation; form
error; tolerancing

1. Introduction

Primitive geometries are widely used in aerospace, shipbuilding, and medicine. The
form deviation of primitive geometries affects part mating. Part mating is critical in manu-
facturing and metrology quality control, affecting assembly, service life, wear resistance,
and motion. Therefore, the development of computational algorithms to improve the
efficiency and reliability of the production processes for manufactured parts has been a
challenging research task during the last three decades. The rapid acquisition of discrete
point clouds from surfaces has become possible with the development of coordinate mea-
suring machines (CMMs) and low-cost 3D acquisition techniques. Therefore, inspecting
manufactured parts by coordinate metrology on a discrete point cloud is an effective
method for assessing the degree of satisfaction with design requirements.

Typically, the measured points should be compared to the ideal geometry to determine
whether the part is to be accepted or rejected [1]. Robust algorithms can quickly determine
a substitute geometry in point clouds, but the reliability and efficiency of the algorithms are
affected by the inherent uncertainty of the equipment used. Uncertainty may arise either
from systematic errors [2] or data noise [3]. Hence, numerous coordinate metrology tasks
focus on eliminating the uncertainty associated with data acquisition, which is referred to
as point measurement planning (PMP) [4]. Since the measurement time is proportional to
the number of points, PMP research focuses on the size and location of the measurement
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process to achieve a more precise representation of the measured geometries using fewer
points [5]. The sampling strategy design is a solution for contact measurements. Sampling
strategies in the literature can be divided into three main categories: uniform, random, and
stratified sampling [6]. Noncontact measurements provide more surface information [7],
but at the same time, the increased density leads to computational instability and cost.
Gohari et al. [8] introduced a data-mining algorithm that analyzes the trend of errors for the
acquired points, which guarantees a reliable evaluation of geometric and form deviations.

The second computational task, which is also the main focus of this research work, is
substitute geometry estimation (SGE). The objective of SGE is to obtain the ideal geometry
parameters for the measured points or to locate the ideal geometry for the measured points
via different types of fitting criteria, such as least-squares fitting, total least-squares fitting,
min–max fitting, and minimum-zone fitting. In the former, fitting occurs directly on the
point cloud, and the latter aligns the point cloud with the design model. The least-squares
method is widely used in surface error estimation owing to its high evaluation efficiency.
However, it does not strictly adhere to the minimum zone specified by ISO [9] and can
only provide approximate results, which may lead to misjudgment of the workpiece and
economic losses. The minimum-zone method is often used as the basis for arbitration
among various evaluation methods since it is more consistent with the standard definition
of physical fittings [10]. Nevertheless, minimum-zone deviation is a highly nonlinear
problem, and multivariate optimization algorithms are required to provide satisfactory
substitute geometries.

There have been many studies that have applied numerical optimization methods
to the evaluation of form errors, including simplex search [11,12], semidefinite program-
ming [13], linear approximation [14], iterative reweighted [15], Chebyshev approxima-
tion [16], and steepest descent [17]. In the case of higher nonlinearity, it is challenging
for these algorithms to obtain the global solution, since several local solutions may exist.
Increasing the number of sample points also reduces the chance of obtaining the global
minima in the employed optimization process [18]. Based on this, many researchers have
developed new data-fitting methods to solve the above problems.

The representation of surfaces by convex hulls is common in computational geometry
techniques, and many researchers have applied it to form error evaluations [19,20]. In addi-
tion to the convex-hull technique, Liu et al. [21] constructed the minimum-zone roundness
intersection structure and evaluation model using the crossing relationship of chords. In a
subsequent study [22], the method was expanded to cylindricity evaluation. In addition,
based on computational geometry techniques, Alhadi et al. [23] presented an improved
algorithm for the minimum zone of roundness error evaluation using an alternating ex-
change method. A minimum-zone fitting function was created to enhance the roundness
error evaluation. Zhuo et al. [24] introduced the definition of the crossing sector structure
based on the minimum-zone criterion and transformed it into an angular relationship
of control points, making it easy to identify the MZC. For straightness error, Li et al. [25]
proposed a simple bidirectional algorithm based on a four-point model for the calculation
of the minimum-zone straightness error from planar coordinate data. Four points are
used to construct the upper and lower reference lines which can select candidate points
effectively by comparing the slope of the upper and lower reference lines. It is worth noting
that computational geometry techniques suffer from the inherent problem of poor solution
accuracy. Therefore, combining the initial solution and region search algorithm to search
the parameter space greedily is a new research direction. Ye et al. [26] proposed a new
neighborhood-based adaptive iterative search strategy. The results of the proposed method
provide more accurate values than conventional techniques. Huang et al. [27] presented
an asymptotic search method according to which roundness is solved iteratively using
the intersecting chord to avoid trapping in the local solution. Liu et al. [28] proposed and
developed a novel cylindricity evaluation method. The framework and information flow of
the algorithm has been documented, together with the description of the six-point subset,
the replacement strategy, and the terminal condition. However, the greedy search approach
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does not guarantee a global solution and is often inefficient when data increase. There is
still a demand for a comprehensive and stable method.

In recent studies, researchers have successively adopted swarm intelligence (SI) to
resolve these issues. Some well-known SI methods and many improved optimization
algorithms have been effectively used to determine substitute geometries according to
various criteria. Du [29] and Pathak [30] applied particle swarm algorithms (PSO) to
evaluate form error. Zhang et al. [31] applied an ant-colony algorithm (ACO) to straightness,
but it easily fell into local optimal solutions, so Luo et al. [32] applied an improved artificial
bee-colony (ABC) algorithm to straightness error evaluation; however, there was still a lack
of accuracy. Based on this, Luo [33] proposed to use an improved differential evolution
algorithm (DE) for straightness evaluation. For roundness, Wen et al. [34] proposed the
use of a genetic algorithm (GA) for the evaluation of the minimum-zone circle, but the
genetic algorithm requires the adjustment of numerous parameters. Recently, Li et al. [35]
proposed an improved bat algorithm (BA) to achieve accurate evaluation of minimum-zone
roundness. In addition, the application of a genetic algorithm [10] and an improved cuckoo
search (CS) [36] algorithm to flatness has been studied. These advanced optimization
algorithms have their own advantages and disadvantages. Genetic algorithms can be
applied to various complex optimization problems in reality but need to adjust various
operators, such as crossover, mutation, and selection. The particle swarm optimization
algorithm still needs to adjust the inertia weights for different problems to avoid falling
into a local optimum. The CS algorithm, based on the foraging behavior of cuckoos, can
obtain high-quality solutions, but the convergence speed is slow.

Harris hawks optimization (HHO) [37] has received extensive attention from the
research community. The construction of HHO mimics the foraging behavior of Harris
hawks in nature. HHO is designed with two phases of exploration and four phases
of exploitation. The results of testing for benchmark functions and several engineering
optimization problems confirm that HHO outperforms many well-known SI approaches,
such as PSO, GWO, CS, DE, and WOA. Notably, HHO expresses a highly exploitative
ability in later stages. SSA [38] is also a well-established swarm intelligence technique
based on the salp chain, which simulates the foraging patterns in oceans. Due to its
simplicity and superiority, it has been widely used in unconstrained and constrained
optimization problems.

In this paper, an improved HHO algorithm (IHHO) is proposed for solving the form
deviation-zone evaluation problem. The IHHO focuses on two areas of improvement:
exploration strategy selection and exploration capabilities. The latter was mainly inspired
by [39]. Furthermore, the search area of the primitive geometries is analyzed to speed up
the convergence.

The rest of the paper is organized as follows: Section 2 presents the modeling of the
objective function and the determination of the search area of the primitive geometries. An
overview of the optimizer is also described. The specific structure of the proposed optimizer
is presented in Section 3. Section 4 describes a group of experiments and analyses of the
global benchmark problem. Section 5 verifies the practicality of the proposed optimizer in
dealing with the form deviation-zone evaluation problem. Finally, conclusions are drawn
in Section 6.

