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Abstract: Some recent studies show that filters in convolutional neural networks (CNNs) have low
color selectivity in datasets of natural scenes such as Imagenet. CNNs, bio-inspired by the visual
cortex, are characterized by their hierarchical learning structure which appears to gradually transform
the representation space. Inspired by the direct connection between the LGN and V4, which allows V4
to handle low-level information closer to the trichromatic input in addition to processed information
that comes from V2/V3, we propose the addition of a long skip connection (LSC) between the
first and last blocks of the feature extraction stage to allow deeper parts of the network to receive
information from shallower layers. This type of connection improves classification accuracy by
combining simple-visual and complex-abstract features to create more color-selective ones. We have
applied this strategy to classic CNN architectures and quantitatively and qualitatively analyzed the
improvement in accuracy while focusing on color selectivity. The results show that, in general, skip
connections improve accuracy, but LSC improves it even more and enhances the color selectivity of
the original CNN architectures. As a side result, we propose a new color representation procedure for
organizing and filtering feature maps, making their visualization more manageable for qualitative
color selectivity analysis.

Keywords: color selectivity; skip connections; long skip connection; CNN; VGG16; Densenet121;
Resnet50; feature map visualization

1. Introduction

Color selectivity refers to the ability of a system to respond selectively to specific
colors or wavelengths of light inside its receptive field, that is, to locate patterns based on
chromatic characteristics alone or color mixed with other visual features such as texture
or shape. Taylor et al. [1] showed that CNNs presented near-orthogonal color and form
processing in early layers, but increasingly intermixed feature coding in higher layers.
Previously, several authors [2–4] have shown that CNN color selectivity is low in models
trained with large datasets of natural scenes such as Imagenet, which are biased towards
grayish, orangish, and bluish colors. It seems clear that increasing color selectivity is
necessary to take full advantage of the information in the color channels, especially in
scenarios where color is a primary characteristic.

The reason for this low color selectivity may be in the architecture itself. CNNs were
inspired by early findings from the study of biological vision [5]. Since Fukushima with
the Neocognitron [6], who built a basic block based on V1, or Lecun et al. with the Lenet
architecture [7], who continued the idea of aggregating simpler features into more complex
ones with a sequential architecture of repetitive building blocks, CNNs have basically
maintained the same architecture. This representational hierarchy appears to gradually
transform a space-based visual into a shape-based and semantic representation [8].
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However, in the last thirty years, neuroscience has evolved in the understanding of the
visual area and its active role in perception, as we can see in Hubel’s later work [9] or that
of Davila Teller [10], where they advanced the study of the relationship between vision and
the vision system using physiological and perceptual techniques. Although the process
is mainly sequential and follows the scheme “retina→ LGN → V1→ V2→ V3→ V4”,
there are connections between these areas that do not follow this sequentiality. Some
models have been proposed that partially skip this sequential structure [11–14] but none
have been proposed to improve color selectivity.

In 1994, Ferrera et al. [15] verified that the information structure of the LGN was
maintained in the macaque visual area V4, which indicates that this area, specialized in
the detection of shapes and colors [16,17], processes information coming from areas V1, V2,
and V3, where color is intermixed for the detection of edges, shapes, and textures, and, in
addition, from the LGN, where color and other features are present but at a lower level of
processing. The author hypothesized that this structure of unprocessed information from the
LGN is maintained in areas V1, V2, and V3 in mammals. Recently, these direct connections
between the precortical area and neocortex visual areas have been analyzed in humans,
indicating that there is a direct and bidirectional connection between the LGN and V4 [18].

In this study, inspired by the direct connection LGN → V4, we propose the following
hypothesis: it is possible to increase the color selectivity of a feed-forward architecture and
improve its performance in classification tasks by modifying the structure of the network to
reflect this direct connection. We do this by creating a long skip connection (LSC) between
the output of the initial block, equivalent to the LGN, and the input of the last block of the
feature extraction stage of the network so that this last block, similar to area V4, processes
both branches together.

To evaluate this proposal, we selected several classic CNN architectures, VGG16,
Densenet121, and Resnet50, which have sufficient blocks for the proposed connection to be
functional and present different types of skip connections. Specifically, VGG16 does not
have skip connections, Densenet121 uses skip connections via concatenation and Resnet50
uses skip connections via addition, which allows us to analyze the LSC extensively.

Our goal is to enhance the accuracy of current CNN models by using a long skip
connection that boosts their ability to recognize colors. Our study improves existing
methods for measuring color distinction in a more precise way and examines how it affects
accuracy through filter removal. We also introduce a novel technique to assess color-related
filters, simplifying the analysis process by organizing them based on color and selectivity.
This reduces the number of filters needing examination.

Accordingly, the remainder of the paper is organized as follows. Section 2 presents
preliminary background information related to studying color selectivity in CNNs and
different skip connection typologies. Section 3 describes the implementation of LSC on
several classic CNN architectures, and a simplified procedure to analyze quantitatively and
qualitatively color selectivity. Section 4 describes the experiments conducted to demonstrate
color selectivity improvements of models with LSC. Section 5 shows experimental results
and discusses the results along with observations. Finally, Section 6 concludes the paper.

