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Abstract: Lung diseases are the third-leading cause of mortality in the world. Due to compromised
lung function, respiratory difficulties, and physiological complications, lung disease brought on by
toxic substances, pollution, infections, or smoking results in millions of deaths every year. Chest
X-ray images pose a challenge for classification due to their visual similarity, leading to confusion
among radiologists. To imitate those issues, we created an automated system with a large data hub
that contains 17 datasets of chest X-ray images for a total of 71,096, and we aim to classify ten different
disease classes. For combining various resources, our large datasets contain noise and annotations,
class imbalances, data redundancy, etc. We conducted several image pre-processing techniques to
eliminate noise and artifacts from images, such as resizing, de-annotation, CLAHE, and filtering. The
elastic deformation augmentation technique also generates a balanced dataset. Then, we developed
DeepChestGNN, a novel medical image classification model utilizing a deep convolutional neural
network (DCNN) to extract 100 significant deep features indicative of various lung diseases. This
model, incorporating Batch Normalization, MaxPooling, and Dropout layers, achieved a remarkable
99.74% accuracy in extensive trials. By combining graph neural networks (GNNs) with feedforward
layers, the architecture is very flexible when it comes to working with graph data for accurate lung
disease classification. This study highlights the significant impact of combining advanced research
with clinical application potential in diagnosing lung diseases, providing an optimal framework for
precise and efficient disease identification and classification.

Keywords: chest X-ray images; deep convolutional neural network; elastic deformation; feature
extraction; graph neural network; image pre-processing; lung disease

1. Introduction

Lung diseases comprise a variety of conditions that impact the functionality of the
lungs and respiratory system, which can lead to impaired lung function and breathing. A
wide range of bacterial, viral, or fungal infections can cause them [1]. Environmental factors
have been linked to various lung diseases, including asthma, mesothelioma, and lung
cancer, which affect respiratory health, including chronic obstructive pulmonary disease

Sensors 2024, 24, 2830. https://doi.org/10.3390/s24092830 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092830
https://doi.org/10.3390/s24092830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0009-9660-0396
https://orcid.org/0009-0005-8921-6493
https://orcid.org/0009-0002-4818-8383
https://orcid.org/0000-0002-6002-9097
https://orcid.org/0000-0002-0787-5403
https://orcid.org/0000-0002-0132-1717
https://orcid.org/0000-0002-6173-0483
https://orcid.org/0000-0001-8236-5959
https://orcid.org/0000-0002-3114-8978
https://orcid.org/0000-0003-2822-0657
https://doi.org/10.3390/s24092830
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092830?type=check_update&version=1


Sensors 2024, 24, 2830 2 of 29

(COPD) and infections such as influenza, pneumonia, and tuberculosis [2]. Lung disease
causes persistent shortness of breath, mucus production, coughing, blood coughing, close
contact, sneezing, coughing, respiratory droplets, and unexplained chest pain lasting over
a month [3]. These symptoms are early indicators of respiratory problems and underscore
the necessity of medical evaluation and care. According to the World Health Organization
(WHO), 3.23 million people died from COPD in 2019. As a result, it is the seventh leading
cause of death worldwide. In addition, over 70% of COPD cases in high-income countries
are caused by smoking, while 30–40% in low-income countries are caused by household air
pollution [4].

Nowadays, COVID-19, a concerning lung disease, leads to fluid-filled air sacs, respira-
tory infections, and cold-like symptoms [5]. Pneumonia fills the alveoli with pus or fluid,
pneumothorax causes lung collapse with air escape, and effusion is excess fluid outside the
lung [6]. On the other hand, pulmonary fibrosis results from lung damage, tuberculosis
creates lung cavities, and lung opacity indicates damaged areas. Lung masses and nodules
are irregular growths like tumors [5]. Screening for lung abnormalities is necessary to
detect this common lung disease. Imaging techniques such as chest X-rays, computed
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)
scans, and echocardiograms are essential for diagnosing lung diseases [7]. Chest X-rays
are cost-effective, user-friendly, and faster than CT scans and other diagnostic techniques,
providing extensive patient information [8]. Medical professionals widely use X-rays to
diagnose various conditions, including fractures, cancer, pneumonia, and dental issues.
They provide insights into lung structure and function, aiding early detection and effective
treatment [9]. Also, radiologists can make subjective assessment errors or cannot detect
disease easily, causing unclear and abnormal interference in chest radiographic images. As
a result, the patient suffers from lengthy diagnostic procedures and increased radiation
exposure. Addressing these challenges and enhancing clinical diagnosis, we employed an
automated system for chest radiographic images, which can efficiently diagnose respiratory
issues. Numerous recently developed automated systems were examined in our literature
review [5,9–21]. Challenges were encountered by those systems in data handling during
image processing and optimal feature extraction, complicated quantification, and high
runtime complexity issues in classifying chest X-ray images. Furthermore, the existing
automated system, with such an extensive, large data hub with a significant ten-type class
classification on chest X-rays, was not utilized. Additionally, their computational time is
high due to handling numerous features, leading to time complexity issues.

In this study, we established one of the most extensive publicly available datasets [22–38],
containing 17 datasets of chest X-ray images sourced from GitHub, Kaggle, Mendeley Data,
and the National Institutes of Health (NIH) Clinical Centre. The ten disease categories in
the large data hub are normal, effusion, pulmonary fibrosis, lung opacity, mass, nodule,
COVID-19, pneumonia, pneumothorax, and tuberculosis. A deep convolutional neural
network (DCNN) was proposed to analyze images and extract optimal deep features,
followed by the proposal of a graph neural network (GNN) model named DeepChestGNN
employing the deep features and optimizing the model, exhibiting improved accuracy
without compromising efficiency in categorization, making it more time-effective than the
base model. Various image pre-processing techniques were employed, including resizing,
denoising, CLAHE, de-annotation, and filtering. Integration of advanced image enhance-
ment and robust machine learning techniques led to superior performance in lung issue
diagnosis. Additionally, elastic deformation was utilized for dataset augmentation, leverag-
ing a substantial dataset of 70,000 images to enhance learning. The feature extractor model,
DCNN, effectively extracted 100 crucial details using specialized layers and techniques.
The proposed DeepChestGNN also went through a lot of testing using different parameters
in the ablation study, which made its structure and learning process better. Our model has
a well-organized structure with batch normalization, MaxPooling, and Dropout for regular-
ization, finding a better balance between being expressive and not overfitting. This made
it possible to classify the large hub of chest X-ray images in a lot less time with low time
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complexity. Comprehensive quality control measures ensured accurate disease detection
compared to other methods. Achieving outstanding performance involved extensive data
preparation, meticulous model design, and fine-tuning, resulting in clear, standardized
images with enhanced details facilitating accurate diagnosis.

The primary contributions of this research can be summarized as follows:

• In this study, we have collected around 17 raw chest X-ray datasets from different
sources and combined them into a single comprehensive dataset. Images vary in
quality since they are compiled from several different sources. Consequently, the final
dataset comprises ten different lung disease images.

• Effective image pre-processing techniques improve lung disease classification accuracy
by reducing noise and artifacts. In this regard, we resized all images to the same
pixel. The de-annotation method improves images by removing annotations and
extraneous text, and the enhancement method enhances image properties. We used
elastic deformation methods to add random distortions to the data to balance the
distribution of underrepresented class images.

• We have created a novel DCNN architecture that extracts the 100 prominent deep
features from X-ray images through a strategic architecture incorporating batch nor-
malization, MaxPooling, and dropout layers. Its deep structure captures intricate
patterns, crucial for advanced medical image analysis, highlighting its efficacy in
feature representation.

• A proposed DeepChestGNN is built on an efficient bi-layered architecture incorpo-
rating graph convolutional and feedforward layers. This architecture, informed by
rigorous ablation examinations and fine-tuned through hyperparameter research,
demonstrates GNN’s flexibility to graph data. These layers were added to fulfill the
difficulty of identifying and classifying lung diseases.

2. Literature Review

Several studies have been conducted in recent years to diagnose lung diseases based
on X-ray images using various deep learning and machine learning techniques. So, we
reviewed several papers where researchers explored different classification methods using
X-ray images. However, all the studies are demonstrated in this section.