2. Materials and Methods
2.1. Form Deviation-Zone Evaluation Model

The minimum zone is the basic principle of assessing the form error and is the final
basis for arbitration in the event of a dispute. To obtain a reliable form deviation zone,
it is necessary to establish an optimization objective function according to the minimum-
zone criterion based on the distance function of each primitive geometry. Assuming that
Pi(xi, yi, zi) is a discrete measurement point acquired from the surface, f (Pi, U) denotes
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the distance function from the point to the ideal surface, where U denotes the fitted
parameter; then:

ei = max
i
{ f (Pi, U)} −min

i
{ f (Pi, U)} (1)

The objective function satisfying the minimum-zone criterion is:

F(Pi, U) = min{ei} (2)

The deviation-zone evaluation process solves Equation (2) by continuously optimizing
the fitting parameter, U, to minimize the objective function. Obviously, diverse geometries
have different expressions and distance functions, and the number of parameters to be
optimized varies. In the following, these surfaces will be individually discussed.

1. Roundness

The circle is one of the most common features of industrial annular workpiece parts.
Expression equations and distance functions for circles and other geometries are given in
Appendix A. Although the distance function is related to the circle center, (a, b), and the
radius, R, the radius cancels out while subtracting the maximum and minimum distances.
Therefore, the variables to be optimized are the circle center coordinates, which is a two-
dimensional optimization problem. We determine the center and roundness error by
the least-squares method, as shown in Figure 1, and the search area of the proposed
optimization algorithm is shown in Figure 2a.
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Figure 1. The least-squares method is used to estimate the initial parameters, and the Rodrigues
rotation matrix aligns the original geometry with the Z-axis.
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2. Straightness

A spatial line has six parameters: three for position, (x0, y0, z0) , and three for direction,
(a, b, c). According to error theory, the arithmetic mean of the measurement sequence is
the closest to its actual value, so the arithmetic mean of the line is used as the spatial line
position. Typically, the minimum-zone line is around the least-squares line. Consequently,
the initial linear direction vector is obtained by least squares, as shown in Figure 1. However,
the direction of the spatial line is arbitrary, and it is often difficult to average over all
directions when determining the search area by the least-squares parameters. With this
in mind, we align the line to the Z-axis by the Rodrigues rotation matrix, T, to reduce the
optimization dimension and determine the appropriate search area. The transformation
process is as follows:

Pij = TPij (3)

T =

 cos(θ)+a2(1 − cos( θ)) −csin(θ) + ab(1 − cos( θ)) bsin(θ)+ac(1 − cos( θ))

csin(θ)+ab(1 − cos( θ)) cos(θ)+b2(1 − cos( θ)) −asin(θ)+bc(1 − cos( θ))

−bsin(θ)+ac(1 − cos( θ)) asin(θ)+bc(1 − cos( θ)) cos(θ)+c2(1 − cos( θ))

 (4)

where θ denotes the angle between the line and the Z-axis, satisfying the following equation:

cos(θ) =
n · z
|n||z| (5)

The search space of the position parameter can then be centered on the projection
point of the centroid in the XY-plane. The search space of the direction parameter can be
centered on the Z-axis. Then, the line expression can be simplified as:

X− x0

p
=

Y− y0

q
=

Z
1

(6)

Through the above process, the straightness evaluation becomes a four-dimensional
optimization problem, and the search area is shown in Figure 1b.

3. Cylindricity

Many parts designed in machines have a cylindrical geometry. Compared to round-
ness, cylindricity takes into account both axial and radial directions. The distance function
of a cylinder is f (Pi, x0, y0, z0, a, b, c) (given in Appendix A), including the axis position,
(x0, y0, z0), the axis direction, (a, b, c), and the cylindrical radius, R. Similar to the circle,
R can be disregarded in deviation-zone evaluation. Therefore, cylindricity evaluation is
essentially the determination of the position and direction of the cylindrical axis. It is a six-
dimensional optimization problem similar to the spatial line. Thus, the dimension-reduced
method of spatial lines can also be used for cylindricity.

First, normal estimation [40] is performed for the cylindrical surface’s point cloud.
The obtained unit normal is regarded as a new set of point clouds. Subsequently, the
normal estimation is continued on the normal point cloud to obtain the initial axis direction,
n(a, b, c), of the cylinder. As with straightness, by aligning the initial axis to the Z-axis via
Equations (3)–(5), the control variables can be reduced from six to four, and the search
area can be equally distributed in each direction. The process is also demonstrated in
Figures 1 and 2b.

4. Flatness

The distance function of the plane is f (Pi, a, b, c, d), where d is related to the plane
position. Since the deviation zone is a relative distance, the parameter d has no effect,
and the process is a three-dimensional optimization problem. We estimate the plane
normal, n(a, b, c), using the least-squares method, and then the algorithm’s search area is
determined by applying the Rodrigues rotation matrix, as shown in Figures 1 and 2c.
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2.2. Overview of HHO

HHO is a population-based optimization algorithm that mimics the cooperative be-
havior of Harris hawks chasing prey (in most cases, rabbits) in nature. In the absence of
prey, the hawks will randomly change position until the prey is found. When a rabbit is
detected, the hawks will choose different strategies for besiegement, depending on the
dynamic nature of the environment and the prey’s escape pattern. A switching tactic
involves the best hawk (the leader) swooping at the prey and disappearing and the chase
being continued by one of the party members. By means of this tactic, the detected rabbit
is chased to exhaustion, resulting in a successful hunt. A total of six stages of HHO are
plotted in Figure 3, and the specific HHO steps and mathematical model are described in
the following subsection.
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2.2.1. Exploration Phase

In this phase, Harris hawks will choose two strategies to move with equal probability:
one is to move based on the positions of other family members; the other is to perch on
random tall trees. The process is modeled as follows:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5(
Xprey(t)− Xave(t)

)
− r3(r4(UB− LB) + LB) q < 0.5

(7)

where X(t + 1) and X(t) represent the position vectors of the search agent in the t + 1 and t
iterations, respectively, and each dimension represents a control variable; q, r1, r2, r3, r4 are
random variables inside (0, 1), which are updated in each iteration; Xrand(t) is the position
vector of a random individual; Xprey(t) denotes the rabbit’s position vector, which is the
best agent; LB and UB are the lower and upper bounds of the control variables; and Xave(t)
is the average position vector of the current search agents, which is calculated using the
following equation:

Xave(t) =
1
N

N

∑
i=1

Xi(t) (8)

where N denotes the total number of hawks and Xi(t) indicates the location of each hawk
in iteration t.

2.2.2. Transition from Exploration to Exploitation

The prey’s energy decreases over time during escape. HHO can transition from
exploration to exploitation and choose different exploitation strategies based on the prey’s
escape energy. The prey’s escape energy is modeled as a time-varying stochastic parameter
as follows:

E = 2E0

(
1− t

T

)
(9)
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where E indicates the remaining energy of the rabbit in the escape process, T denotes the
maximum number of iterations, and E0 is the initial state of its energy generated randomly
inside the interval (−1, 1) in each iteration. Thus, if |E| ≥ 1, this means that the rabbit
has enough energy to escape, so the HHO will perform diverse exploration operations,
and if |E| < 1, the rabbit is weak, so the algorithm will try to exploit the neighborhood of
the solutions.

2.2.3. Exploitation Phase

For this phase, according to the escape behaviors of the prey and the chasing strategies
of Harris hawks, four possible strategies are proposed for HHO to model the attacking stage.
Let r be the chance that the prey escapes successfully (r < 0.5) or escapes unsuccessfully
(r ≥ 0.5).

1. Soft Besiegement

When r ≥ 0.5 and E ≥ 0.5, the prey still has enough energy to escape dangerous
situations. At this time, the hawks will perform a soft besiegement to continuously exhaust
the rabbit’s energy and prevent it from making random misleading jumps by encircling
it softly. If the jump strength of a rabbit is denoted as J = 2(1− r5), where r5 is a random
number inside (0, 1), this behavior can be modeled according to the following rules:

X(t + 1) = ∆X(t)− E
∣∣JXprey(t)− X(t)

∣∣ (10)

∆X(t) = Xprey(t)− X(t) (11)

where ∆X(t) is the difference between the prey’s position vector and the current location
in iteration t.