2. Related Work
2.1. Color Selectivity in CNNs

Few studies have analyzed color selectivity in neural networks. Usually, the problem
has been addressed pragmatically, testing different color representations and choosing the
one with the best performance. In the last years, color selectivity in CNNs has been studied
by analyzing the activation of neurons in the network in response to particular stimuli.
Building on the work of Shapley and Hawken [19] on how color is encoded in the human
vision system, Rafegas et al. [3,20] proposed a method to explore how color is encoded
in a trained artificial network. They defined a representation to visualize the neuron
activity that they named “Neuron Feature” (NF) and it consists of an image obtained by
averaging the set of N-top image crops that maximally activate the neuron. Although this
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representation has certain limitations since it is based on the assumption that the color
properties of kernels equal the color properties of their corresponding mean image patches,
this qualitative representation is a proxy for what the neuron responds to: If NF has a
well-defined hue, the neuron responds only to that range of hues, whereas if it has a grayish
color, it responds to a wider range of colors, i.e., its response is less color-dependent. In
addition, they defined a color selectivity index (CSI) for each neuron in the network by
comparing its activation in response to color and grayscale images. Engilberge et al. [2] also
defined a color sensitivity index by comparing neuronal activation in color and grayscale
images, but focused exclusively on quantitative metrics. Later, several methodologies for
the analysis of color opponency and spatial and color tuning have been defined [4,21,22],
but they use prepared datasets which are beyond the scope of our study. In all these studies,
the input images provided to the models are in the RGB color system.

2.1.1. Color Selectivity Analysis of Individual Neurons

According to Rafegas and Vanrell’s methodology [3,20], an “image crop” represents
the image area of the receptive field that activates a neuron. For qualitative analysis, they
visualized the kind of inputs that trigger the neuron’s response in the spatial-chromatic
domain by means of the concept of Neuron Feature (NF), which is the weighted average of
the N image crops that activate the neuron the most in the dataset (Equation (1)).

NF(ni) =
1

Nmax

Nmax

∑
j=1

wj,i Ij (1)

where ni is neuron i (neuron i that belongs to a feature map f of a layer L); Nmax is the
configurable parameter that sets the number of images that most activate the neuron to be
considered; and wj,i is the weighting factor for the image crop of image j, Ij. This weighting
factor wj,i is defined as the activation value normalized to the highest activation of the
neuron in the entire dataset (Equation (2)).

wj,i =
aj,i

amax,i
(2)

where aj,i is the value of the activation function obtained by ni in Ij, and amax,i = max(ak,i)∀k
is the highest value of activation function of ni in the entire dataset.

For quantitative analysis, they defined the color selectivity index (CSI), which was
obtained by comparing the value of wj,i of the original color image with the value w′j,i
of the same image in grayscale (Equation (3)). CSI values are in the interval [0, 1], with
the extreme cases CSI = 0 (no color selectivity) when wj,i and w′j,i are equal, and CSI = 1
(maximum color selectivity) when w′j,i is 0.

CSI(ni) = 1−
∑Nmax

j=1 w′j,i

∑Nmax
j=1 wj,i

(3)

Figure 1 shows five NF from the last layer of the fifth convolution block with low,
medium and high CSI values. We choose neurons at this level to show the relationship
between CSI and NF because this is where we will further analyze the benefits of the
proposed architecture. When CSI is low, the image crops that activate the neuron the most
(Figure 1b) have heterogeneous hue ranges (yellows, whites, greens, blues, etc.), whereas
when CSI is high, the images have highly localized hue ranges. This is also visible in the
color hue distribution of the pixels in the top 100 images of Figure 1c, which shows that it
is unimodal and narrow when the CSI is high, whereas it is multimodal and flat when the
CSI is low.



Sensors 2023, 23, 7582 4 of 19

Figure 1. Examples of NF associated to neurons of the last layer of the fifth convolution block with
different CSI values: (a) NF images; (b) image crops of the top 100 images that activate the neuron
the most; and (c) color hue distribution of the 100 image crops.

2.2. Skip Connections

Skip connections are a type of shortcut that connects the output of one layer to the
input of another layer that is not adjacent to it. Srivastava et al. [11] introduced the concept
of skip connections with their Highway Networks, which are characterized by the use of
gating units which learn to regulate the flow of information between layers. However,
skip connections achieved fame with He et al.’s work on Residual Networks (ResNet) [12],
which, although a particular case of the previous ones, was the foundation of the first-place
winning entries in all five main tracks of the ImageNet and COCO 2015 competitions,
which covered image classification, object detection and semantic segmentation. These
networks use skip connections via addition to learning residual functions with reference
to the layer inputs. They allowed to solve the degradation problem, which facilitates the
design of deeper neural networks.

Huang et al. [13] proposed another architecture that also uses skip connections:
Densenet. In this case, Densenet uses skip connection via concatenation of each layer
with the following ones to encourage feature reuse and also to alleviate the vanishing-
gradient problem. However, an essential part of CNNs is the down-sampling of layers,
which reduces the size of feature maps through dimensionality reduction to achieve higher
computation speeds. To enable this, Densenets are divided into Dense Blocks sequentially
connected, with no skip connections between them.

Another architecture that uses skip connections is U-net (Ronneberger et al. [14]),
which is a symmetrical encoder-decoder architecture in which each decoder layer receives
the output of the same layer of the encoder concatenated with the input of the previous
layer of the decoder. This architecture was used to learn fine-grained details, making it
ideal for semantic segmentation.