Sanida et al. [10] introduced a new deep learning (DL) framework for lung disease
diagnosis using chest X-ray images (21,165 chest X-ray images). They employed the mod-
ified VGG19 model for multi-class classification (fibrosis, opacity, tuberculosis, normal,
viral pneumonia, and COVID-19 pneumonia) and achieved an accuracy of 98.88%. How-
ever, their main limitations were the lack of noise reduction, overlay text removal from
images, and a limited number of datasets. Meanwhile, Abubakar et al. [11] discussed
using medical imaging techniques and machine learning methods for early COVID-19
diagnosis using three CT image datasets (328 images of common pneumonia, 1972 images
of COVID-19, and 1608 images of healthy images). They extracted features using eight
deep learning models. The combination of the histogram of oriented gradients (HOG) and
deep learning features, specifically VGG-16, achieved the highest overall accuracy of 99.4%
with the SVM classifier for multi-class classification. The absence of image pre-processing,
including noise reduction and text overlay removal, and the limited number of images
were noted limitations.

In another work, Kufel et al. [12] utilized a large dataset named NIH ChestX-ray
14 along with 112,120 images. Their model employed EfficientNet for feature extraction,
using transfer learning techniques. This multi-class classification method obtained an
accuracy of 84.28% in classifying fifteen chest pathology classes. The absence of image
pre-processing in this work is a significant limitation that results in reduced multi-class
classification accuracy. To address multi-class classification problems, Li et al. [13] utilized
the same ChestX-Ray 14 and CheXpert medical image classification datasets. They used
a Multi-Level Residual Feature Fusion Network (MLRFNet) classifier and a Res2Net50
feature extractor to achieve such great results. The task involves categorizing images
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into seven different classes. The ChestX-Ray 14 dataset achieved an accuracy of 85.30%,
and the CheXpert dataset achieved 90.40% accuracy. The primary limitations include the
lack of image pre-processing, the absence of information on optimal features, and low
accuracy in multi-class classification. Meanwhile, Farhan and his colleagues [14] looked
into how to diagnose COVID-19 pneumonia using the COVID-19 Radiography Database
(C19RD), which contains 2905 images, and the Chest X-ray Images for Pneumonia (CXIP)
dataset, consisting of 5856 images. In particular, they used the ResNet50 feature extractor
and the Hybrid Deep Learning Algorithm (HDLA-DNN) to differentiate between disease
classes (e.g., non-COVID-19 pneumonia or COVID-19 pneumonia) and healthy classes. The
outcomes are noteworthy, showcasing an impressive accuracy of 98.35% and 98.99% for the
C19RD and CXIP datasets, respectively. Nevertheless, the primary limitation of this paper
was the lack of multi-class classifications, as it only performed binary class classification.
Nahiduzzaman and his co-workers [15] conducted research using around 29,871 images of
the ChestX-Ray14 dataset. They applied the extreme learning machine algorithm (ELM) as
a feature extractor within the CNN-ELM algorithm. The study aimed to classify 17 lung
diseases, including COVID-19 and tuberculosis, with an overall accuracy of 90.92%. It
achieved an accuracy of 99.37% for COVID-19 and 99.98% for tuberculosis. The study’s
limitations include a lack of proper augmentation technique, absence of information on
optimal features, and low accuracy in multi-class classification.

Moreover, another study by Jin et al. [16] worked with a sizable ChestX-ray 14 dataset
that included 112,120 images. They used DenseNet121 to extract features and built the
Cross-Modal Deep Metric Learning Generalized Zero-Shot Learning (CM-DML-GZSL)
classifier, which combines graph convolutional networks (GCNs) and 3D-CNN to classify
images by disease. Despite a complex methodology, the study attained a classification
accuracy of 80%, with a significant limitation being low accuracy in multi-class classification
and limited class classifications. Even though Tang and his co-workers [17] used two
substantial datasets, a chest X-ray (CXR) dataset comprising 6939 images and a CT dataset
containing a notable 85,725 images, a Node-Self Convolution Graph Convolutional Network
(NSCGCN) and a DenseNet201 feature extractor were employed to classify diseases into
two classes: infection and normal. Their method obtained excellent accuracy rates of 97.09%
for the CXR dataset and 99.22% for the CT dataset. Nevertheless, the limitations were the
lack of comprehensive image pre-processing, which might help improve feature extraction
and model performance. In a study by Shamrat et al. [5], 85,105 chest X-ray images from
diverse sources were utilized, covering ten classification classes. They employed eight pre-
trained CNN models: AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet50,
DenseNet121, and EfficientNetB7. The model achieved accuracies of 92.95% and 98.89% for
VGG16 and LungNet22, respectively. Nevertheless, the study emphasizes the limitation of
the absence of optimal feature extraction.

In another study, Guail et al. [9] focused on leveraging a chest X-ray dataset comprising
5856 images from Kaggle. First, they used CNN to extract features. Then, they employed
a Principal Neighbor Aggregation-Based Graph Convolutional Network (PNA-GCN) for
binary classification tasks, such as distinguishing between people who had pneumonia
and those who were healthy. The outcomes of this study demonstrated a commendable
accuracy rate of 97.79%. However, there are several notable limitations, such as a limited
number of images, a need for proper augmentation techniques, and limited class classifi-
cations. Furthermore, Ragab et al. [18] used 6310 chest X-ray images from Kaggle. They
initially extracted CNN features and then employed the Capsule Neural Network (Cap-
sNet) model for multi-class classification, including pneumonia, average, and COVID-19.
They achieved an accuracy of 86.6% for the standard class, 94% for the pneumonia class,
and 89% for the COVID-19 class. The primary limitations of this study encompass limited
images, no proper augmentation, a lack of optimal feature information, and no multi-class
classification. Liang et al. [19] concentrated on binary classification using a dataset of 399
COVID-19 and 400 normal images. The study employed a 3D-CNN for feature extraction
and utilized GCN as the classifier, achieving an impressive accuracy of 98.5%. Neverthe-
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less, this study has a limited number of images, no proper augmentation technique, no
optimal feature technique, and no multi-class classification. Moreover, Javaheri et al. [20]
leveraged an expansive dataset comprising 16,750 slices from various CT scan images to
develop CovidCTNet, an open-source framework to enhance the accuracy of CT imaging
detection. The model achieved notable results with 93.33% accuracy in binary classification
(distinguishing between COVID-19 and non-COVID-19 cases) and 86.66% accuracy in
multi-class classification (including COVID-19, CAP, and control lungs). However, the
study’s primary limitations lie in the absence of image pre-processing and the relatively
lower accuracy observed in multi-class classification tasks. Alshazly et al. [21] introduced
novel deep learning methodologies for automated COVID-19 detection, leveraging two
distinct CT image collections: the SARS-CoV-2 CT Scan dataset (comprising 2482 CT scans)
and the COVID-19-CT dataset (consisting of 746 CT images). Among the models evaluated,
ResNet101 demonstrated superior performance across various evaluation metrics on the
SARS-CoV-2 CT dataset, achieving an impressive average accuracy and F1-score of 99.4%.
However, a notable drawback in the study is the lack of image pre-processing, such as
noise reduction and text overlay removal, compounded by the relatively small dataset size.

After reviewing all the literature, it can be noted that there is a scarcity of applying
proper image pre-processing, augmentation techniques, and optimal feature extraction
to the large data hub. Moreover, their model obtained a low accuracy in multi-class
classification and a limited number of class categories. However, Table 11 shows all the
limitations. Since their work has several significant limitations, we have addressed them by
introducing various advanced methods to improve accuracy in terms of image classification
significantly. For a better understanding, all the processes are described in detail below.

3. Materials and Methods

This study aims to introduce an automated system for categorizing chest X-rays ac-
cording to different diseases. In phase-1, initially, we collected data from various resources;
in phase-2, we addressed ten different diseases on chest x-rays; in phase-3, we performed
different image pre-processing techniques to resize images with the same pixels, remove
distracting text and noise, and improve contrast. We used elastic deformation to improve
well-balanced datasets; in phase-4, we suggested a DCNN model that pulls out the most
important deep features; in phase-5, we used graph structure to make a good dataset for
the model; and in phase-6, we suggested a DeepChestGNN model to diagnose diseases.
Figure 1 visually represents the main workflow diagram according to phase.