2. Hard Besiegement

When r ≥ 0.5 and E < 0.5, the intended prey exhausts the energy, and the hawks
finally perform the surprise pounce. In this situation, the current position is updated using
Equation (12):

X(t + 1) = Xprey − E|∆X(t)| (12)

3. Soft Besiegement with Progressive Rapid Dives

When r < 0.5, the prey has a chance to escape successfully, and the hawks will adopt
the chasing strategies of soft besiegement and hard besiegement, but their doing so is more
intelligent than in the previous case. By utilizing the concept of Levy flight (LF), the real
zigzag deceptive motions of prey are mimicked and the hawks will progressively adjust
their location and directions through rapid dives. When the prey has sufficient energy
(E ≥ 0.5), the process is expressed as follows:

X(t + 1) =

{
Y i f f (Y) < f (X(t))

Z i f f (Z) < f (X(t))
(13)

Y = Xprey(t)− E
∣∣JXprey(t)− X(t)

∣∣ (14)

Z = Y + S× LF(D) (15)

where D is the dimension of the problem, S is a random vector of size 1× D, and LF is the
Levy flight function, which is modeled as follows:

LF(D) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )


1
β

, β = 1.5 (16)
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where u and v are random numbers in the range (0, 1).

4. Hard Besiegement with Progressive Rapid Dives

Similarly, when E < 0.5, the prey does not have enough energy to escape, and the
rapid dive strategy with LF is modeled as follows:

X(t + 1) =
{

Y i f f (Y) < f (X(t))
Z i f f (Z) < f (X(t))

(17)

Y = Xprey(t)− E
∣∣JXprey(t)− Xave(t)

∣∣ (18)

Z = Y + S× LF(D) (19)

2.3. Overview of SSA

In the foraging behavior of the salp swarm, the group is divided into two parts,
the leader and the followers. The first individual is considered the leader, and the other
individuals form the main body of the chain and are called the followers. Newtonian
mechanical analysis is used to model the leader’s and the followers’ movements separately.
The leader position vector is updated using the following equation:

X1,j =

{
Fj + c1 ×

(
c2 ×

(
UBj − LBj

)
+ LBj

)
, c3 ≥ 0.5

Fj − c1 ×
(
c2 ×

(
UBj − LBj

)
+ LBj

)
, c3 < 0.5

(20)

where dimension j = {1, 2, . . . , D}, F = [F1, F2, . . . FD]
T denotes the position vector of the

target agent or the current best solution, c2 and c3 are the adaptive tuning parameters
between (0, 1), and X1,j are the position vectors of the leader in the jth dimension. c1 is an
important factor in controlling exploration and exploitation and is calculated by means of
the following equation:

c1 = 2e−(
4t
T )

2
(21)

The follower’s update formula is expressed as:

Xi,j =
Xi,j + Xi−1,j

2
, i = 2, 3, . . . , N (22)

As the leader moves, the fluctuation of the leader’s position change is transmitted
to each follower step by step with the salp chain. The leader continuously explores the
space around the moving food source, F. This significantly enhances the exploration ability
of SSA and enables the salp chain to catch up with the moving food source and finally
complete the foraging behavior.

3. The Proposed Optimizer

To solve the problem of HHO easily falling into a local optimum and having slow
convergence, this paper proposes an improved HHO optimization algorithm. The IHHO
focuses on two areas of improvement: exploration strategy selection and exploration
capabilities. The following is a specific description of the improved HHO algorithm, and
the pseudocode is given in Algorithm 1.

3.1. Exploration Based on Average Fitness

In optimization techniques, random operators are often used to determine the update
strategy of the search agent due to their random nature. However, in HHO, strategy
selection based on random operators may conflict with the actual situation. In detail, when
the hawk is very near to the prey ( f (Xi) > f (Xprey)), it incorrectly moves to a random
location due to a better perching chance (q ≥ 0.5), but the correct strategy is to perch
with other family members. When the hawk is far from the prey ( f (Xi) � f (Xprey)), it
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incorrectly perches with other family members due to a lower perching chance (q < 0.5),
but the correct strategy is to move to a random high tree to perch suddenly. Therefore, we
replace the random operator, q, of HHO in the exploration phase with the average fitness to
solve the conflict problem when choosing between two strategies. Let us define the average
fitness, fave, of the search agents’ locations as:

fave =
1
N

N

∑
i=1

f (Xi) (23)

Then, Equation (7) becomes the following equation:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| f (Xi) < fave(
Xprey(t)− Xave(t)

)
− r3(r4(UB− LB) + LB) f (Xi) ≥ fave

(24)

where f (Xi) denotes the fitness value of the individual agent and N is the number of agents.

Algorithm 1: Pseudocode of IHHO

→ Set the initial iteration t = 1
→ Initialize the random search space Xi = (x1

i , x2
i , . . . xD

i ) for the ith hawk of the D dimension
problem within the search boundary [UB, LB]
While t ≤ T
A. Evaluate the fitness value, f (Xi), of all N hawks
B. Find the best agent to be the leader and use the rest as followers
C. Update the leader and followers using Equation (20) and Equation (26)
D. If the SSA individual is better, replace the corresponding HHO individual and update the
fitness value
E. Calculate the average fitness, fave, using Equation (23)
F. Label the best prey location as Xprey
G. For i = 1, 2, . . . N (each hawk)

a. Update the escaping energy E by Equation (9)
b. If (|E| ≥ 1)

→ Randomly choose one hawk location as Xrand from the search space
→ Calculate the mean position vector Xave using Equation (8)
→ Update the new location using Equation (24)

Elseif (|E| < 1)
→ Generate a random escaping chance of prey r in the range [0, 1]

If (r ≥ 0.5 and |E| ≥ 0.5)
Update the new location using Equation (10)

Elseif (r ≥ 0.5 and |E| < 0.5)
Update the new location using Equation (12)

Elseif (r < 0.5 and |E| ≥ 0.5)
Update the new location using Equation (13)

Elseif (r < 0.5 and |E| < 0.5)
Update the new location using Equation (17)

End (If)
End (If)

End (For)
H. Amend the search space Xi for i = 1, 2, . . . N based on the search boundary UB and LB
I. t = t+1
End (While)
→ Return the best location Xprey

3.2. Nonlinear Inertia Weight

Note that the values of the inertia weights affect the algorithm’s efficiency. Larger
inertia weights enhance the global search capability of the algorithm, and, conversely,
smaller inertia weights enhance the local search capability. To solve the problem of low
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convergence accuracy and slow convergence of the traditional SSA algorithm, a nonlinear
inertia weight is introduced in the update formula of the follower salp to evaluate the
degree of interindividual influence, with values nonlinearly transformed between 0.9 and
0.4. The proposed nonlinear inertia weights are as follows:

w = (winit − wend − k)e
1

1+tu/tmax (25)

where winit is the initial inertia weight, wend is the inertia weight for the maximum number
of iterations, and k and u are control coefficients that regulate the range of w. After sufficient
experiments, taking winit = 0.98, wend = 0.4, k = 0.21, and u = 11.2. the new follower update
rule is:

Xi,j = wXi,j + X(i−1),j, i = 2, 3, . . . , N (26)

The addition of a nonlinear inertia weight enhances the global search ability in the early
stage compared to the previous averaging strategy with a fixed weight of 0.5. It enhances
the local search ability of the algorithm in the later stage and balances the exploration and
exploitation of the SSA.

3.3. Hybrid SSA

Combining algorithms has become a trend in optimization research in recent years.
The superior explorative ability of SSA can fill the gap in the exploration of conventional
HHO. Therefore, this paper embeds the SSA with a nonlinear inertia weight into HHO
to improve the diversity of hawks while retaining its inherent excellent convergence and
exploitation capabilities.