There are other popular architectures, such as Inception [23] or Xception [24], that we
have not analyzed; however, the reader can note that skip connections have always been
used within the layers of a block or between symmetrical layers of an encoder-decoder
architecture, but not between blocks in classification tasks, and not for the purpose of
enhancing color selectivity.
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3. Methods

In this section, we describe the implementation of LSC on the VGG16, Densenet121 and
Resnet50 architectures and introduce two new procedures for analyzing color selectivity
to show the improvements it introduces. To simplify the notation, we will refer to a
generic architecture with M (Model) accompanied by the subscripts O when referring to
the original architecture (MO) and with LS when referring to the architecture with LSC
(MLS). In addition, we will use VGG to refer to VGG16, Densenet for Densenet121 and
Resnet for Resnet50. Therefore, for example, to refer specifically to the VGG16 architecture
modified with LSC, we will use the notation VGGLS.

3.1. The Proposed LSC Architecture

As mentioned in the introduction, we propose establishing an LSC between the output
of the first block and the input of the last block of the feature extraction stage of the
network. Our proposal was tested on three classic CNN architectures with and without
skip connections: VGG, Densenet and Resnet. All of these architectures use a similar down-
sampling strategy along the network. However, there were differences between‘them.

We numbered the blocks of the feature extraction stage according to the pooling
operations: 112 × 112 (first block), 56 × 56 (second block), 28 × 28 (third block), 14 × 14
(fourth block) and 7 × 7 (fifth block). The classification stage consists of one or more dense
layers. Figure 2 shows the structure of both architectures: the original, MO, and the one
with LSC, MLS. Figure 2c shows the receptive field of a neuron in the fifth block of MLS.
In the fifth block, the receptive field is composed (by adding or concatenation depending
on the specific model where the LSC is implemented) of the fourth block output (forward
path) and the LSC that originates from the first block. The LSC reduces the dimensions of
the first block output by max-pooling, allowing the composition.

Figure 2. LSC architecture inspired by the connection between LGN and V4. (a) Original architecture
(MO); (b) new LSC architecture (MLS); and (c) detail of the receptive field of a neuron of the fifth
block, which results from the composition of the fourth block output (forward path) and the LSC that
comes from the first block.

Tables 1–3 list the details of the implementation of the three architectures. The images
are in RGB, and the input layer of all models consists of three channels. In VGG, the archi-
tecture is based on similar blocks (convolution layers plus an output max-pooling layer).
In Densenet and Resnet, there is a convolution layer at the input and then five and four
functional blocks respectively. While Resnet and VGG maintain the same dimensionality
reduction pattern in the last block (the last block input is 14 × 14 and its output is 7 × 7), in
Densenet, the last block input is 7 × 7 and its output is also 7 × 7. We now examine each
model in detail.
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Table 1. VGG and VGGLS architectures. The blocks are composed of several convolution layers and
a max-pooling layer at the output. The max-pooling is 2 × 2 and stride = 2. The LSC of VGGLS

performs three max-pooling operations at the output of the first block.

Block Output VGG Filters VGGLS Filters

1
224 × 224 3 × 3 conv × 2 64 3 × 3 conv × 2 64
112 × 112 max-pool 64 max-pool 64

2
112 × 112 3 × 3 conv × 2 128 3 × 3 conv × 2 128

56 × 56 max-pool 128 max-pool 128

3
56 × 56 3 × 3 conv × 2 256 3 × 3 conv × 2 256
56 × 56 1 × 1 conv 256 1 × 1 conv 256
28 × 28 max-pool 256 max-pool 256

4
28 × 28 3 × 3 conv × 2 512 3 × 3 conv × 2 512
28 × 28 1 × 1 conv 512 1 × 1 conv 512
14 × 14 max-pool 512 max-pool 512

LS 14 × 14 max-pool 64concat

5
14 × 14 3 × 3 conv × 2 512 3 × 3 conv × 2 512
14 × 14 1 × 1 conv 512 1 × 1 conv 512

7 × 7 max-pool 512 max-pool 512

classification
stage

1 × 1 FC 1 FC 1
1 × 1 FC 1 FC 1
1 × 1 soft-max soft-max

The VGG architecture consists of five blocks in the feature extraction stage, and two
fully connected layers and one softmax layer in the classification stage (Table 1). Each block
has several convolution layers and a max-pooling layer that halves the size of the feature
maps. The number of filters increases from 64 in the first block to 512 in the last block.
The LSC in VGGLS is established between the output of the first block (112 × 112) and
the fourth (14 × 14) using three 2 × 2 max-pooling operations. Therefore, the fifth block
receives the concatenated output of the fourth block and the down-sampled output of the
first block. The classification stage has two dense layers of 4016 units and a soft-max layer
that depends on the number of classes in each dataset.

The Densenet architecture is composed of “dense blocks” followed by a “transition
layer”, which halves the size of the feature maps (see Table 2). Each dense block has three
convolution layers: 1 × 1, 3 × 3, and 1 × 1. The number of filters in each layer varies as the
network advances in depth from 64 to 2048, as well as the number of repetitions, which are
concatenated. The transition layer is composed of a 1× 1 convolution layer and a 2× 2 and
stride = 2 average pooling layer. The first block comprises the first convolution layer and
the max-pooling layer, which reduces the dimension to 56 × 56. In the fifth block, unlike in
VGG, where the dimension is reduced from 14 × 14 to 7 × 7, the fifth block has an input of
7 × 7 and no reduction. Therefore, the LSC from the first block reduces the dimension to
7 × 7. The classification stage has a soft-max layer that depends on the number of classes
in each dataset.