Figure 1. Main workflow diagram.
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3.1. Dataset Description

In this paper, we have collected numerous chest X-ray images from multiple sources
and created one of the most extensive publicly available datasets. After collecting them
from various database sources, we merged them to create a large data hub for classifying
diseases. As part of a collective dataset, our data hub comprises 17 chest X-ray images,
totaling 71,096. Table 1 presents the compiled information corresponding to the data
sources collected for each class. The dataset consists of ten chest X-ray images, each
characterized by a specific number of images. Notably, the “Normal” class contains
13,953 images and is collected from labeled datasets [22,23,26,27,29,36]. Additionally,
the “Tuberculosis” class includes 5242 images and is sourced from datasets [22,30,32,36],
while “Lung Opacity” consists of 7236 images drawn from datasets [24,29]. A total of 11,566
images from datasets [24,26,27,29,31] make up the “COVID-19” class, and 11,683 images
from datasets [23,24,26,32] make up “Pneumonia”. The “Pneumothorax” class comprises
6148 images gathered from datasets [25,33,37], and “Nodules” includes 4131 images from
datasets [25,28,38]. “Fibrosis” contains 2821 images and is collected from datasets [25,28,32],
while “Effusion” encompasses 5557 images sourced from datasets [25,28,30,35]. Last but
not least, 2903 images from datasets [25,28] represent the “Mass” class. The combined
dataset consists of ten classes of images, as illustrated in Figure 2.

Table 1. The number of images corresponding to the ten classes of the seventeen datasets.

No. Name of Class Number of Images References

1 Normal 13,953 [22,23,26,27,29,36]
2 Tuberculosis 5242 [22,30,32,36]
3 Lung Opacity 7212 [24,29]
4 COVID-19 11,566 [24,26,27,29,31]
5 Pneumonia 11,683 [23,24,26,32]
6 Pneumothorax 6111 [25,33,37]
7 Nodules 4109 [25,28,38]
8 Fibrosis 2798 [25,28,32]
9 Effusion 5527 [25,28,35,35]
10 Mass 2895 [25,28]

Total number of images 71,096 [22–38]

Figure 2. Images of ten different classes.
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3.2. Image Preprocessing

Image preprocessing of medical images is crucial before adding images to a neural
network, impacting accuracy significantly [39,40]. The proposed image pre-processing
technique stood out from existing methods. Sanida et al. [10], Abubakar et al. [11], and
Ragab et al. [18] mainly focused on resizing images. Guail et al. [9] used augmentation,
and Nahiduzzaman et al. [15] emphasized resizing and normalization, often insufficient.
Farhan et al. [14] applied the Wiener filter, which was effective for noise reduction but
struggled with detail preservation and adaptability. Motivated by their methods, we
used different approaches that include several steps: denoising, resizing, de-annotation,
enhancement, and filter application. This process removes artifacts, minimizes noise, and
emphasizes significant objects.

3.2.1. Image Resizing

At first, all the images were resized to 224 × 224 pixels since the included images have
different pixel dimensions. This standardization was necessary due to variations in pixel
dimensions across the included images, as we integrated extensive datasets from diverse
sources [41].

3.2.2. Image Denoising

Due to the limitations of imaging sensors and the circumstances of the surround-
ing environment, noise is a problem that is impossible to avoid in digital images. To
address this problem, we developed a total variation (TV) denoising algorithm called
the denoise_tv_chambolle technique, which is based on the idea that images containing
erroneous information, which may be incorrect, have large total variations [42]. a denotes
the predicted image, a ∈ Ω ∈ R, and the regularization term

∫
Ω |∆a(x)| dx denotes the

prior constraint of image a, which is used for image denoising. The whole equation is
defined as:

TV(a, Ω) =
∫

Ω
|∆a(x)| dx (1)

Figure 3 illustrates the output images after applying the denoising images. The power
of total variation regularization is harnessed in this method to reduce noise and improve
image quality without altering critical features like edges and structures [43].

Figure 3. Output images after applying the denoising technique.



Sensors 2024, 24, 2830 8 of 29

3.2.3. De-annotation

Image annotations can be challenging in certain datasets, especially if they are un-
necessary or hinder research. Image text eraser removes text from images and replaces it
with a natural backdrop, leaving non-text parts alone [5]. Figure 4 depicts the results after
applying the de-annotation method.

Figure 4. Output after applying the de-annotation method.

Our medical image de-annotation preprocessing was performed using approaches
such as CV2 and Keras-OCR. The Keras-OCR algorithm is a pre-trained OCR model
that automatically removes text from images without needing a specific model [44]. It
utilizes a mask on bounding boxes to indicate the particular region for inpainting, thereby
maintaining visual continuity in medical imaging. The algorithm performs well when text
boxes are close to other objects. Nevertheless, it may perform poorly when a text box is
close to other objects [45].

3.2.4. Image Enhancement

The contrast of our images was enhanced by the utilization of contrast-limited adaptive
Histogram Equalization (CLAHE), effectively mitigating the issue of noise amplification, a
prevalent limitation seen in traditional histogram equalization methods [5]. The CLAHE
technique was designed to increase the quality of low-contrast medical images [46]. The
amplification in CLAHE is restricted by performing a clipping operation on the histogram
at a user-defined value known as the clip limit [47]. The adjustment of the clipping level
determines the extent to which noise within the histogram is subjected to smoothing,
influencing the degree of contrast enhancement [48]. A color version of CLAHE was
employed in our study. We maintained the tile grid size at (8 × 8) and the clipping limit at
3.0 [49]. The steps for applying CLAHE are as follows:

• Initially, the RGB image was transformed into an LAB image.
• Subsequently, the CLAHE approach was employed to enhance the L channel.
• Next, the enhanced L channel should be paired with the A and B channels to obtain

an enhanced LAB image.
• Eventually, the improved LAB image was converted to revert to its original form as

the enhanced RGB image.

The CLAHE method partitions an image of size P × P into blocks of size p × p. Each
block’s histogram is computed, and a threshold, TL = Lnorm × X×Y

G , is set, with TL = 0.002.

Pixels of grayscale level K exceeding TL are clipped, with an average of Lprune
G pixels
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distributed across levels. The redistribution is Ldist =
G

Lresidual
post-distribution, and the

histogram is equalized. Artificial edges are mitigated via bi-linear interpolation [50].

Iadj(q, r) =
(Z − 1)

PQ ∑
k

fk (2)

Iadj(q, r) refers to the adjusted pixel intensity. From normalization, it includes the maximum
intensity (Z − 1) throughout the image’s domain size PQ and the frequencies of various
intensity levels k. Figure 5 illustrates how the contrast enhancement maintains the image
elements’ suitability.

Figure 5. Outputs of applying CLAHE on de-annotation images: results using Clip Limit (3) &
TileGridSize (8, 8).

3.2.5. Filter Application

Filtering techniques are essential in enhancing X-ray image features, optimizing them
for training, validation, and testing objectives. Several image enhancement techniques
utilize median filters to enhance the information in images [51], and in this instance,
we applied the ‘Green Fire Blue’ filter, which offered a distinct visual perspective by
emphasizing specific image attributes that were previously marginalized or muted [5].
Figure 6 illustrates the way the filtering method is used on the clear and enhanced images.

Figure 6. Output of using the Green Fire Blue filter on the CLAHE images.

After addressing all the noise, challenges, and unwanted text in images, preprocessing
techniques play a crucial role in substantially enhancing the quality and interpretability of
medical images. Figure 7 illustrates the result of all the preprocessing steps for an image,
including de-noising, annotation removal, CLAHE, and fitting.
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Figure 7. Total image pre-processing methods.

3.3. Elastic Deformation Augmentation

Traditional data augmentation techniques, such as rotation, flipping, and rescaling,
have proven ineffective in capturing biological variability in medical image data. This
limitation arises from the fact that the shapes of biological tissues experience elastic defor-
mations when subjected to compression from adjacent organs [52]. This method uses an
external force to increase the elasticity of materials, thereby boosting their performance and
longevity. It may replicate the tissue’s appearance and represent changes in form [53]. Two
matrices are used in the elasticity deformation technique; Ex and Ey are designed to record
the distances between each pixel along the x-axis and y-axis, respectively.

First, each point is either moved randomly for a distance of d or it remains unmoved.

Exij, Eyij ∈ {−d, 0, d} (3)

After that, each of the two matrices, two one-dimensional Gaussian kernels of size k
(k should be an odd number), and standard deviation σ are added [48]. Each row of the
matrices Ex and Ey is filtered with the initial Gaussian kernel Gx:

Ax = α ∗ e−(x−(k−1)/2)2/(2∗σ2) (4)

where x = 0, . . . , k − 1 and α is the scale factor chosen so that Σx Gx = 1. Then every
column of Ex and Ey is filtered with the second Gaussian kernel Gy:

Ay = α ∗ e−(x−(k−1)/2)2/(2∗σ2) (5)

where y = 0, . . . , k − 1 and α is the scale factor chosen so that Σx Gx = 1. Finally, each pixel
of the original image is moved according to the distances in Ex and Ey. Data augmentation
was accomplished through the use of various combinations of k and σ. Figure 8 shows the
outputs of the augmentation methods.