Specifically, before updating the search agent through the HHO mechanism, the space
around the current best agent is explored with SSA to determine whether a better agent
exists, and, if so, the position of the HHO individual is updated to the SSA individual.
Otherwise, it remains unchanged. Subsequently, the individual with the smallest objective
function value is selected as the prey’s position vector, Xprey, in XHHO, XSSA.

Xprey = min{ f (XHHO), f (XSSA)} (27)

4. Performance Evaluation of the IHHO Algorithm
4.1. Benchmark Functions and Compared Algorithms

In this section, the proposed improved HHO algorithm (IHHO) is investigated using a
set of 23 diverse classical benchmark functions from [37]. The benchmark functions can be
divided into three categories: unimodal (of which there are seven), multimodal with varied
dimensions (of which there are six), and multimodal with fixed dimensions (of which
there are ten). The unimodal sets have a globally unique solution suitable for revealing the
optimizer’s exploitation capabilities, whereas the multimodal sets have multiple optima
that disclose the explorative capability and local optimum avoidance potentials of the
proposed optimizer. The mathematical descriptions of the benchmark functions are shown
in Tables 1–3.

To investigate the performance of IHHO, in addition to comparison with traditional
HHO, other well-recognized swarm intelligence methods, such as PSO [41], GA [42],
DE [43], TLBO [44], ABC [45], CS [46], WOA [47], and SSA [38], were also compared. The
quantitative analysis included the average value and standard deviation (std. dev.), and the
qualitative analysis included the prey position, search history, trajectory, diversity history,
average fitness history, boxplot and convergence curves. Furthermore, the nonparametric
statistical results of the Wilcoxon signed-rank test and Friedman test were introduced to
detect the substantial differences between optimizers. The significance level was set at 0.05.
The Wilcoxon signed-rank test categorized the IHHO calculations as significantly better
(+), equal (=), or significantly worse (−) by p-values. Further statistical comparisons were
made by applying the Friedman test for average ranking performance (expressed as ARV).
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Table 1. Unimodal benchmark functions.

Name Function Range fmin

Sphere Function f1(x) =
n
∑

i=1
x2

i
[−100, 100] 0

Schwefel’s Problem 2.22 f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10, 10] 0

Schwefel’s Problem 1.2 f3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
[−100, 100] 0

Schwefel’s Problem 2.21 f4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 0
Generalized Rosenbrock’s

Function f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30] 0

Step Function f6(x) =
n−1
∑

i=1
(|xi + 0.5|)2 [−100, 100] 0

Quartic Function f7(x) =
n−1
∑

i=1
ix4

i + random[0, 1] [−1.28, 1.28] 0

Table 2. Multimodal benchmark functions.

Name Function Range fmin

Generalized Schwefel’s
Problem 2.26 f8(x) =

n
∑

i=1
−xi sin

(√
|xi |
)

[−500, 500] −418.9829 × n

Generalized Rastrigin’s
Function f9(x) =

n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] 0

Ackley’s Function f10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] 0

Generalized Griewank’s
Function f11(x) = 1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 0

Generalized Penalized
Function 1

f12(x) = π
n

{
10 sin(πy1) +

n
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4 , u(xi , a, k, m) =

 k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 0

Generalized Penalized
Function 2

f13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πx1 + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5, 100, 4)

[−50, 50] 0

Table 3. Fixed-dimension multimodal benchmark functions.

Name Function Dimension Range fmin

Shekel’s Foxholes Function
f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1

(
xi−aij

)6


−1

2 [−65.536,
65.536] 1

Kowalik’s Function f15(x) =
11
∑

i=1

[
ai −

xi(b2
i −bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003075

Six-Hump Camel-Back Function f16(x) = 4x2
1 − 2.1x2

1 +
1
3 x6

1 + x1x2 − 42
2 + 4x4

2 2 [−5, 5] −1.0316285

Branin Function f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 10] × [0,

15] 0.398

Goldstein–Price Function f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×[

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] 2 [−2, 2] 3

Hartman’s Family Function 1 (N = 3) f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(
xj − pij

)2

)
3 [0, 1] −3.86

Hartman’s Family Function 2 (N = 6) f20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij
(
xj − pij

)2

)
6 [0, 1] −3.32

Shekel’s Family Function 1 (N = 5) f21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

Shekel’s Family Function 2 (N = 7) f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

Shekel’s Family Function 3 (N = 10) f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363
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4.2. Experimental Setup

In this study, the following control variables were adopted: the maximum number
of iterations equaled 500 iterations, and the number of search agents equaled 30. The
dimension of the function was set to 30 if it was a non-fixed problem. The parameter
settings used for various optimization algorithms are reported in Table 4. Every method
applied 30 independent runs to avoid the effect of randomness in MATLAB2016a using a
Windows 10 64-bit Intel (R) Core (TM) i7-11800 h@2.30 GHz with 16 GB.

Table 4. Parameter setting of various optimization algorithms.

Algorithm Parameters

DE [43] Scaling factor, F = 0.5 and crossover probability, Cr = 0.9
WOA [47] a = [0, 2], b = 1, and l = [−1, 1]
ABC [45] Abandonment limit = 0.6 × D × N
CS [46] Abandon probability, pa = 0.25, step size α = 1, and λ = 1.5

TLBO [44] TFmax = 2 and TFmin = 1
PSO [41] Inertia factor = 0.3, c1 = 2, and c2 = 2
GA [42] Crossover probability = 0.8 and mutation probability = 0.05
SSA [38] The number of leaders = N/2

HHO [37] Initial state = 2

The trajectory curve represents the change of the first agent in the first dimension
during 500 iterations. It can be observed from Figure 4 that the curve reached the optimal so-
lution after oscillations in the initial iteration, which reveals the exploration behavior of the
algorithm. For complex functions, the fluctuation will be correspondingly more significant.
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The average fitness is a measure of the collaborative behavior of the hawk. The average
fitness in Figures 4 and 5 decreases with iterations, which indicates that all hawks update
to a better position with an increasing number of generations.
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The diversity history reveals the transition between the exploration and exploita-
tion of search agents. In this paper, diversity is calculated by the Euclidean distance
between N hawks. If the ith agent of the D-dimensional problem is represented as
Xi = (xi,1, xi,2, . . . , xi,D), then at a specific iteration t, the diversity is calculated as:

diversity =
N

∑
i=1

N

∑
j=1

(
D

∑
k=1

√
(xi,k(t)− xj,k(t))

2

)
(28)

As can be seen from the diversity history diagrams in Figures 4 and 5, there is more
diversity in the initial stage than in the later stage of the optimization algorithm. The IHHO
algorithm performs more exploration in the initial stage, while in the later stages it performs
more exploitation. Moreover, the curve tends to zero as the iterations proceed, revealing
that the proposed algorithm strikes a good balance between exploration and exploitation.

4.3. Comparison with Conventional Swarm-Based Algorithms

In this section, the statistical results of the conventional swarm-based algorithm and
the proposed IHHO for 23 benchmark problems are presented in Table 5. The results
expose the statistical outcomes in terms of average values and standard deviations. The
number of dimensions for all problems was 30, except for the fixed-dimensional multimodal
problems f 14–f 23. The best values are in bold in Table 5, while their statistical significance
can be observed in Table 6. In addition, Figures 6 and 7 demonstrate the boxplots and
convergence curves for unimodal functions (f 1, f 4), multimodal benchmark functions with
varied dimensions (f 8, f 9), and multimodal benchmark functions with fixed dimensions
(f 15, f 21) in repeated experiments.
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Table 5. Results of IHHO and nine conventional swarm-based algorithms on 23 benchmarks.