The Resnet architecture is composed of “resnet blocks” containing three convolution
layers: 1 × 1, 3 × 3, and 1 × 1, with a max-pooling of 2 × 2 and stride = 2 at the end to
reduce the dimension. The output block has a 7 × 7 average-pooling and a soft-max layer
that depends on the number of classes in each dataset. The LSC is established between the
output of the first block and the output of the fourth block, performing an adding operation
to maintain the type of skip connections used in this architecture. Owing to this addition
operation, we increase the number of filters of the output of the first block from 64 to 1024
using a 1 × 1 convolution layer.
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Table 2. Densenet and DensenetLS architecture. The max-pooling layer of the first block is 3 × 3 and
stride = 2. Each Dense block is composed of a 1 × 1 convolution layer and a 3 × 3 convolution layer.
The transition blocks have a 1× 1 convolution layer and a 2× 2 average-pooling layer with stride = 2.
The average pool of the first layer and that of the output layer is 7 × 7 with stride = 2. For the LSC
of DensenetLS, four 3 × 3 max-pooling are performed to reduce the dimension of the first block and
concatenate with the fourth block.

Block Output Densenet Filters DensenetLS Filters

1 112 × 112 7 × 7 conv 48 7 × 7 conv 48
56 × 56 max-pool 48 max-pool 48

2 56 × 56 dense × 6 192 dense × 6 192
28 × 28 transition 96 transition 96

3 28 × 28 dense × 12 384 dense × 12 384
14 × 14 transition 192 transition 192

4 14 × 14 dense × 24 768 dense × 24 768
7 × 7 transition 384 transition 384

LS 7 × 7 max-pool concat 48

5 7 × 7 dense × 16 768 dense × 16 816
7 × 7 1 × 1 conv 768 1 × 1 conv 816

classification 1 × 1 ave-pool 1 ave-pool 1
stage 1 × 1 soft-max soft-max

Table 3. Resnet and ResnetLS architecture. The max-pooling is 3× 3 with stride = 2, and the average-pooling
is 7× 7 and stride = 2. Each Resnet block is a 1× 1 conv layer, followed by a 3× 3 conv layer, and ending
with a 1 × 1 conv layer. For the LSC of ResnetLS, three 3 × 3 max-pooling are performed to reduce the
dimension of the first block and a 1× 1 conv layer with 1024 filters for adding it to the fourth block output.

Block Output Resnet Filters ResnetLS Filters

1 112 × 112 7 × 7 conv 64 7 × 7 conv 64

2 56 × 56 max-pool 64 max-pool 64
56 × 56 resnet × 3 256 resnet × 3 256

3 28 × 28 resnet × 4 512 resnet × 4 512

4 14 × 14 resnet × 6 1024 resnet × 6 1024

LS 14 × 14 max-pool 64
14 × 14 conv 1 × 1 addition 1024

5 7 × 7 resnet × 3 2048 resnet × 3 2048

classification 1 × 1 ave-pool 1 ave-pool 1
stage 1 × 1 soft-max soft-max

3.2. Evaluation of Color Selectivity

To demonstrate that the improvements introduced by the LSC are related to color pro-
cessing, we performed two types of analysis: a quantitative analysis of the filter distribution
according to color selectivity and a qualitative analysis of the filter’s response to color hue.

As mentioned above, we focused our analysis on the fifth block, as this is where the
information coming from the different layers and from the LSC connection is combined to
create the final features to be used in the classification stage.

3.2.1. Color Selectivity Properties of Filters

To analyze color selectivity, we will use the method of Rafegas and Vanrell described in
Section 2.1.1 to obtain the color selectivity index (CSI) and the neuronal feature image (NF) of
each neuron. However, these values are oriented towards a neuron-level analysis. As it is
impractical to analyze the response of all neurons individually, we simplified the analysis by
selecting a representative neuron of each layer, reducing the number of elements to manage.

We evaluated the CSI values in the neurons of each feature map of the fifth block
output and found that their variance followed a decreasing exponential distribution (abx;
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a = 109.76; b = −73.60), which is very narrow and indicates that any neuron in the feature
map can be representative of the filter behavior. Therefore, for each feature map, we
selected an active and centered neuron to obtain the CSI and NF values of the filters. The
CSI difference of this representative neuron with respect to the average of the feature map
is 0.07(0.000025SD), which we consider insignificant for this study.

3.2.2. Qualitative Color Selectivity Analysis

A feature map shows the filter response to an input image. In order to analyze
differences between MO and MLS responses, we can compare all the feature maps of each
block output. However, it is very complicated and cumbersome when the block has many
feature maps because it is necessary to visualize all these monochrome images together
(512, 768, and 2048 feature maps in VGG, Densenet, and Resnet, respectively).

To facilitate the analysis of color selectivity for a particular image, we propose the
following color representation of the feature maps in the HSV space: H (hue) is the average
hue of the NF of the filter that generates the feature map, S (saturation) is the CSI value
of the filter, and V (value) is the normalized activation value wj,i for image j. With this
representation, we can reorganize the feature maps according to the CSI intervals and select
the most active filters for each one. This reduces the number of images displayed, which
remarkably simplifies the analysis and, as will be seen later, does not influence the results.

In Figure 3, we show an example of how the new representation facilitates the analysis
of the feature maps at the fifth block output in VGGLS (we just show a sample of 100 out of
512 feature maps for the sake of clarity). Given the input image shown in Figure 3a, Figure 3b
shows the feature maps ordered according to their positions in the architecture, which is
difficult to follow. Figure 3c is an intermediate representation in the HSV space that groups
feature maps in 12 hue ranges. The light gray boxes represent hue ranges without feature maps.
In this representation, the maps are sorted by their hue range and intensity (average activation),
facilitating the visualization of the visuospatial features of the original image they capture, such
as contours, shapes, textures, and specific areas. Finally, to further simplify the analysis, the
highest intensity feature maps for each hue range and CSI interval are selected (Figure 3d).