Figure 8. (a) Reference image and (b) twelve augmented images after applying the elastic deforma-
tion method.
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Regardless of the application’s completion of these various processing techniques,
every class now contains 7000 images. Table 2 shows the total number of 70,000 images in
the dataset.

Table 2. All of the characteristics of the final dataset (after image pre-processing).

Name of Elements Properties

Number of Images 70,000
Number of Classes 10

Enhancement and Color Grading CLAHE, Green Fire Blue
Augmentation Techniques Elastic Deformation

Normal 7000
Tuberculosis 7000

Lung Opacity 7000
COVID-19 7000
Pneumonia 7000

Pneumothorax 7000
Nodules 7000
Fibrosis 7000
Effusion 7000

Mass 7000

3.4. Proposed Model
3.4.1. Feature Extraction Model

Feature extraction was crucial for identifying key attributes within medical image
data, significantly enhancing the performance of the deep learning model, specifically
designed as a CNN architecture. The CNN architecture, including convolutions, batch nor-
malization, and maximum pooling, was created to handle complexity and avoid overfitting,
enhancing model generalization [54]. Our DCNN architecture introduces unique features
that distinguish it from existing models. We have improved our architecture compared to
other CNNs [9], modified VGG19 [10], EfficientNet [12], CNN-ELM [15], DenseNet121 [16],
and DenseNet201 [17]. This is because it uses new connection patterns and optimization
strategies, which makes it better at many tasks and datasets. In this study, we employed a
meticulously designed DCNN that is specifically engineered to extract features from X-ray
images with high efficiency. The architecture of the DCNN comprises four Convolution
Blocks (Conv_Block), each incorporating convolutional, batch normalization, and rectified
linear unit (ReLU) activation layers [55]. The feature extraction process within the DCNN
follows a systematic flow:

Zi(x) = Ai−1 ∗ W + bi (6)

Ai = fpool(Zi) (7)

Within each feature extraction module, Z denotes the linear output of the convolutional
layer, A represents the activation output of the preceding layer, W encompasses the weights
associated with the convolutional kernel, b signifies the bias of the convolutional layer, and
fpool denotes the pooling function. Following the convolutional computation, the resulting
features undergo ReLU activation before proceeding to the subsequent layer of connected
units. This process iterates twice before the features are finally passed through the pooling
layer for further processing.

Additionally, in the DCNN architecture, a particular layer (outer ReLU layer) is strate-
gically chosen for feature extraction [56]. The output from this layer is subsequently fed into
the GNN classifier for accurate classification. Through the synergistic integration of convo-
lutional and pooling layers, the DCNN progressively abstracts and comprehends high-level
features inherent in the data [57]. This process enables a hierarchical understanding and
extraction of intricate patterns essential for accurate classification tasks. The model’s gen-
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eralization capabilities were significantly boosted through optimization using the Adam
method across 100 epochs, a learning rate of 0.001, and a dropout rate of 0.50, especially
through data augmentation. One of the notable outcomes was the model’s adeptness in
identifying and extracting vital information, notably from the layer with the second-lowest
density, housing 100 neurons, essential features imperative for detecting lung diseases. The
DCNN model, depicted in Figure 9, showcases the process of feature extraction.

Figure 9. DCNN feature extraction module.

The model shown in Table 3 has four convolutional layers, each with varying filter
counts (8, 16, 32, and 64). These layers use ReLU activation and batch normalization. Max-
pooling layers with a pool size of 2 × 2 follow each convolutional layer. The compressed
output is fed into two compact layers; the first layer consists of 128 features and a dropout,
while the subsequent layer consists of 100 features. ReLU activation, batch normalization,
and dropout regularization are seen in both dense layers.

Table 3. Feature extraction model layout.

Layers Parameters
Activation Function,
Batch Normalization

Function, Dropout
Output Shape

Conv2D_1 Kernel Size: 3 × 3 ReLU, Yes, No (222, 222, 8)
MaxPooling2D_1 Kernel Size: 2 × 2 None (111, 111, 8)

Conv2D_2 Kernel Size: 3 × 3 ReLU, Yes, No (109, 109, 16)
MaxPooling2D_2 Kernel Size: 2 × 2 None (54, 54, 16)

Conv2D_3 Kernel Size: 3 × 3 ReLU, Yes, No (52, 52, 32)
MaxPooling2D_3 Kernel Size: 2 × 2 None (26, 26, 32)

Conv2D_4 Kernel Size: 3 × 3 ReLU, Yes, No (26, 26, 64)
MaxPooling2D_4 Kernel Size: 2 × 2 None (12, 12, 64)

Flatten Layer None None (10,816)
Dense_1 None ReLU, Yes, Yes (128)
Dense_2 None ReLU, Yes, Yes (100)

3.4.2. GNN Model

The GNN framework is a deep learning method for graph-based data. It uses deep
learning to look at graph data by capturing each node’s local structure and features [58].
These models are trainable and generate highly informative node representations, demon-
strating substantial success in tackling machine learning challenges associated with graph
data. The fundamental aim of GNN architecture is to extract knowledge-rich embeddings
containing pertinent information from the local neighborhood [59]. To predict lung dis-
eases, a GNN model amalgamates a five-layer feedforward network (FFN) with a two-layer
GCN [60]. The initial layer integrates batch normalization to ensure stable performance
and counteract overfitting. Additionally, to bolster model generalization and avert ex-
cessive reliance on individual nodes, a dropout rate of 0.2 is introduced in the second
layer. Addressing the issue of ‘vanishing gradients’, common in deep neural networks,
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the third layer employs a dense architecture activated by ReLU [61]. The culmination of
these elements guarantees the development of a robust and efficient predictive model for
lung diseases.

3.4.3. Proposed GNN Architecture

In the context of a graph G = (V, E), where V represents the set of nodes and E
represents the set of edges, an attributed graph encompasses two distinct forms of in-
formation [58]. The first type is the structure information, which characterizes the in-
terconnections between nodes. The second type is the node feature information, which
details the characteristics associated with each node. The input of the graph G = V, E is
graph_info = (node_features, edges, edge_weights), where the nodes are represented by
xv and edge weights wij indicate the link strength between nodes i and j [62].

r(0)v = FFN_pre(xv) (8)

The initial representation of a node v, denoted as r(0)v , is based on its feature xv. This
representation is processed using an FFN called FFN_pre for preprocessing.

r(k+1)
v = GCNk(r

(k)
v AGGREGATE(r(k)v , Mv)) + r(k)v (9)

r(k+1)
v = GCNk(r

(k)
v )UPDATE(r(k)v , Mv) (10)

The GCNk represents the graph convolutional layer at a specific depth k. The function
AGGREGATE combines the embeddings of neighboring nodes, Mv for a given node.
Addition signifies a skip connection in the network. The variable r(k+1)

v represents the
revised representation of node v at iteration (k+ 1). The previous representation at iteration
is denoted as r(k)v . The function UPDATE merges the previous representation with a
message mv in order to generate the updated representation.

zv = FFN_post(r(k)v ) (11)

The variable k is used to denote the number of graph convolutional layers in the
model. The final embedding of node v is denoted as zv, whereas the FFN utilized for
post-processing is referred to as FFN_post.

Z = softmax(B · ReLU(AY0)Y1) (12)

The equation shows a GNN layer, where B is the normalized adjacency matrix, X is
made of node properties, Y0 and Y1, and its weight matrices. Combining the traits of nodes
with the structure of the graph, the equation puts them through nonlinear transformations
to make predictions or embeddings. The ReLU function adds nonlinearity, while the
so f tmax function assures that the output values are between 0 and 1, which is commonly
employed for classification tasks.