Function Metric IHHO HHO SSA DE WOA ABC CS TLBO PSO GA

f1 Average 9.8191E-108 1.4371E-92 1.5602E-07 7.7905E+01 2.1530E-73 1.1409E+02 7.5264E+00 2.5870E-89 1.0381E-09 4.1818E-01
Std. Dev. 4.4397E-107 7.8627E-92 2.0095E-07 3.7708E+02 8.9376E-73 4.8459E+01 2.1409E+00 4.6942E-89 1.3662E-09 3.3787E-01

f2 Average 3.0532E-57 2.6479E-49 1.6734E+00 6.2743E-02 3.1615E-48 5.7348E+01 1.0723E+01 3.8157E-45 2.0393E-03 4.2087E+00
Std. Dev. 9.1102E-57 1.4397E-48 1.2626E+00 2.1282E-01 1.0594E-47 3.9230E+01 4.1260E+00 3.1791E-45 9.3505E-03 1.7632E+00

f3 Average 2.5765E-85 2.5366E-73 1.8195E+03 6.2831E+02 4.4019E+04 6.8920E+04 2.2440E+03 1.0301E-17 1.8531E+02 1.2535E+01
Std. Dev. 1.4091E-84 1.3893E-72 1.0367E+03 4.4083E+02 1.4134E+04 1.1351E+04 4.7799E+02 2.6023E-17 1.0574E+02 1.4649E+01

f4 Average 6.8699E-53 2.1653E-48 1.0598E+01 2.5240E+01 5.5366E+01 6.3423E+01 9.7881E+00 1.1145E-36 2.8576E+00 1.9379E+00
Std. Dev. 3.4390E-52 1.0414E-47 3.1624E+00 6.7334E+00 2.8293E+01 5.1929E+00 1.9909E+00 8.7162E-37 8.5118E-01 4.4034E-01

f5 Average 6.1507E-04 1.9393E-02 2.9493E+02 1.0868E+04 2.7984E+01 2.4351E+06 4.6646E+02 2.5510E+01 4.9218E+01 1.1337E+02
Std. Dev. 6.4890E-04 2.4361E-02 5.1965E+02 2.3958E+04 4.7925E-01 1.0799E+06 1.9434E+02 6.2797E-01 3.4270E+01 5.8954E+01

f6 Average 2.6096E-06 1.8993E-04 1.5566E-07 9.1127E+00 3.7682E-01 1.1210E+02 7.5379E+00 9.0981E-05 2.1010E-09 1.1791E+00
Std. Dev. 4.2167E-06 2.9303E-04 2.2753E-07 2.3285E+01 2.4227E-01 6.2740E+01 3.4105E+00 1.9284E-04 3.7393E-09 1.2221E+00

f7 Average 1.5171E-04 1.5382E-04 1.6333E-01 6.9135E-02 2.5776E-03 8.1377E-01 7.3337E-02 1.0832E-03 1.7265E-02 1.1592E+00
Std. Dev. 1.2809E-04 1.6972E-04 9.7234E-02 5.3048E-02 3.3112E-03 2.4526E-01 1.9549E-02 4.4530E-04 7.3532E-03 5.5957E-01

f8 Average −1.2302E+04 −1.2554E+04 -7.3403E+03 −7.6939E+03 −1.1026E+04 −3.1224E+03 −8.1127E+03 −7.5624E+03 −6.2607E+03 −5.3371E+02
Std. Dev. 5.9923E+02 3.4318E+01 6.3915E+02 1.2408E+03 1.6428E+03 8.9440E+60 2.5378E+02 9.5457E+02 8.7230E+02 3.5126E+01

f9 Average 0.0000E+00 0.0000E+00 4.9317E+01 1.3880E+02 3.7896E-15 2.5014E+02 1.0510E+02 1.1205E+01 3.7245E+01 2.3606E+01
Std. Dev. 0.0000E+00 0.0000E+00 1.8591E+01 4.1840E+01 1.4422E-14 1.4647E+01 1.1449E+01 7.9283E+00 1.3498E+01 7.9342E+00

f10 Average 8.8818E-16 8.8818E-16 2.3523E+00 1.6160E+00 4.4409E-15 3.7927E+00 2.5517E+00 6.3357E-15 5.5614E-01 1.7984E+00
Std. Dev. 0.0000E+00 0.0000E+00 1.0343E+00 7.8250E-01 2.4685E-15 2.2979E-01 4.1469E-01 1.8027E-15 7.7138E-01 6.2565E-01

f11 Average 0.0000E+00 0.0000E+00 1.7518E-02 2.9595E-01 0.0000E+00 2.1273E+00 1.0901E+00 0.0000E+00 1.4493E-02 2.2855E-02
Std. Dev. 0.0000E+00 0.0000E+00 1.5344E-02 6.5631E-01 0.0000E+00 4.9385E-01 4.1013E-02 0.0000E+00 1.5665E-02 2.4988E-02

f12 Average 8.9331E-07 2.8996E-06 4.8967E-01 2.7740E-02 1.1222E-02 7.0510E+00 5.5754E-01 3.4633E-03 2.0734E-02 2.0734E-01
Std. Dev. 1.0057E-06 4.1578E-06 2.8196E-01 5.4624E-02 7.4349E-03 1.3382E+00 3.0349E-01 1.8926E-02 4.2177E-02 1.4924E-01

f13 Average 1.2617E-05 3.0911E-05 8.8144E-02 2.0079E-02 1.4800E-01 2.9343E+00 8.3980E-02 5.2411E-02 6.2262E-03 6.9511E-02
Std. Dev. 1.9505E-05 4.5579E-05 2.2500E-01 3.3155E-02 1.0076E-01 1.0096E+00 2.9587E-02 7.3284E-02 8.9788E-03 7.1892E-02

f14 Average 9.9800E-01 1.8223E+00 1.4273E+00 1.1955E+00 3.2893E+00 9.9867E-01 9.9800E-01 9.9800E-01 2.8411E+00 1.2003E+01
Std. Dev. 4.4695E-16 1.4902E+00 9.9594E-01 9.1220E-01 3.3397E+00 2.4376E-03 4.2452E-16 0.0000E+00 2.1717E+00 7.9773E-01

f15 Average 4.0478E-04 4.1574E-04 2.8157E-03 2.0786E-03 6.1588E-04 1.2013E-03 4.2754E-04 1.0424E-03 1.7770E-03 2.6560E-03
Std. Dev. 1.0016E-04 2.6449E-04 5.9575E-03 5.0218E-03 5.0040E-04 1.6644E-04 2.0271E-04 3.6537E-03 5.0656E-03 2.9745E-03

f16 Average −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0044E+00
Std. Dev. 2.5551E-14 4.5761E-09 4.3473E-14 6.7752E-16 4.3849E-09 1.6930E-07 5.0499E-16 6.6486E-16 6.6486E-16 1.4901E-01

f17 Average 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01
Std. Dev. 3.2210E-13 7.6822E-06 5.7514E-14 0.0000E+00 4.3516E-05 1.8938E-05 2.0810E-13 0.0000E+00 0.0000E+00 3.1302E-09

f18 Average 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.9007E+00 3.0000E+00 3.0000E+00 3.0000E+00 5.7000E+00 2.2802E+01
Std. Dev. 3.0097E-13 1.5546E-06 1.8604E-12 1.3550E-15 4.9332E+00 3.1730E-05 1.7200E-15 1.3650E-15 1.4789E+01 3.0031E+01
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Table 5. Cont.