Figure 3. Color representation of the feature maps of the fifth block output layer to facilitate color
selectivity analysis: (a) input image; (b) grayscale representation of the sample of 100 out 512 feature
maps in the fifth block output layer in VGGLS architecture; (c) HSV representation of the feature
maps grouped by hue ranges and sorted by average activation value; and (d) simplified visualization
consisting of the feature map with the highest average activation per hue range and CSI interval.
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4. Experimental Setup
4.1. Datasets

Table 4 and Figure 4 summarize the characteristics of the four datasets used in our
experiments: Imagenette [25], Tiny Imagenet [26], Birds [27] and Flowers [28]. We chose
these datasets because of their varied themes (natural scenes, people, artifacts, animals,
flowers, etc.) and different color characteristics, with images containing monochrome and
polychrome elements, with high and low saturation, and with a variable number of classes
(from 10 to 315) and images (between 5000 and 100,000). Furthermore, there is an interest
in the community to improve the performance of models with small datasets [29], since
in the industry it is complex to obtain enough examples with homogeneous quantities to
represent each class. In this scenario, where it is necessary to improve the feature extraction
capability, the comparison of the proposed improvement will be more effective than using
large datasets. Imagenette and Tiny Imagenet are two datasets derived from Imagenet [30].
The objects of interest appear in different sizes and positions, complete in the foreground or
segmented and occluded by other objects. Birds and Flowers are two specialized datasets,
one on birds and the other on flowers. The first one has the objects of interest in the
foreground, and the second one in the foreground and background. All four datasets
contain mainly natural scenes, so their color hue distribution shows a high concentration
of pixels in the orange range (due to the presence of organic objects) and somewhat less in
the bluish range (mainly due to the presence of sky or water regions in the background).
Only the Flowers dataset contained no peak in the bluish range.

Table 4. Datasets used in the experiments.

Dataset Classes Train/Validation Theme

Imagenette [25] 10 9469/3925 varied
Tiny Imagenet [26] 200 100,000/10,000 varied
Birds [27] 315 45,995/1590 specialized
Flowers [28] 102 6551/1637 specialized

Figure 4. Overview of the four datasets used to evaluate the models: (a) Imagenette; (b) Tiny
Imagenet; (c) Birds 315 species; and (d) 102 category flower

4.2. Setup

Because our purpose is to analyze the performance improvement of the new architec-
ture with respect to color selectivity, we used the default configuration parameters offered
by Keras to train the models, without any technique to improve accuracy (e.g., preprocess-
ing, batch normalization, etc.). We used a learning rate lr = 0.00001 in VGG to prevent
dead neurons, and lr = 0.0001 in Densenet and Resnet; batch size = 32; Adam optimizer;
and cross-entropy as the loss function. We selected the model with the highest validation
accuracy in each training session (usually obtained in approximately 15 epochs), and then
chose the one with the best performance in five training sessions. Table 5 presents the count
of trainable parameters for the models based on the number of classes. For VGG16, in its
LSC variant, the trainable parameters in the fifth block’s input increase by 294,912. This
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corresponds to a percentage increase of 0.228% for 10 classes, 0.226% for 200 classes, 0.225%
for 315 classes and 0.227% for 102 classes. Moving to Densenet 121, its LSC variant leads
to an increment of 74,208 trainable parameters for 10 classes, representing an increase of
1.92%. Similarly, for 200 classes, there is an increase of 83,328 parameters, reflecting a 2.07%
rise. For 315 classes, the increase is 88,848 parameters, resulting in a 2.16% augmentation.
Lastly, for 102 classes, an increase of 78,624 parameters, or 1.99%, is observed. Shifting to
Resnet50, its LSC variant results in an enlargement of 590,848 trainable parameters in the
input of the fifth block. This change corresponds to a 2.50% increase for 10 classes, 2.17%
for 200 classes, 2.02% for 315 classes and 2.33% for 102 classes.

Table 5. Trainable parameters per model and dataset.

VGG Densenet Resnet
Dataset o ls o ls o ls

IM 129,582,922 129,877,834 3,873,994 3,948,202 23,665,802 24,256,650
TI 130,361,352 130,656,264 4,020,104 4,103,432 27,168,072 27,758,920
BI 130,832,507 131,127,419 4,108,539 4,197,387 29,287,867 29,878,715
FL 129,959,846 130,254,758 3,944,742 4,023,366 25,361,638 25,952,486

IM: Imagenette; TI: Tiny Imagenet; BI: Birds; and FL: Flowers.

4.3. Evaluation

A quantitative and qualitative analysis of the effect of color selectivity on the per-
formance of the different architectures was carried out on the fifth block output, where
the impact of LSC appears. This is the last block of the feature extraction stage, where
the information from the forward path and the LSC is merged, and the final visuospatial
features used in the classification stage are generated.

First, we compare the global accuracy of MO and MLS architectures. Next, to under-
stand the effect on performance of filters of different CSI intervals, we conduct an ablation
study where we “turn off” filters based on their CSI. Finally, we used the method proposed
in subsection Methods.B to evaluate the model response to color hues.