The GNN model selects neighboring nodes and combines their traits with aggregation
functions. The target node is identified and passed through an FFN block, with the output
forwarded to the GCN layer, which updates nodes and transmits messages to another
convolution layer. Each layer of the model encompasses crucial components: activation
function, activation type, recurrent activation, hidden unit, and dropout rate. Experiments
showed that the best design for the model is a five-block FFN that subsequently predicts
the result in the dense layer by utilizing the output from the two GCN layers, which
effectively captures the complex dependencies and interactions within the graph structure.
Node embedding data produce a metric from the dense layer, facilitating model outcome
computation. The ReLU is employed as the activation function. The CONCAT combination
type handles temporal information in sequential data, enhancing the model’s capabilities.
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The architectural design of the GNN model is depicted in Figure 10, guiding the model’s
operation and development through experiments with varied dataset configurations. The
model is configured with two hidden layers containing 64 units, enabling intricate data rep-
resentation analysis and pattern discernment. The model undergoes training for 100 epochs,
utilizing the Adam optimizer with a learning rate of 0.0001. Batches of size 64 and a dropout
rate of 0.2 are applied during the training process.

Figure 10. Proposed model (DeepChestGNN) architecture.

3.5. Dataset Split

After obtaining the preprocessed chest X-ray images, we divided them into training
and testing sets with a 70:30 ratio. The dataset comprises 70,000 images depicting ten
different diseases, divided into a training set of 49,000 images used for fine-tuning and
training GNN models. The test set consists of 21,000 images to evaluate the model’s
performance and generalization ability to new data.

3.6. Experimental Setup

In our experimental setup, we conducted our research on a desktop computer with
the following specifications. This study operates on an Intel(R) Core(TM) i5-8400 CPU
running at 2.80 GHz (Intel, Santa Clara, CA, USA), equipped with 16.0 GB of RAM. The
system operates on a 64-bit operating system with an x64-based processor architecture.
To accelerate computational tasks, an NVIDIA GeForce GTX 1660 GPU (NVIDIA, Santa
Clara, CA, USA) is employed. All experiments are conducted within the Jupyter Notebook
environment using version 6.4.12. In some cases, we used CollabPro as a platform for
running experiments when we faced difficulties with computation.

4. Result and Discussion
4.1. Evaluation Metrics

This section used a set of evaluation metrics to determine how well the models work.
The confusion matrix is an important part of this evaluation because it gives important
numbers like true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) [62]. TP means that the positive class prediction was correct, while FP means that
the positive class prediction was wrong. FN stands for the wrong identification of the
negative class, and TN for the correct identification of the negative class. The model’s
accuracy, precision, recall, and F1-score are evaluated based on these values, with precision
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indicating the model’s ability to differentiate between correctly classified samples and those
in the positive class. Furthermore, precision and recall are combined to derive the F1-Score,
a comprehensive metric that assesses the model’s overall efficiency. In contrast, accuracy
captures the total number of samples correctly categorized across all classes [63]. When the
prediction is sufficient across all four categories of the confusion matrix (i.e., TP, TN, FP,
and FN), the Matthews correlation coefficient (MCC) produces excellent results, making
it a more reliable statistical measure [64]. We computed precision, recall, F1-score, and
accuracy using Equations (13)–(17) to assess the performance for chest X-ray diseases.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 − Score = 2 ∗ Recall ∗ Precision
Recall + Precision

(15)

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

MCC =
(TP × TN − FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(17)

4.2. Ablation Study

Ablation experiments optimized the proposed model by testing feature reconstruction
algorithms, extractors, GNN layers, FFN blocks, and model hyperparameters shown in
Tables 4 and 5. These experiments fine-tuned the model’s settings for optimal performance
in various scenarios and configurations [48].

Table 4. Ablation study regarding GNN layer and FFN block.

Ablation Study 1: Altering the GNN Layer

Configuration No. GNN Layer Test Accuracy (%) Finding

1 1 95.38 Accuracy dropped
2 2 97.35 Highest Accuracy
3 3 96.67 Accuracy dropped

Ablation Study 2: Altering the FFN Block

Configuration No. FFN Block Test Accuracy (%) Finding

1 2 96.27 Accuracy dropped
2 3 97.35 Previous Accuracy
3 4 97.13 Accuracy dropped
4 5 98.79 Highest Accuracy
5 6 97.48 Accuracy Improved

In Ablation Study 1, our investigation into GNN layer depth revealed a delicate
balance between model complexity and performance. A single GNN layer achieved a
precision rate of 95.38%, while a dual-layered structure reached a high of 97.35%. However,
a third GNN layer slightly decreased accuracy to 96.67%. The optimal balance was found
with a bi-layered GNN architecture. In Ablation Study 2, FFN block configurations were
examined, and subtle performance variations were showcased. The accuracy rate increased
from 96.27% in a two-block configuration to 97.35% with three blocks. The five-block
configuration demonstrated peak performance at 98.79%, emphasizing the effectiveness of
a quintet FFN block setup in maximizing model performance.
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Table 5. Ablation study regarding model hyperparameters and loss function.

Ablation Study 3: Altering the Batch Size

Configuration No. Batch Size Test Accuracy (%) Finding

1 16 98.13 Accuracy dropped
2 32 98.79 Previous Accuracy
3 64 99.06 Highest Accuracy
4 128 98.42 Accuracy dropped

Ablation Study 4: Altering the Dropout Rate

Configuration No. Dropout rate Test Accuracy (%) Finding

1 0.1 98.29 Accuracy dropped
2 0.2 99.06 Previous Accuracy
3 0.3 98.11 Accuracy dropped

Ablation Study 5: Altering the Loss Functions

Configuration No. Loss Functions Test Accuracy (%) Finding

1 Binary cross-entropy 99.06 Previous Accuracy

2 Categorical cross
entropy 99.27 Highest Accuracy

3 Mean squared error 98.83 Accuracy dropped
4 Mean absolute error 98.13 Accuracy dropped

Ablation Study 6: Altering the Optimizer

Configuration No. Optimizer Test Accuracy (%) Finding

1 Adam 99.27 Previous Accuracy
2 Adamax 99.05 Accuracy dropped
3 RMSprop 98.93 Accuracy dropped
4 Nadam 98.82 Accuracy dropped

Ablation Study 7: Altering the Learning Rate

Configuration No. Learning Rate Test Accuracy (%) Finding

1 0.1 98.53 Accuracy dropped
2 0.5 98.27 Accuracy dropped
3 0.001 98.68 Accuracy dropped
4 0.005 98.79 Accuracy dropped
5 0.0001 99.74 Highest Accuracy
6 0.0005 99.27 Previous Accuracy

Ablation Study 3 investigated the impact of batch size on model convergence and
computational efficiency, evaluating sizes from 16 to 128 batches. The optimal batch size
for further study was 64, achieving the highest accuracy of 99.06%, making it suitable for
subsequent ablation studies. In Ablation Study 4, the analysis of dropout rates revealed
nuanced performance gradients. A dropout rate of 0.2 emerged as the most effective for
regularization, yielding 99.06% accuracy. However, an increase to 0.3 led to a decline
in accuracy to 98.11%. This underscores the importance of a 0.2 dropout rate, striking
a balance between regularization and model performance, making it the recommended
choice for ongoing evaluations. In Ablation Study 5, adjustments to loss functions yielded
varying accuracy impacts, with categorical cross-entropy achieving the highest accuracy
at 99.27%, surpassing the previous 99.06% with binary cross-entropy. Mean squared
error and mean absolute error decreased accuracy to 98.83% and 98.13%, respectively.
Ablation Study 6, exploring optimizer variations, showed Adam topping at 99.27%, while
Adamax, RMSprop, and Nadam experienced accuracy drops at 99.05%, 98.93%, and 98.82%,
respectively. Ablation Study 7, focusing on learning rates, identified 0.0001 as the optimal
rate with the highest accuracy of 99.74%, outperforming other rates like 0.1, 0.5, 0.001, 0.005,
and 0.0005. The recommendation for further experimentation is the optimal learning rate of
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0.0001. This comprehensive analysis provides valuable insights into the impact of different
configurations on the proposed model’s accuracy and performance.

4.3. Comparison Performance Analysis of Different Feature Extractor Models

First, we compared our proposed feature extractor model, the DCNN model, with
some different deep feature extractors. The comparison in Table 6 highlights its superior
predictive capabilities compared to well-known models, where the highest accuracy was
achieved by VGG16 with 93.32%, the second highest was DenseNet121 with 91.58%, and
the lowest accuracy was achieved by ResNet50 with 89.55%. Our proposed DeepChestGNN
classification model was tested against other feature extractors, revealing that our DCNN
model was superior in classifying chest X-ray images, achieving a higher accuracy rate of
99.74%. This observation suggests its potential utility for reliable diagnostic purposes.

Table 6. Performance of DeepChestGNN (ours) based on our DCNN extractor and different fea-
ture extractors.