Function Metric IHHO HHO SSA DE WOA ABC CS TLBO PSO GA

f19 Average −3.8628E+00 −3.8582E+00 −3.8628E+00 −3.8628E+00 −3.8575E+00 −3.8628E+00 −3.8628E+00 −3.8628E+00 −3.8628E+00 −3.5947E+00
Std. Dev. 1.3697E-11 5.7063E-03 2.1958E-10 2.6962E-15 5.4941E-03 8.8844E-10 2.4643E-15 2.7101E-15 2.6962E-15 7.4320E-01

f20 Average −3.2618E+00 −3.0860E+00 −3.2187E+00 -3.2348E+00 −3.2512E+00 −3.3216E+00 −3.3220E+00 −3.3170E+00 −3.2625E+00 −3.2467E+00
Std. Dev. 6.1237E-02 1.1589E-01 5.3356E-02 5.3475E-02 1.1331E-01 2.2756E-03 1.5043E-07 2.2115E-02 6.0463E-02 5.8274E-02

f21 Average −1.0153E+01 −5.3608E+00 −7.7297E+00 −9.9848E+00 −8.8591E+00 −9.7889E+00 −1.0153E+01 −9.7481E+00 −5.0640E+00 −5.5273E+00
Std. Dev. 8.8280E-11 1.1795E+00 3.3185E+00 9.2244E-01 2.1653E+00 1.0294E+00 1.8470E-06 1.3854E+00 3.0349E+00 2.7987E+00

f22 Average −1.0403E+01 −5.2518E+00 −7.5807E+00 −1.0226E+01 −8.5132E+00 −1.0403E+01 −1.0403E+01 −9.2400E+00 −6.7222E+00 −5.7084E+00
Std. Dev. 7.1326E-11 9.1813E-01 3.5764E+00 9.7043E-01 2.9663E+00 7.3059E-08 2.0020E-06 2.3712E+00 3.5629E+00 2.8233E+00

f23 Average −1.0536E+01 −5.1221E+00 −8.7358E+00 −9.8342E+00 −8.1769E+00 −1.0536E+01 −1.0536E+01 −1.0536E+01 −6.2903E+00 −4.1986E+00
Std. Dev. 8.7812E-11 1.1132E-02 3.0954E+00 2.1477E+00 3.2227E+00 1.7148E-07 9.2141E-06 1.2342E-10 3.6204E+00 2.4535E+00

+/ = /− −/− /− 16/6/1 17/5/1 18/1/4 21/2/0 22/1/0 16/4/3 17/1/5 17/2/3 23/0/0
ARV 1.61 4.26 6.04 6.09 5.87 7.35 5.87 4.04 6.13 7.74

RANK 1 3 6 7 4 9 5 2 8 10

Table 6. p-values of the Wilcoxon rank-sum test comparing IHHO with conventional algorithms for all functions.

Function HHO SSA DE WOA ABC CS TLBO PSO GA

f1 3.8202E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f2 5.5727E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 1.6980E-08 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f4 5.4617E-09 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 1.8608E-06 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f6 4.1825E-09 3.4742E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 5.3221E-03 3.0199E-11 3.0199E-11
f7 4.6427E-01 3.0199E-11 3.0199E-11 1.4294E-08 3.0199E-11 3.0199E-11 3.3384E-11 3.0199E-11 3.0199E-11
f8 5.3221E-03 3.0199E-11 3.0199E-11 6.5261E-07 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.0000E+00 1.2118E-12 1.2118E-12 1.6074E-01 1.2118E-12 1.2118E-12 5.7720E-11 1.2118E-12 1.2118E-12
f10 1.0000E+00 1.2118E-12 1.2118E-12 3.6292E-09 1.2118E-12 1.2118E-12 4.6350E-13 1.2118E-12 1.2118E-12
f11 1.0000E+00 1.2118E-12 1.2118E-12 1.0000E+00 1.2118E-12 1.2118E-12 1.0000E+00 1.2118E-12 1.2118E-12
f12 1.2732E-02 3.0199E-11 1.6351E-05 3.0199E-11 3.0199E-11 3.0199E-11 1.0763E-02 6.7650E-05 3.0199E-11
f13 6.8432E-01 8.1527E-11 1.4918E-06 3.0199E-11 3.0199E-11 3.0199E-11 7.6950E-08 6.6273E-01 3.0199E-11
f14 2.9119E-10 8.8183E-01 2.7599E-09 2.1293E-11 2.1293E-11 8.3961E-01 2.9467E-12 1.4237E-03 2.1210E-11
f15 1.0666E-07 4.5726E-09 2.3240E-02 1.2023E-08 2.4386E-09 6.7912E-01 8.5598E-04 4.8251E-01 9.9186E-11
f16 5.4439E-11 1.3526E-01 1.1970E-12 2.9916E-11 2.9916E-11 1.3929E-10 3.2244E-12 3.2244E-12 2.9916E-11
f17 1.0651E-05 8.9366E-01 3.4488E-07 2.6253E-11 2.6253E-11 9.1686E-01 3.4488E-07 3.4488E-07 6.4586E-11
f18 2.0965E-08 4.2958E-08 4.0625E-12 3.0085E-11 3.0085E-11 1.6375E-09 5.1812E-12 1.0398E-09 3.0085E-11
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Table 6. Cont.

Function HHO SSA DE WOA ABC CS TLBO PSO GA

f19 3.0180E-11 1.7296E-02 1.7189E-12 3.0180E-11 6.0621E-11 1.4049E-11 1.2108E-12 1.7189E-12 3.0180E-11
f20 3.0811E-08 8.5641E-04 6.9661E-02 2.9205E-02 1.0000E+00 1.0000E+00 2.2649E-07 7.4628E-04 6.1001E-01
f21 3.0199E-11 4.5530E-01 7.7540E-11 3.0199E-11 3.0199E-11 3.8202E-10 8.5609E-07 3.8298E-04 3.0199E-11
f22 3.0199E-11 8.8830E-01 1.9434E-10 3.0199E-11 3.0199E-11 1.6132E-10 3.3102E-04 6.6181E-01 3.0199E-11
f23 3.0199E-11 1.2967E-01 3.9329E-08 3.0199E-11 3.0199E-11 3.0199E-11 1.4488E-11 1.8487E-01 3.0199E-11
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Figure 6. Boxplots of the six classical benchmark functions f 1, f 7, f 10, f 12, f 14, and f 23.
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From the statistical results listed in Table 5, the proposed IHHO algorithm had a
significant advantage over the other algorithms in terms of average values and standard
deviations. For most functions, IHHO was able to find the best solutions, even the optimal
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ones, except for f 6, f 8, and f 20. For f 6, the performance of IHHO was worse than that of PSO
and SSA but far better than that of traditional HHO algorithms. For f 8, the results were
better than those of the other nine algorithms and slightly inferior to those of the HHO
algorithm, while, for f 20, IHHO also generated the best solution. From the perspective of
standard deviations, the standard deviations of IHHO were the lowest for 15 functions,
even though the standard deviations for f 9, f 10, and f 11 were 0. Although the standard
deviations of IHHO were poorer than those of DE, CS, and TLBO for f 16–f 19 when the
same average values were obtained, it outperformed the other algorithms. Meanwhile,
IHHO came next in performance to the first method for f 14. Therefore, IHHO can achieve
satisfactory solutions with guaranteed accuracy and stability.

According to the p-values of the Wilcoxon rank-sum tests for analyzing the significant
differences of the paired algorithms in Table 6, the performance of IHHO had significant
positive differences compared to the other algorithms with respect to the test results for
the 23 benchmark functions, except for DE, CS, and TLBO. Although the statistical results
for IHHO were significantly worse than those for DE, CS, and TLBO for f 16–f 19, the main
reason was the difference in the standard deviations. As analyzed before, IHHO was
superior to the rest of the methods with respect to standard deviation, so it can still be
considered that IHHO can obtain high-quality solutions. Additionally, from the overall
significant statistical results of the Wilcoxon rank-sum tests for all functions, the worst case
IHHO produced 17 significantly better, 1 equal, and 5 significantly worse results (TLBO),
and in the best case IHHO overwhelmingly succeeded for all benchmark functions (GA).
From the statistical results of the Friedman test, the best ARV of 1.61 was obtained for
IHHO, which is also consistent with the Wilcoxon rank-sum test results; IHHO was far
superior to TLBO in second place with a ranked value of 4.04. Therefore, it can be concluded
that the IHHO algorithm is an improvement on the HHO algorithm with considerable
advantages over the other nine competitive swarm-based algorithms.