4.3.1. Performance Analysis

We followed the methodology described in the subsection Related Work.A to obtain the
NF and CSI values of every filter of the fifth block output based on a subset of 3000 images
from each validation dataset, except for Flowers, where there are only 1500 images. The
100 images that most activated the selected neuron of each filter were used. We assessed
whether there was any improvement in performance with MLS by calculating the difference
in accuracy between MO and MLS.

4.3.2. Filter CSI Analysis

We conducted an ablation study of the filters of the fifth block output as a function of
their CSI to evaluate their impact on classification accuracy. Although ablation techniques
have been used in CNNs [31], there have been no previous studies on color selectivity.
We checked several CSI interval sizes to group filters. Initially, we tested a small size CSI
interval (bin size = 0.1, ten intervals) and detected no significant changes. Therefore, we in-
creased the interval size (bin size = 0.25) and obtained four CSI intervals: low (L) = [0, 0.25],
medium-low (M-L) = [0.25, 0.50], medium-high (M-H)= [0.50, 0.75], and high (H) = [0.75, 1].
Significant differences were observed in this case.

The procedure to analyze the different architectures for each CSI interval first calculates
the effect of ablation on the model accuracy, DAMX ,csi (Equation (4)), and then the difference
between this effect in the MO and MLS variants, DMM,csi (Equation (5)).

DAMX ,csi = Acc(MX)− Acc(MX,Acsi ) (4)

where MX in {MO, MLS} represents a particular architecture; csi ∈ {L, M− L, M− H, H}
is the CSI interval; Acsi represents the ablation of the filters on CSI interval csi; Acc(MX) is
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the accuracy without ablation; and Acc(MX,Acsi ) is the accuracy after ablation of filters in
CSI interval csi.

DMM,csi = DAMLS ,csi − DAMO ,csi (5)

where M ∈ {VGG, Dense, Resnet} and csi ∈ {L, M − L, M − H, H}. DAMX ,csi indicates
the contribution of the feature maps of a particular CSI interval to the final performance
and DMM,csi indicates whether the ablation affects MO or MLS more. Therefore, the MLS
variant improves color selectivity if the difference DMM,csi is positive and larger in higher
CSI intervals, where the filters are more color selective.

4.3.3. Color Hue Analysis

We conducted an experiment to compare the responses of the fifth block output
filters to different hues. Instead of using a monochrome image, which would provoke an
unknown filter response because it is outside the dataset population, we used an image of
the “green broadbill” in the Birds dataset in which hue is one of the most representative
features of the bird and whose shape-color combination is not very present in the dataset.
We created two synthetic sets of images with different hues (red, yellow, green, cyan, blue,
and magenta), one with texture details and the other with only the silhouette, as in the work
of Taylor et al. [1]. We use both sets of images to determine whether the figure is detected
solely based on its contours or whether its texture, including different shades of color, also
plays a role. Hue is a significant color characteristic, and this experiment will evaluate
whether there is an improvement in selectivity concerning hue, both in monochromatic
signals (silhouettes) and in those with intensity variation (texture), and in what hue ranges
(those very present or not so present in the dataset).

4.3.4. Qualitative Analysis of Filter Response

Finally, to complete the comparative study, we used the color representation of the
feature maps of the fifth block output to qualitatively characterize the differences in the
types of features to which the filters respond. To achieve this, we analyzed the feature maps
of several randomly selected images from each dataset.

5. Experimental Results
5.1. Global Performance Analysis

Table 6 lists the accuracy of each model for the validation datasets. Analyzing accuracy,
we draw attention to the following results:

• All MLS variants improved accuracy compared to MO.
• The accuracy achieved in each dataset varied significantly: [64–75]% in Imagenette,

[20–29]% in Tiny Imagenet, [47–77]% in Birds and [25–57]% in Flowers.
• Among the architectures, Densenet achieved the highest accuracy in almost all datasets,

with few differences with respect to Resnet. VGG performed worse, especially in Birds
and Flowers.

• VGGLS achieved accuracy values similar to the original DensenetO and ResnetO.

Regarding the differences in accuracy between MO and MLS, we highlight that:

• The highest differences were produced in Birds and Flowers, independently of the
architecture.

• VGG had the highest relative difference in all datasets (42% trained on Flowers stands out).
• Densenet had the lowest relative difference (3%) on Tiny Imagenet.

In brief, LSC improved the accuracy of the architecture regardless of whether the
original architecture already had skip connections.

The computation time during the training of LSC variants was higher, although it
varies depending on the model and the number of classes in the dataset (see Table 7). For
VGG16, the LSC increment is 2.49% for Imagenette, 1.29% for Tiny Imagenet, 2.70% for
Birds, and 3.44% for Flowers. Regarding Densenet, the increments are 1.21% in Imagenette,
3.18% in Tiny Imagenet, 2.92% in Birds, and 4.55% in Flowers. In the case of Resnet50, the
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increments are 3.11% in Imagenette, 1.23% in Tiny Imagenet, 4.07% in Birds, and 4.86%
in Flowers. It is worth noting that these time variations are contingent on the model and
dataset; however, in no scenario does the time increase surpass 5%.

Table 6. Accuracy obtained by the MO and MLS architectures in the four datasets and absolute (abs.)
and relative (rel.) differences between them.

VGG Densenet Resnet
Accuracy Difference Accuracy Difference Accuracy Difference

Dataset o ls abs. rel. o ls abs. rel. o ls abs. rel.