Model Sensitivity Precision F1-Score Accuracy

Inception 93.85% 93.94% 93.86% 93.85%
VGG16 93.32% 93.54% 93.32% 93.32%

DenseNet121 91.53% 91.68% 91.55% 91.58%
DenseNet201 90.32% 90.45% 90.32% 90.35%

GoogleNet 90.56% 90.62% 90.55% 90.55%
ResNet50 89.56% 90.13% 89.55% 89.55%

DCNN (ours) 98.72% 98.71% 98.71% 99.74%

4.4. Comparison Performance Analysis of Different Deep Learning Models

In our comparison of our proposed model with different deep CNN models, this
remarkable achievement positions it as a superior predictor compared to well-known
models like Inception, which achieved the best accuracy score of 90.35%, and the second-
best score was VGG16, at 89.52%. On the contrary, DenseNet201 obtained the lowest
accuracy score of 83.38%, as detailed in Table 7. Our proposed DeepChestGNN emerged as
the leading performer, with an exceptional accuracy rate of 99.74%. These results affirm
the reliability and efficacy of DeepChestGNN in our study and underscore its potential
for making accurate predictions about chest X-ray images, solidifying its status as the best
model in this field.

Table 7. Comparison of DeepChestGNN (ours) with different deep CNN model

Model Sensitivity Precision F1-Score Accuracy

Inception 90.34% 90.45% 90.38% 90.35%
VGG16 89.52% 89.78% 89.53% 89.52%

GoogleNet 87.44% 87.54% 87.44% 87.45%
DenseNet121 84.45% 84.51% 84.45% 84.45%

ResNet50 83.95% 84.10% 83.95% 83.95%
DenseNet201 83.38% 83.45% 83.37% 83.38%

DeepChestGNN
(ours) 98.72% 98.71% 98.71% 99.74%

4.5. Comparison Performance of Proposed Models with Other Literature

Table 8 presents a comprehensive comparison between our proposed DeepChestGNN
model and several shallow GNN models from other works in the literature. The sensitivity,
precision, F1-Score, and accuracy metrics were evaluated for each model. In contrast, exist-
ing models like NSCGCN [17], PNA-GCN [9], ResGNet-C [65], Efficient-B4-FPN [66], and
GraphSAGE [67] demonstrate lower accuracy levels ranging from 63.83% to 98.04%. The
highest accuracy was achieved by NSCGCN [17] at 98.04% and by PNA-GCN [9] at 97.79%,
demonstrating the second-highest accuracy. GraphSAGE [67] achieved the lowest accuracy
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at 63.83% in the classification results. Notably, DeepChestGNN outperforms other models
with exceptional metrics: sensitivity of 98.72%, precision of 98.71%, F1-Score of 98.71%, and
an impressive accuracy of 99.74%. These results highlight the substantial improvement and
effectiveness of our DeepChestGNN in comparison to established algorithms, emphasizing
its potential for accurate chest X-ray image predictions in a medical context.

Table 8. Comparison between shallow GNN models and DeepChestGNN (ours) model.

Model Sensitivity Precision F1-Score Accuracy

NSCGCN [17] 87.50% 87.37% 87.50% 98.04%
PNA-GCN [9] 95.43% 98.51% 98.63% 97.79%

ResGNet-C [65] 95.91% 96.65% 96.21% 96.62%
Efficient-B4-

FPN[66] 91.01% 89.13% 95.96% 95.36%

GraphSAGE [67] 63.83% 76.59% 58.90% 63.83%
DeepChestGNN

(ours) 98.72% 98.71% 98.71% 99.74%

4.6. Classification Performance of DeepChestGNN Model

The performance metrics for the DeepChestGNN model’s disease classification are
shown in Table 9. The model did a great job with a wide range of diseases, exhibiting high
sensitivity, specificity, precision, negative predictive value (NPV), accuracy, and F1-score. It
was amazing how well our proposed model worked with a wide range of diseases, with
accuracy levels above 99% for some of them. It was especially good at identifying diseases
like COVID-19 (97.54%), pneumonia (99.12%), pneumothorax (99.57%), and tuberculosis
(99.33%), which demonstrates its sensitivity and accuracy. The model also showed high
identification for lung opacity (97.88%), nodules (99.01%), and effusion (98.40%). The
Matthews correlation coefficient (MCC) value for tuberculosis had the highest accuracy at
99.31%, followed by pneumothorax accuracy at 99.32%, and the lowest accuracy at 97.99%.
These outstanding results indicate that the model is reliable and proficient in diagnosing
various chest diseases, making it a robust tool for medical image analysis.

Table 9. Performance evaluation of the DeepChestGNN (ours) model corresponding to the classes.

Disease Sensitivity Specificity Precision NPV Accuracy F1-Score MCC

COVID-19 99.04% 99.73% 97.54% 99.89% 99.66% 98.28% 98.10%
Effusion 98.40% 99.83% 98.40% 99.83% 99.69% 98.40% 98.23%
Fibrosis 99.13% 99.87% 98.84% 99.90% 99.80% 98.99% 98.88%
Mass 97.35% 99.89% 99.04% 99.70% 99.64% 98.19% 97.99%
Nodule 97.81% 99.89% 99.01% 99.75% 99.68% 98.41% 98.23%
Normal 98.38% 99.81% 98.38% 99.81% 99.67% 98.38% 98.19%
Lung Opacity 99.10% 99.76% 97.88% 99.90% 99.70% 98.49% 98.32%
Pneumonia 99.32% 99.91% 99.12% 99.93% 99.85% 99.22% 99.10%
Pneumothorax 99.20% 99.95% 99.57% 99.91% 99.88% 99.38% 98.32%
Tuberculosis 99.43% 99.93% 99.33% 99.94% 99.88% 99.38% 98.31%

4.7. Implementation Details

Different feature extractors were tested in our DeepChestGNN model, revealing that
our DCNN exhibited greater accuracy and required less time to execute compared to others.
This observation suggests its potential utility in classifying chest X-ray images for diag-
nostic purposes. Each feature extractor model’s time required per epoch was meticulously
measured, including GoogleNet, VGG16, ResNet50, DenseNet121, DenseNet201, Inception,
and our proposed DCNN. In contrast, the execution times for integrating various feature
extractors into our model per epoch were as follows. GoogleNet was executed in 1015 s,
VGG16 in 1120 s, ResNet50 in 920 s, DenseNet121 in 1080 s, DenseNet201 in 1320 s, and
Inception in 990 s. Our proposed DCNN feature extractor model, integrated with our
proposed DeepChestGNN, demonstrated the most efficient performance, executing in just
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359 s per epoch. This extraction process was conducted over 100 epochs, as illustrated
in Figure 11. Such information is essential for researchers and practitioners seeking to
optimize workflow extractors for medical image analysis.

Figure 11. Time comparison among our proposed DeepChestGNN model with our DCNN extractor
and different feature extractors.

4.8. Confusion Matrix and ROC Curve of the Proposed Model

The confusion matrix in Figure 12 shows how the DeepChestGNN classifier con-
sistently produces higher true positive predictions for all ten lung disease classes while
maintaining an exceptionally low rate of false predictions across each category [48]. This
signifies that the model exhibits an absence of bias towards any specific disease class and
demonstrates its capability to predict all classes effectively [63]. Notably, our proposed
DeepChestGNN model consistently achieved optimal accuracy of over 99% for all ten
categories of lung diseases, as shown in Figure 13. This proves the model is reliable and
consistent in predicting a wide range of lung diseases.

Figure 12. Confusion matrix of DeepChestGNN model.
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Figure 13. ROC curve of the DeepChestGNN model.

4.9. K-Fold Cross-Validation Analysis

K-fold cross-validation is a pivotal validation technique used to evaluate the robust-
ness and reliability of machine learning models [48]. In this study, we conducted a series
of K-fold cross-validation experiments to assess the performance of our model. We tested
3-fold, 7-fold, 10-fold, 13-fold, 15-fold, 17-fold, and 20-fold cross-validation. Each K-fold
cross-validation iteration divided the dataset into K subsets, with one used for validation
and the rest for training. We had 99.64% testing accuracy for 3-fold, 99.45% for 7-fold,
99.57% for 10-fold, 99.72% for 13-fold, 99.78% for 15-fold, 99.73% for 17-fold, and 99.69%
for 20-fold. Our best model had the highest testing accuracy of 99.78% in our experiments.
These results demonstrate our model’s impressive stability and reliability across various K-
fold cross-validation scenarios. Even with different K-fold settings, the model consistently
maintained high accuracy, reinforcing our confidence in its performance and generalization
capabilities [63]. Based on these results, the proposed model is very strong and flexible,
which means it can be used in a wide range of training situations with the dataset. Figure 14
graphically displays the results, demonstrating the testing accuracy across different K-fold
values, validating the model’s overall reliability and consistent performance.