The boxplot diagrams of the classical test functions are shown in Figure 6. As can be
seen from the boxplots, IHHO consistently outperformed or equaled the other optimization
algorithms, while HHO underperformed for the non-scalable function f 23. In addition,
the TLBO algorithm also showed strong consistency. On average, IHHO showed results
comparable to those of other optimization algorithms using the boxplot representation.

The convergence curves for six classical benchmark functions are presented in Figure 7.
Based on the observation, IHHO ranked first for f 1, f 7, f 10, and f 12 and performed the same
as TLBO for f 23. For the test function f 14, IHHO ranked second with TLBO and WOA—
worse than CS, DE, and ABC, but better than the other algorithms. Regarding the overall
performance of IHHO for 23 benchmark problems, which are combinations of unimodal
and multimodal problems designed to test exploration and exploitation capabilities, it can
be stated that IHHO can be used for function optimization.

4.4. Discussion

In this section, the effectiveness of the improved HHO algorithm is verified by
23 benchmark functions. It is important to note that all the experiments were executed
under the same conditions. First, a qualitative analysis of the IHHO algorithm was per-
formed. By analyzing the eight benchmark functions in five aspects, namely, search history,
prey position, trajectory, average fitness value, and diversity, it was demonstrated that
the IHHO algorithm can balance exploration and exploitation, thus avoiding falling into
local solutions and finding the optimal value. Hence, IHHO can perform the optimization
search for complex nonlinear optimization problems. Second, to comprehensively assess
the advantages of the proposed algorithm, the IHHO algorithm was compared with several
swarm-based methods in six aspects: average values, standard deviations, Wilcoxon rank-
sum tests, Friedman tests, boxplot diagrams, and convergence curves. The comparative
outcomes of all cases revealed that the developed IHHO optimizer, which fuses the average
fitness exploration strategy and the nonlinear inertia weight SSA algorithm, obtained better
overall performance and converged faster than the alternatives.
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Accordingly, the proposed optimizer significantly enhances the optimization capability
compared to several other classical optimization algorithms. This is because the SSA
mechanism makes the search agents better diversified while taking full advantage of the
excellent intensification capability of the original HHO algorithms. Although other variants
of HHO embedded within the SSA mechanism are available, the exploration strategy based
on the average fitness value and the introduction of nonlinear inertia weights described
in this paper is innovative and further enhances the coordination of intensification and
diversification, with excellent results. However, similar to other swarm-based optimizers,
there are also some limitations to the proposed optimizer. First of all, it may expend
more time on optimization because of the addition of the SSA exploration mechanism.
Second, the range of nonlinear inertia weights may need to be adjusted in some cases.
Therefore, there is a need to harmonize efficiency and accuracy when solving problems
with real-time requirements.

5. The Application of IHHO in Form Deviation-Zone Evaluation

Traditional form deviation-zone evaluation suffers from the problems of difficulty in
generating solutions, poor generality, and lack of solution accuracy, while other metaheuris-
tic intelligent optimization algorithms have a wide variety of algorithms, each containing
many variants, and each having its own advantages and disadvantages. Therefore, the
goal of this study was to find an algorithm with strong global optimization capability, less
parameter adjustment, and high accuracy for error evaluation.

It has been shown that the HHO algorithm has fewer parameters, is simple in prin-
ciple, is more exploratory and adaptable in global optimization, and outperforms many
well-known intelligent optimization methods, such as PSO, GWO, CS, DE, and WOA.
Therefore, its application to form deviation-zone evaluation satisfies the requirement of
fewer parameter adjustments and has some advantages over other methods in terms of
optimization capability and optimization accuracy. Although there are still problems of
early convergence, poor optimization accuracy, and weak global search capability, they
have been improved by various measures.

5.1. Comparison of Data in the Literature

To evaluate the availability of IHHO in form deviation-zone evaluation, we bench-
marked the proposed IHHO by reference to data in the literature. The flowchart of IHHO
applied to solve the deviation-zone evaluation problem is shown in Figure 8. The popula-
tion size was set to 30, the maximum number of iterations was 500, and the optimization
dimension and search area for the corresponding problem were shown in Section 2.1. The
algorithm was run 30 times independently using MATLAB2016a software, and the average
result was taken as the corresponding form error. Table 7 shows the evaluation results
of the algorithms reported in the literature and those obtained by IHHO. The results list
the number of points, reported minimum-zone errors, IHHO evaluation minimum-zone
errors, least-squares evaluation errors, and relative differences. In addition, the conver-
gence curves of three randomly selected experiments are shown in Figure 9 to visualize the
working process of the IHHO algorithm for deviation-zone evaluation.

From Table 7, the average evaluation results for the IHHO algorithm in the four types
of deviation zones are more accurate or equal to the reported MZs in the literature, except
for example 2 of flatness, and significantly improved compared to the least-squares method.
In particular, the straightness evaluation error of example 2 improved by 25.65% compared
to the reported results. As can be seen from the convergence diagram in Figure 9, the
optimal solution was found with only 50 iterations on the dataset, except for the roundness
error evaluation, which reached convergence in approximately 150 iterations. The trends
were essentially the same for the three randomly selected experiments. Therefore, it
can be tentatively concluded that the proposed IHHO optimization algorithm works
well in deviation-zone evaluation and can meet the needs of high-precision evaluation
in engineering.
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Table 7. Comparison of the proposed method with existing methods.

Dataset Source Example Number of Points Reported MZ IHHO MZ Least Square Smaller Method 1 Relative
Difference (%) 2

Huang et al. [48]
(Roundness, 2021)

Example 1 25 29.2803 29.2802 29.8072 Close values −0.000
Example 2 24 38.2313 38.2310 39.1007 Close values −0.001
Example 3 100 957.413 957.420 988.236 Close values −0.000
Example 4 80 27.1976 27.1970 29.085 Close values −0.002

Luo et al. [33]
(Straightness, 2020)

Example 1 16 0.06693 0.06356 0.0956 IHHO MZ −5.033
Example 2 8 8.5200 6.3342 9.0000 IHHO MZ −25.65

Zheng et al. [20]
(Cylindricity, 2019)

Example 1 32 0.01938 0.01939 0.28558 Close values +0.05
Example 2 80 0.03189 0.03183 0.03661 Close values −0.19
Example 3 20 0.18396 0.18396 0.21197 Close values −0.00

Radlovački V et al. [49]
(Flatness, 2016)

Example 1 25 0.01840 0.01838 0.02187 Close values −0.11
Example 2 200 0.12252 0.12613 0.24339 Reported MZ +2.9

1 “Close value” indicates an absolute relative difference between reported MZ and IHHO MZ values of less
than 0.5%. 2 Difference between reported MZ and IHHO MZ values—relative to reported MZs (negative values
indicate smaller values for IHHO).
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Figure 9. The convergence curves relative to the number of iterations.

5.2. Engineering Applications

To further validate the advantages of the IHHO algorithm applied to deviation-zone
evaluation, the surface of a seamless steel tube was measured by a hexagon image-probe
hybrid measuring device, MSOC-03-2C. With the probe system, eight sets of section data
and corresponding center coordinates were collected to assess the cylindricity and axis
straightness of the seamless steel tube. With the vision system, the coordinates of the
cross-section of the steel tube hole were collected, filtered, and downsampled for roundness
evaluation. Furthermore, the measuring surface of a 10 mm gauge block was collected
with a probe for flatness evaluation. The experimental equipment and objects are shown
in Figure 10.

Based on the deviation-zone model developed in Section 2.1, the above acquisition data
were evaluated using the IHHO, HHO, SSA, SSA&HHO [34], and least-squares methods.
To thoroughly verify the convergence property of the algorithm, the maximum number
of iterations T = 500 and N = 30. The experiments were repeated 30 times for each data
group to remove accidental errors. The results are summarized in Table 8. The boxplots
and average convergence curves for the different algorithms relative to the number of
iterations are plotted in Figures 11 and 12. The error maps of the gauge block surface and
the seamless tube surface are shown in Figure 13.