IM 64% 74% 10% 14% 68% 75% 7% 9% 66% 70% 4% 6%
TI 20% 23% 3% 13% 28% 29% 1% 3% 24% 27% 3% 11%
BI 47% 62% 15% 24% 60% 77% 17% 22% 65% 74% 9% 12%
FL 25% 43% 18% 42% 48% 57% 9% 16% 45% 57% 12% 21%

IM: Imagenette; TI: Tiny Imagenet; BI: Birds; and FL: Flowers.

Table 7. Average training time per epoch (in seconds).

VGG Densenet Resnet
Dataset o ls o ls o ls

IM 40.137 41.138 33.011 33.051 32.111 33.110
TI 388.124 393.126 314.100 324.104 280.090 284.091
BI 185.128 190.132 140.098 145.101 123.085 128.089
FL 28.129 29.014 22.005 23.113 20.097 21.099

IM: Imagenette; TI: Tiny Imagenet; BI: Birds; and FL: Flowers.

5.2. Filter CSI Analysis

Figure 5 shows the distribution of the fifth block output filters per CSI interval. We
highlight that the distribution of filters per CSI interval varied with the dataset and was
quite similar for all the architectures.

Figure 5. Distribution of fifth block output filters per CSI interval.

Figure 6 shows the reduction in accuracy resulting from filter ablation in each of the
four CSI intervals. Analyzing, we highlight the following:

• In MO, the decrease in performance tended to be greater at high CSI intervals. In
VGGO and DensenetO, it varied between −1% and 21%, whereas in ResnetO, it did
not exceeded 2%. Of note were the M-L interval in VGGO for Imagenette (21%) and
the M-H and H intervals in DensenetO for Tiny Imagenet (14% and 16%, respectively).
There were three small negative values.
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• In MLS, the performance decrease also tended to be greater at higher CSI intervals. The
decrease varied between 1% and 17% in VGGLS, between 0% and 26% in DensenetLS ,
and between 0% and 12% in ResnetLS. Negative values were not observed.

Figure 6. Effect of ablation in MO,csi and MLS,csi variants per CSI interval (DAMX ,csi) for VGG (V),
Densenet (D), and Resnet (R) architectures on the four datasets.

The difference between the effects on the accuracy of filter ablation per CSI interval,
DMM,csi, is shown in Figure 7. The H intervals in VGG for Flowers (9%), in Densenet for
Imagenette and Birds (9%), and in Resnet for Tiny Imagenet (10%) stand out. Also note-
worthy are the negative values in the M-L intervals of VGG and Densenet for Imagenette
(-5%). The positive trend of DMM,csi as CSI increases is clearly shown in Figure 8, but the
correlation analysis between the accuracy variation and the number of filters per CSI shows
that the correlation is low in all cases (Table 8).

In summary, the models increased the filters in the L (or even M-L) interval; however,
the highest contribution to accuracy occurred in the H interval, supporting our hypothesis
that LSC increases color selectivity.

Figure 7. Difference between the effects of ablation in the MO,csi and MLS,csi variants per CSI interval
(DMM,csi) for VGG (V), Densenet (D), and Resnet (R) architectures on the four datasets.
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Figure 8. Relationship between DMM,csi and CSI interval.

Table 8. Pearson correlation between the percentage of filters per CSI interval and the accuracy
variation by ablation of filters.

MO MLS

VGG. 0.009 0.0582
Densenet −0.0933 −0.0940
Resnet 0.3465 0.1276

5.3. Color Hue Analysis

Table 9 shows the Pearson correlation, for each dataset, between the hue distribution of
pixels in the dataset and the number of filters in the model trained with the same dataset. It
is above 0.60 in three out of four datasets (Imagenette, Tiny Imagenette and Birds); however,
it is low in Flowers (between 0.17 and 0.32). In this case, the yellow-green range is the
most prevalent in the distribution of pixels in the dataset, whereas the orange-yellow range
contains more filters. This difference can be explained by the fact that the former is more
prevalent in the background and the latter in the figure.

Figures 9–11 show the most activated feature maps for each CSI interval for the
silhouette and texture datasets. We highlight the following results:

• There were no significant differences between the maps of the silhouette and texture
datasets.

• The models had maps with more defined silhouettes in the H interval.
• The difference between models was minimal in the L, M-L, and M-H intervals, except

for VGGLS and ResnetLS, which had maps with active areas in all hue ranges.
• In the H interval, all MLS variants had feature maps in more hue ranges than their MO

counterparts, especially in the red-magenta-blue range; in particular, VGGLS achieved
higher activation.

• In addition, in the H interval, VGGLS had maps in all hue ranges of the dataset,
whereas VGGO only had less active maps in the red and orange ranges. DensenetO
and DensenetLS had maps in the most frequent ranges of the Birds dataset but with
incomplete silhouettes except on the orange hue, where DensenetLS obtained a com-
plete figure. ResnetO has maps in all dataset hue ranges, like VGGLS, and ResnetLS,
except for the magenta to red range.

In summary, the models with LSC improved the response of the filters to the hue
ranges present in the dataset for both silhouettes and textures. The difference was higher in
the architecture without skip connections. On the other hand, the ability of models to detect
less present hue ranges varies. VGGLS is the model with the strongest ability to detect both
strongly and weakly present nuances. ResnetO and ResnetLS also detected them, but at a
lower activation level.
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Figure 9. Fifth block filters response in VGG variants to images with objects of interest of different
hues: (a) only silhouette; (b) with texture details.

Figure 10. Fifth block filters response in Densenet variants to images with objects of interest of
different hues: (a) only silhouette; (b) with texture details.