Figure 14. Performance analysis using K-fold cross-validation.
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5. Visualization Results
5.1. Experiment with Original Images

Figure 15 presents a comprehensive multi-class chest X-ray image classification visu-
alization. The diagram illustrates prediction scores for each test image, with the highest
values at the top, providing a brief overview of the model’s performance on original im-
ages. For instance, the model’s performance across various classes showed that the highest
accuracy was achieved for lung opacity at 89%, COVID-19 at 89%, and fibrosis at 87%,
demonstrating the second-highest accuracy. In contrast, pneumonia had the lowest accu-
racy of 54% in prediction. This accuracy was achieved when the unprocessed image was
passed into our automated system without applying any image pre-processing techniques,
indicating that image processing was required for better accuracy.

Figure 15. Our dataset’s raw images without preprocessing show predicted categories and probability
scores, highlighted in red, indicating a higher likelihood of the associated disease.

5.2. Experiment with Adding Noise

As the dataset was compiled from multiple sources, image pre-processing in large
data hubs was necessary to obtain the highest precision in classification. Initially, denoising,
resizing, de-annotation, enhancement, and applying filters were employed to remove noise
and overlay text. Subsequently, these preprocessed images were subjected to our proposed
method. However, Gaussian noise [68] and salt-and-pepper noise [69] were added to the
original dataset in more tests to see how well the model could evaluate robustness and
generalization. The noisy images are illustrated in Figure 16.
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Figure 16. Differences among original image, Gaussian noise, and salt-and-pepper noise images.

After adding noise and subsequently applying our DCNN feature extractor and
DeepChestGNN, a slight decrease in accuracy was observed compared to the original
image of 99.74%. The accuracy decreased to 97.57% for images affected by Gaussian noise
and to 98.04% for images affected by salt-and-pepper noise. All the results are shown in
Table 10. Despite the reduction in accuracy, the effect of noise on overall performance was
relatively small. However, these minor abnormalities significantly affect clinical outcomes
in diagnosis. In this regard, employing specialized image-processing methods is crucial.
This study achieved the highest accuracy after applying preliminary image pre-processing
steps, which strongly contributed to removing noise artifacts and other distortions, resulting
in high accuracy.

Table 10. Performance comparison of different noise types with the original image classes.

Noise Type Sensitivity Specificity Precision NPV Accuracy F1-Score MCC

Gaussian Noise 96.06% 96.59% 96.92% 97.13% 97.57% 97.23% 96.98%

Salt-and-Pepper
Noise

96.83% 97.12% 97.52% 97.89% 98.04% 96.02% 95.81%

Original Image (pre-
possessed image)

98.72% 99.86% 98.71% 99.86% 99.74% 98.71% 98.57%

6. Comparison with Several Existing Studies

The main objective of our work in this section was to compare our work with existing
the literature. Table 11 presents a comparative analysis between prior studies and our
proposed method, evaluating factors such as the number of images, the number of features,
the effectiveness of image preprocessing and augmentation methods, and overall accuracy.
In binary classifications [9,14,16,17,20,21], Liang et al. [19] achieved an impressive highest
accuracy of 98.5% for COVID-19 and normal, while Jin et al. [16] recorded a comparatively
lower accuracy of 80.0% for COVID-19 and non-COVID-19. For multi-class classifica-
tion [5,8,10–13,15,20], Nahiduzzaman et al. [15] addressed 17 classes but did not achieve
remarkable accuracy, reaching only 90.92%. Kufel et al. [12] achieved a lower accuracy
of 84.28% for classifying fifteen classes of chest X-ray images. Moreover, [9,12,13,15–20]
did not address the absence of noise and overlay text removal. There is also a lack of
information on optimal features and low accuracy in multi-class classification, as shown
in Table 11. To address those limitations, an automated system was employed. The study
leveraged multiple resources, comprising 71,096 images, and utilized image preprocessing
techniques such as resizing, denoising, CLAHE, de-annotation, and filtering. Elastic de-
formation was applied for augmentation in the dataset, which started with 70,000 images.
Additionally, the model demonstrated efficient processing time, with one epoch taking only
359 s, attributed to having only 100 prominent deep features compared to other models. The
multi-class classification model employed was the proposed DeepChestGNN, addressing
ten classes, achieving an impressive accuracy of 99.74%. Furthermore, we introduced a
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strategy based on these optimal features and successfully validated it using real images
for diagnosis.

Table 11. Accuracy comparison between our proposed work and existing literature.

Paper Dataset Model Classification Types Accuracy Limitations

Sanida et al. [10] COVID-19
Radiogra-
phy Database
(21,165 images)

Preprocessing: Applied
Augmentation: Yes
Feature Extraction: N/A
Model: Modified
VGG19

Multi-class
classification—(fibrosis,
opacity, tuberculosis,
normal, viral pneumo-
nia, and COVID-19
pneumonia)

Accuracy:
98.88%
Feature num:
More than 100

1. The limited number of im-
ages.

2. Lack of noise and overlay
text removal from images.

3. Absence of information on
optimal features.

4. Lack of comparison with
more recent state-of-the-
art methods

Abubakar et al.
[11]

CT image
datasets (328
common pneu-
monia, 1972
COVID-19, and
1608 healthy
images)

Image Preprocessing:
Applied
Augmentation: Yes
Feature Extraction:
HOG and CNN
Model:KNN, SVM

Multi-class classification
(COVID-19-positive,
healthy, and common
pneumonia)

Accuracy:
VGG-16 +
HOG feature
achieved
99.4% overall
accuracy with
SVM
Feature num:
More than 100

1. The limited number of im-
ages

2. Lack of noise and overlay
text removal from images.

3. Absence of information on
optimal features.

4. Lack of comparison with
more recent state of-the-
art methods.

Kufel et al. [12] NIH ChestX-
ray14 (112,120
images)

Image Preprocessing:
N/A
Augmentation: Yes
Feature Extraction: Effi-
cientNet
Model: Transfer learn-
ing techniques

Multi-class (15 classes—
No Finding, Atelectasis,
Cardiomegaly, Effu-
sion, Infiltration, Mass,
Nodule, Pneumonia,
Pneumothorax, Con-
solidation, Edema,
Emphysema, Fibrosis,
Pleural thickening,
Hernia)

Accuracy:
84.28%
Feature num:
More than 100

1. Lack of noise and overlay
text removal from images.

2. Absence of information on
optimal features.

3. Low accuracy in multi-
class classification.

Li et al. [13] 1. ChestX-Ray
14 (112,120 im-
ages)
2. CheXpert
(224,316 image)

Image Preprocessing:
N/A
Augmentation: Yes
Feature Extraction:
Res2Net50
Model: MLRFNet

Multi-class (7 classes—
Atelectasis, Effusion, In-
filtration, Mass, Nodule,
Pneumonia, Pneumotho-
rax)

Accuracy:
1. 85.30%
2. 90.40%
Feature num:
More than 100

1. Lack of noise and overlay
text removal from images.

2. Absence of information on
optimal features.

3. Low accuracy in multi-
class classification.

Farhan et al.
[14]

1. COVID-19
Radiogra-
phy Database
(C19RD) (2905
images)
2. Chest X-ray
Images for
Pneumonia
(CXIP) (5856
images)

Image Preprocessing:
Applied
Augmentation: No
Feature Extraction:
Res2Net50
Model: HDLA-DNN
classifier

Binary classification—
disease (such as non-
COVID-19 pneumonia,
COVID-19 pneumonia)
and healthy

Accuracy:
1. 98.35%
2. 98.99%
Feature num:
More than 100

1. Lack of noise and overlay
text removal from images.

2. Absence of information on
optimal features.

3. Low accuracy in multi-
class classification.

Nahiduzzaman
et al. [15]

ChestX-
Ray14 dataset
(29,871 images)

Image Preprocessing:
Applied
Augmentation: No
Feature Extraction: ELM
Model: CNN-ELM

Multi-class (17 classes—
Atelectasis, Car-
diomegaly, Effusion,
Infiltration, Mass, Nod-
ule, Pneumothorax,
Consolidation, Edema,
Emphysema, Bacte-
rial pneumonia, Viral
pneumonia, COVID-19,
Pleural thickening,
Fibrosis, Hernia, and
Tuberculosis)

Accuracy:
90.92% for 17
lung diseases
99.37% for
COVID-19
99.98% for TB
Feature num:
More than 100

1. Lack of proper image pre-
processing.

2. Lack of a proper augmen-
tation technique.

3. Absence of information on
optimal features.

4. Low accuracy in multi-
class classification.

5. Lack of comparison with
more recent state-of-the-
art methods.
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Table 11. Cont.