As shown in Table 8, in the cylindricity evaluation, the error was 0.1013 mm, which is
much higher than that of the other algorithms. For straightness, the SSA&HHO and IHHO
algorithms were more effective, while SSA and HHO were poor. HHO performed the worst
in the roundness evaluation, while the rest of the algorithms performed similarly. In the
flatness evaluation, all algorithms achieved the same results. According to the boxplot
diagram in Figure 11, the IHHO fluctuations were lower than those of the other methods
in 30 independent runs, while the rest of the algorithms showed performance differences
when evaluating different form errors.



Sensors 2023, 23, 6046 22 of 27

Sensors 2023, 23, x FOR PEER REVIEW 21 of 26 
 

 

1 “Close value” indicates an absolute relative difference between reported MZ and IHHO MZ values 
of less than 0.5%. 2 Difference between reported MZ and IHHO MZ values—relative to reported 
MZs (negative values indicate smaller values for IHHO). 

5.2. Engineering Applications 
To further validate the advantages of the IHHO algorithm applied to deviation-zone 

evaluation, the surface of a seamless steel tube was measured by a hexagon image-probe 
hybrid measuring device, MSOC-03-2C. With the probe system, eight sets of section data 
and corresponding center coordinates were collected to assess the cylindricity and axis 
straightness of the seamless steel tube. With the vision system, the coordinates of the cross-
section of the steel tube hole were collected, filtered, and downsampled for roundness 
evaluation. Furthermore, the measuring surface of a 10 mm gauge block was collected 
with a probe for flatness evaluation. The experimental equipment and objects are shown 
in Figure 10. 

 
Figure 10. (Data acquisition equipment and measurement objects). 

Based on the deviation-zone model developed in Section 2.1, the above acquisition 
data were evaluated using the IHHO, HHO, SSA, SSA&HHO [34], and least-squares 
methods. To thoroughly verify the convergence property of the algorithm, the maximum 
number of iterations T = 500 and N = 30. The experiments were repeated 30 times for each 
data group to remove accidental errors. The results are summarized in Table 8. The box-
plots and average convergence curves for the different algorithms relative to the number 
of iterations are plotted in Figures 11 and 12. The error maps of the gauge block surface 
and the seamless tube surface are shown in Figure 13. 

Table 8. Comparison of different methods of evaluation results (unit per millimeter). 

Dataset Number of Points Least Square SSA HHO SSA&HHO IHHO 
Cylindrical surface 158 0.1627 0.4066 0.8951 0.3416 0.1013 

Cylindrical axis 8 0.07509 0.06743 0.07102 0.06657 0.06610 
Circular section 100 0.02898 0.02716 0.02868 0.02715 0.02715 

Gauge block surface 40 0.00187 0.00184 0.00184 0.00184 0.00184 

Figure 10. (Data acquisition equipment and measurement objects).

Table 8. Comparison of different methods of evaluation results (unit per millimeter).

Dataset Number of Points Least Square SSA HHO SSA&HHO IHHO

Cylindrical surface 158 0.1627 0.4066 0.8951 0.3416 0.1013
Cylindrical axis 8 0.07509 0.06743 0.07102 0.06657 0.06610
Circular section 100 0.02898 0.02716 0.02868 0.02715 0.02715

Gauge block surface 40 0.00187 0.00184 0.00184 0.00184 0.00184

Sensors 2023, 23, x FOR PEER REVIEW 22 of 26 
 

 

 
Figure 11. Boxplots of the evaluation results for the seamless steel pipe and gauge block data of 
different algorithms. 

 
Figure 12. The average convergence curves for the seamless steel tube and gauge block data. 

IHHO HHO SSA SSA&HHO

0.0

0.5

1.0

1.5

2.0
Cylindrical surface

IHHO HHO SSA SSA&HHO

0.063

0.066

0.069

0.072

0.075

0.078

0.081

Cylindrical axis

IHHO HHO SSA SSA&HHO

0.027

0.030

0.033

0.036
Circular section

IHHO HHO SSA SSA&HHO

1.844336

1.844352

1.844368

1.844384

1.844400

1.844416

1.844432

Gauge block surface
×10-3

 IHHO  HHO  SSA  SSA&HHO

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r

Iteration

Cylindrical surface

0 100 200 300 400 500

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Er
ro

r

Iteration

Cylindrical axis

0 100 200 300 400 500

0.027

0.028

0.029

0.030

0.031

Er
ro

r

Iteration

Circular section

0 100 200 300 400 500

0.0
0.2
0.4

0.6
0.8
1.0

1.2
1.4
1.6
1.8
2.0

Er
ro

r

Iteration

Gauge block surface

Figure 11. Boxplots of the evaluation results for the seamless steel pipe and gauge block data of
different algorithms.
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6. Conclusions

This paper proposes an improved Harris hawks optimization algorithm based on
the average fitness exploration strategy and nonlinear inertia weights (SSA). The idea of
using average fitness in the exploration phase provided us with a solution to the strategy
selection conflict caused by randomness. Furthermore, the introduction of nonlinear inertia
weights further enhanced the global search capability of the SSA algorithm, enabling it
to give full play to its advantages when embedded in HHO and compensating for the
shortcomings of the HHO exploration phase. Although the computational complexity of
the IHHO algorithm was slightly higher than that of the HHO algorithm, the convergence
of the IHHO algorithm was faster than HHO in terms of the number of iterations and
function evaluation results. The IHHO algorithm was thoroughly compared with the
well-established optimization algorithms, and the results showed that the IHHO algorithm
outperformed the other optimization algorithms. With respect to the engineering problem,
the IHHO algorithm was compared with other algorithms using data reported in the
literature and collected data to verify its effectiveness and superiority in determining form
errors. The results show that IHHO is applicable to the deviation-zone evaluation problem
and can give accurate and reliable form error evaluation results. However, this paper does
not deal with free surfaces without a specific functional expression. Therefore, in future
studies, a promising direction would be to evaluate the deviation zone based on the CAD
model and the collected discrete points.
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Appendix A

1. Circle

The implicit expression of a circle and the corresponding distance function at a point
are given in Equation (A1) and Equation (A2), respectively, where (a, b) denotes the center
of the circle and R denotes the radius of the circle.

(X− a)2 + (Y− b)2 − R2 = 0 (A1)

f (Pi, U(a, b, R)) =
√
(xi − a)2 + (yi − b)2 − R (A2)

2. Line

The implicit expressions of the straight line and the distance function are given in
Equation (A3) and Equation (A4), respectively, where (x0, y0, z0) is the position and (a, b, c)
is the direction vector of the spatial line.

X− x0

a
=

Y− y0

b
=

Z− z0

c
(A3)
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f (Pi, U(a, b, c, x0, y0, z0)) =√
[b(xi−x0)−a(yi−y0)]

2+[c(xi−x0)−a(zi−z0)]
2+[c(yi−y0)−b(zi−z0)]

2

a2+b2+c2

(A4)

3. Plane

The implicit expression of the plane and the corresponding distance function at a point
are given in Equation (A5) and Equation (A6), respectively, where a, b, and c denote the
normal vectors of the plane.

aX + bY + cZ + d = 0 (A5)

f (Pi, U(a, b, c, d)) =
axi + byi + czi + d√

a2 + b2 + c2
(A6)

4. Cylinder

The implicit expression of the cylinder and the corresponding distance function at a
point are given in Equation (A7) and Equation (A8), respectively, where (x0, y0, z0) denotes
the axis position of the cylinder, (a, b, c) denotes the direction vector of the axis, and R
denotes the radius of the cylinder.

(X− x0)
2 + (Y− y0)

2 + (Z− z0)
2 − R2 =

a(X−x0)+b(Y−y0)+c(Z−z0)
a2+b2+c2

(A7)

f (Pi, U(a, b, c, x0, y0, z0, R)) =√
[b(xi−x0)−a(yi−y0)]

2+[c(xi−x0)−a(zi−z0)]
2+[c(yi−y0)−b(zi−z0)]

2

a2+b2+c2 − R
(A8)
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