Sensors 2023, 23, 7582 16 of 19

Figure 11. Fifth block filters response in Resnet variants to images with objects of interest of different
hues: (a) only silhouette; (b) with texture details.

Table 9. Pearson correlation, for each dataset, between the hue distribution of pixels in the dataset
and the number of filters in the model trained with the same dataset.

VGG16 Densenet Resnet
MO MLS MO MLS MO MLS

Imagenette 0.67 0.64 0.85 0.84 0.61 0.60
Tiny Imagenet 0.88 0.87 0.79 0.77 0.75 0.83
Birds 0.75 0.79 0.63 0.71 0.75 0.77
Flowers 0.17 0.32 0.28 0.28 0.20 0.22

5.4. Qualitative Analysis of Filter Response

Figure 12 shows the color representation of the feature maps of the fifth block output
for four randomly selected images, one from each dataset. In the visual analysis, we
highlight the following points:

• The image from Imagenette (Figure 12a) has a strong contrast yellow-cyan between the
figure and the background. The hue histogram shows that the cyan range is the most
present in the image. Both variants of VGG get maps detecting the figure in yellow and
the background in cyan; however, VGGLS has maps of the orange areas in addition to
the yellow parachute areas. DensenetO only has maps with very specific edges of the
parachute or the silhouette in the low CSI intervals, whereas DensenetLS detects the
silhouette of the figure in the M-H interval of the red range, although the activation area
is larger than the corresponding figure in the image. ResnetO detects the background
but not the figure, and ResnetLS detects both the figure and the background.

• The image from Tiny Imagenet (Figure 12b) shows less contrast between the back-
ground and the figure. The hue histogram shows that the yellow-green range is the
most present. VGGO detects textures of the background in orange and yellow hues,
while VGGLS detects textures of both the figure and background areas in green ranges
as well. DensenetO and DensenetLS only have maps with very small areas of the figure



Sensors 2023, 23, 7582 17 of 19

in the predominant hues in the image: red, orange, yellow, or green; less in DensenetO
than in DensenetLS. ResnetO does not detect areas of the figure and ResnetLS does,
even the silhouette in the orange or yellow ranges.

• The image from Birds (Figure 12c) shows a hue histogram where the yellow and cyan
ranges are the highest, and green has a lower presence, representing areas in the
background. VGGO and VGGLS detect the silhouettes of the figure in their yellow
hues. In addition, VGGLS detects the texture. DensenetO only detects reduced areas
of the figure, whereas DensenetLS gets larger zones, particularly in the figure. ResnetO
has maps detecting background textures and ResnetLS also detects the silhouette and
background areas but with less definition than VGGLS.

• Finally, the image from Flowers (Figure 12d) shows a hue histogram with the yellow-
green range as the most relevant, followed by orange. VGGLS detects the full silhouettes
in the orange-yellow ranges and VGGO either the edges or only one of the flowers.
DensenetO, DensenetLS, and ResnetO detect reduced areas of the figure in the orange-
yellow ranges. ResnetLS, like VGGLS, detects the full silhouettes but with less detail.

Figure 12. Randomly selected images in each dataset as an example for the feature map visualization
according to the proposed methodology: (a) Imagenette; (b) Tiny Imagenet; (c) Birds 315 species; and
(d) 102 category flower.
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In cases with a higher contrast between the figure and background, such as in the
Imagenette parachute (cyan range in the background and orange range in the figure), the
improvements from LSC are smaller. However, in cases with less contrast (such as the Tiny
Imagenet case or the Flowers case), LSC detects more features in the figure. This effect
is higher for VGG and ResNet than for Densenet. This shows that LSC improves color
selectivity in complex patterns, where contrast is more difficult to achieve, and facilitates
feature extraction.

6. Conclusions and Future Work

In this paper, we focused on enhancing the color selectivity of CNN architectures.
Bio-inspired by the direct connection between the LGN and area V4, we presented an LSC
architecture that connects the first and last blocks of the feature extraction stage, which
allows the incorporation of low-level features, detected near the RGB input, to the definition
of the more abstract features used in the classification stage.

It has been demonstrated that our proposal improves the performance of the original
CNN architectures by enhancing color selectivity, regardless of whether they have skip
connections. On the one hand, this improvement correlates with CSI (the higher the CSI
interval, the higher the improvement). On the other, the size of the improvement is more
prominent in datasets where color is a more significant feature but the particular CSI
redistribution of filters depends exclusively on the characteristics of the training dataset.

However, not all improvements were due to color processing. Ablation studies show
that, although high CSI filters produce the most significant improvements, there are often
improvements due to low CSI filters. Therefore, although we focused on the analysis of
color selectivity in this study, the LSC connection probably also improves the treatment of
low saturated colors and achromatic textures. This point should be studied experimentally
using more controlled datasets.

Hue analysis was facilitated by the proposed qualitative methodology, which allows
us to group and sort the feature maps. Although the hue distribution of filters correlates
with that of pixels in the dataset, the LSC connection enables the setting of selective filters
for color hues that are poorly represented in the dataset.

To conclude, in this study, we analyzed how the filters of the last block of the feature
extraction stage improved their color selectivity when using LSC. In future studies, it would
be interesting to establish the relationship between color selectivity in the feature extraction
and classification stages, especially by analyzing the role of color selectivity in per-class
accuracy. On the other hand, the study of the ablation of filters by CSI and hue could be
used to improve performance and reduce computational costs.
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