Paper Dataset Model Classification Types Accuracy Limitations

Jin et al. [16] ChestX-ray14
(112,120 images)

Image Preprocessing:
N/A
Augmentation: No
Feature Extraction:
DenseNet121
Model: CM-DML-GZSL

Binary classification
(COVID-19 and Non-
COVID-19)

Accuracy:
80.0%
Feature num:
More than 100

1. Lack of noise and overlay
text removal from images.

2. Lack of a proper augmen-
tation technique.

3. Absence of information on
optimal features.

4. Low accuracy in multi-
class classification and

Tang et al. [17] 1. CXR dataset
(6939 images)
2. CT dataset
(85,725 images)

Image Preprocessing:
N/A
Augmentation: No
Feature Extraction:
DenseNet201
Model: NSCGCN

Binary classification (In-
fection and Normal)

Accuracy:
1. 97.09%
2. 99.22%
Feature num:
More than 100

1. Lack of noise and overlay
text removal from images.

2. Lack of a proper augmen-
tation technique.

3. Absence of information on
optimal features.

4. Limited class classifica-
tions.

Shamrat et al.
[5]

Multiple
sources (Total of
85,105 images)

Image Preprocessing:
Applied
Augmentation: N/A
Feature Extraction: N/A
Model: LungNet22

Multi-class classification
(10 classes-Control,
COVID-19, Effusion,
Lung Opacity, Mass,
Nodule, Pulmonary
Fibrosis, Pneumo-
nia, Pneumothorax,
Tuberculosis) After
augmentation (80,000
images)

Accuracy:
98.89%
Feature num:
N/A

1. Absence of optimal fea-
tures Extraction.

2. Lack of comparison with
more recent state-of-the-
art methods.

Guail et al. [9] Chest X-ray
dataset from
Kaggle (5856 im-
ages)

Image Preprocessing:
Applied
Augmentation: Yes
Feature Extraction:
CNN
Model: PNA-GCN

Binary classification
(Pneumonia and Nor-
mal)

Accuracy:
97.79%
Feature num:
More than 100

1. The limited number of im-
ages.

2. Lack of a proper augmen-
tation technique

3. Absence of information on
optimal features.

4. Lack of multi-class classifi-
cation.

Ragab et al. [18] Chest X-ray
dataset from
Kaggle (6310 im-
ages)

Image Preprocessing:
Applied
Augmentation: No
Feature Extraction:
CNN
Model: CapsNet

Multi-class classification
(Pneumonia, Normal,
and COVID-19)

Accuracy:
1. 86.6% for
normal,
2.94% for
Pneumonia,
3.89% for
COVID-19
Feature num:
More than 100

1. The limited number of im-
ages.

2. Lack of a proper augmen-
tation technique

3. Absence of information on
optimal features.

4. Lack of multi-class classifi-
cation.

Liang et al. [19] COVID-19 (399
images) Normal
(400 images)

Image Preprocessing:
N/A
Augmentation: No
Feature Extraction: 3D-
CNN
Model: GCN

Binary classification
(COVID-19 and Normal)

Accuracy:
98.5%
Feature num:
More than 100

1. The limited number of im-
ages.

2. Lack of a proper augmen-
tation technique

3. Absence of information on
optimal features.

4. Lack of multi-class classifi-
cation.

Javaheri et al.
[20]

Not publicly
available (16,750
slices of CT scan
images from
335 patients)

Image Preprocessing:
N/A
Augmentation: N/A
Feature Extraction: N/A
Model: CovidCTNet

Binary classification
(COVID-19, non-
COVID-19) Multi-class
classification (COVID-
19, CAP, control lungs)

Accuracy: 1.
93.33% (Binary
classification)
2.86.66%
(multi-class
classification)

1. Lack of image preprocess-
ing.

2. Low accuracy in multi-
class Classification.

3. lack of augmentation tech-
nique.
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Table 11. Cont.

Paper Dataset Model Classification Types Accuracy Limitations

Alshazly et al.
[21]

SARS-CoV-2
CT Scan dataset
(2482 images)
and COVID-
19-CT dataset
(746 images)

Image Preprocessing:
N/A
Augmentation: N/A
Feature Extraction: N/A
Model:Different Deep
learning models such
as ResNet101 and
DenseNet201.

Binary classification
(COVID and non-
COVID)

Accuracy:
1.99.4%
(ResNet101)
2.92.9%
(DenseNet201)
Feature num:
N/A

1. The limited number of im-
ages

2. Lack of image preprocess-
ing.

3. Lack of comparison with
more recent state-of-the-
art methods.

(Our proposed
work)

Multiple
resources
(71,096 images)

Image Preprocessing:
Resizing, Denoising,
CLAHE, De-annotation,
Filtering Augmentation:
Elastic deformation
Feature Extraction:
DCNN (proposed)
Model: DeepChestGNN
(proposed)

Multi-class classification
(10 classes-Normal, Effu-
sion, Pulmonary Fibro-
sis, Lung Opacity, Mass,
Nodule, COVID-19,
Pneumonia, Pneumoth-
orax, Tuberculosis)
After augmentation
(70,000 images)

Accuracy:
99.74%
Feature num:
100

1. The experimentation with
real images is not present.

2. Lack of pixel-level im-
age preprocessing and seg-
mentation using markers.

7. Limitations and Future Research

Our automated system has already showcased superior accuracy and computational
efficiency across diverse datasets, effectively managing variations in classes, noises, and
overlaying complexities in chest X-rays. This success points towards a promising future for
medical imaging technology. Our upcoming studies will prioritize expanding our dataset
and subjecting our model to a broader range of conditions, focusing on real-time chest
X-ray images. We plan to explore the potential of graph convolutional networks (GCNs)
and generative adversarial networks (GANs) to enhance dataset robustness. Additionally,
we aim to develop a computer-based decision-making tool to assist medical professionals
in treating patients with lung diseases. An essential enhancement in our pipeline involves
prioritizing image segmentation, potentially improving feature extraction. Ultimately, we
aim to create a real-time lung disease classification application, seamlessly integrating
academic research with clinical applications and providing medical professionals with a
more efficient diagnostic tool.

8. Conclusions

In this study, we employed an automated system for classifying lung diseases using
a large data hub consisting of 17 chest X-ray image datasets. The ten disease categories
in the large data hub are normal, effusion, pulmonary fibrosis, lung opacity, mass, nod-
ule, COVID-19, pneumonia, pneumothorax, and tuberculosis. For collecting data from
various resources, data with noise or overlay texts, etc., we employed image processing
techniques such as resizing all the images into the same 420 × 420 pixel size, denoising
for reducing noise, and CLAHE while maintaining the tile grid size at (8 × 8) and the
clipping limit at 3.0. To enhance the quality of images, we utilized the ‘Green Fire Blue’
filter to emphasize specific image attributes. Elastic deformation augmentation enhances
image quality and addresses class data imbalances, resulting in a well-trained model with
a dataset volume of 70,000 images. The DCNN feature extractor demonstrated its ability
to identify 100 essential deep features accurately. Our proposed DeepChestGNN model
exhibits a well-structured design with batch normalization, MaxPooling, and Dropout for
regularization, striking a balance between expressiveness and overfitting avoidance. A
meticulous exploration through ablation studies led to the optimal model configuration,
incorporating a bi-layered GNN architecture, a five-block FFN structure, a batch size of 64,
a dropout rate of 0.2, categorical cross-entropy as the loss function, and the Adam optimizer
with a learning rate of 0.0001. We also achieved an impressive accuracy of 99.74%. This
research underscores the transformative potential of seamlessly integrating cutting-edge
image-processing techniques with advanced deep learning models in medical diagnostics.
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The remarkable promise exhibited by DeepChestGNN signifies a groundbreaking leap
toward ensuring timely and precise diagnoses of diverse lung diseases through the analysis
of chest X-ray images.
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