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Abstract: Interoperability is a central problem in digitization and System of Systems (SoS) engi-
neering, which concerns the capacity of systems to exchange information and cooperate. The task
to dynamically establish interoperability between heterogeneous cyber-physical systems (CPSs) at
run-time is a challenging problem. Different aspects of the interoperability problem have been studied
in fields such as SoS, neural translation, and agent-based systems, but there are no unifying solutions
beyond domain-specific standardization efforts. The problem is complicated by the uncertain and
variable relations between physical processes and human-centric symbols, which result from, e.g.,
latent physical degrees of freedom, maintenance, re-configurations, and software updates. Therefore,
we surveyed the literature for concepts and methods needed to automatically establish SoSs with
purposeful CPS communication, focusing on machine learning and connecting approaches that
are not integrated in the present literature. Here, we summarize recent developments relevant to
the dynamic interoperability problem, such as representation learning for ontology alignment and
inference on heterogeneous linked data; neural networks for transcoding of text and code; concept
learning-based reasoning; and emergent communication. We find that there has been a recent interest
in deep learning approaches to establishing communication under different assumptions about the
environment, language, and nature of the communicating entities. Furthermore, we present exam-
ples of architectures and discuss open problems associated with artificial intelligence (AI)-enabled
solutions in relation to SoS interoperability requirements. Although these developments open new
avenues for research, there are still no examples that bridge the concepts necessary to establish
dynamic interoperability in complex SoSs, and realistic testbeds are needed.

Keywords: system of systems; dynamic interoperability; AI for cyber-physical systems; representation
learning

1. Introduction

Systems within all industries are undergoing a rapid digitalization process associated
with developments like industry 4.0 and the Internet of Things (IoT). Digitalization efforts
are moving computing frameworks from monolithic computer systems to distributed
computer systems consisting of thousands of computing elements, sensors, and actuators.
The ambition is that production systems can become increasingly flexible and efficient
thanks to increased connectivity, which increases the demands on the integration of software
and physical components and the capacity to process data from a large variety of sources.

Several architectures have been developed to address the challenges of the digital
industry, e.g., Reference Architectural Model Industrie 4.0 (RAMI 4.0) [1] and Industrial In-
ternet Reference Architecture (IIRA) [2]. Implementations of such architectures is to a large
extent based on service-oriented architecture frameworks like, e.g., Eclipse Arrowhead [3],
FiWare [4], Eclipse Basyx [5], and LWM2M [6]. Using these frameworks it is possible to
engineer SoSs consisting of many systems that can cooperate autonomously [7–9], provided
that interoperability requirements are met. This way, monolithic computing architectures
are gradually transformed into distributed computing systems, typically in the form of
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microservices [10]. The strategic relevance of SoS is described in roadmaps such as the
2022 Electronic Components and Systems (ECS) Strategic Research and Innovation Agenda
(SRIA), but so far, there are few papers that present comprehensive examples of SoS engi-
neering. See [11] for an example of a system of systems engineering (SoSE) methodology
applying the Arrowhead framework in a smart city use case.

Moving from monolithic automation systems to distributed CPSs that can form SoSs in-
troduces many challenges, of which dynamically establishing interoperability is the focus of
this paper. Interoperability describes systems’ ability to use and exchange information [12],
which is a prerequisite for the formation of a SoS. Large-scale SoSs are naturally expected to
be heterogeneous, using different communication standards, semantic definitions, and state
representations. Heterogeneity complicates an already complex problem; if systems use
incompatible communication protocols and definitions, they cannot communicate and meet
the requirements of a SoS without a translation or learning mechanism. Interoperability
problems can occur at any point in the communication process, e.g., at protocol level [13].

1.1. Contribution

Here, we focus on dynamic interoperability in SoS including CPSs in the form of
microservices [10] communicating with plaintext formats such as JSON and XML over
arbritrary application-level protocols, with emphasis on learning-based approaches and re-
lated concepts AI, which also involves semantic interoperability of human-defined symbols
within the constituent CPS and exchanged messages [14]. We also summarize develop-
ments of learning-based and emergent communication in the more general context of
multi-agent systems, see [15] for an overview. Thus, our main contribution is a summary of
recent advances in a previously disconnected body of literature addressing complementary
aspects of the SoS (or agent) dynamic interoperability problem.

While interoperability between standards and protocols mostly has to do with the
exchange of data (making sure that symbols in messages arrive correctly), interoperability
at the message exchange level is also about translating the communicated information into
symbol relations that the receiving system can make use of when performing tasks. This
includes the problem of semantic translation, see, for example, [16,17], and extends beyond
that since the system needs to update its state to maximize some form of utility or reward
function given the new information about the state of the environment in the message
payload data.

1.2. Study Scope

This review article is a combination of A narrative or traditional literature review and
systematic literature reviews (SLR). Narrative reviews do not usually adhere to a strict
protocol, and the selection of articles to include can be more subjective. SLR aims to provide
evidence-based answers and often inform guidelines and policy. In contrast, narrative
reviews aim to give a broader overview of a topic and are often more exploratory or
introductory. We have utilized the best of both approaches in order to find the knowledge
gaps in the addressed multi-disciplinary topics. Moreover, in each step of the review,
from article searching to selection, from methods analysis to further investigation, we use
subjective and intuitive synthesis of the contents. Hence, this article is not designed around
specific research questions as we focus on a broader review of the listed domains. We
describe knowledge gaps and present a survey of the literature that offers new opportunities
to combine and make use of both data and metadata in a learning-based approach to
message translation/communication in SoSs. Regarding the scientific scope of the selected
studies, we limit the scope to investigating interoperability on plaintext data formats like
JSON and XML. Investigating the potential uses of AI and machine learning on lower-level
protocols such as HTTP, MQTT, or OPC-UA is an interesting problem left outside the scope
of this paper.
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1.3. Background

The traditional way to ensure interoperability is to manually engineer an “adapter”
that translates messages of one type to another, or an “integrator” that integrates infor-
mation from messages of multiple types. This approach works well when the system
contains few components and is static on long timescales, but it does not scale to meet the
requirements of a large and dynamic SoS [18]. Instead, semantic web technologies [19] and
ontologies have been used to establish dynamic interoperability and SoS-level engineering,
where the ontologies provide definitions and associations needed to transform data into
useful formats, see for example [16,20,21]. Such methods can prove that the data transfor-
mation is correct within the context of the given ontology. At first, attempts were made to
create large and universal ontologies [22], but recent research has favored the use of smaller,
specialized ontologies [23,24]. A problem with using ontologies for data transformation is
that they do not allow for graceful degradation, and the transformation will either work or
not, depending on what data elements are present. Moreover, there are limited ontologies
that are standardized by official conventions (such as W3C) and several manufacturers
designing IoT systems which may or may not adhere to standardized ontologies [21].

Such problems can be addressed by either extending current ontologies or creating
new ones, leading to more standards to consider when designing a system, which intro-
duces interoperability problems between ontologies. Furthermore, legacy systems lacking
ontology-based definitions will either need to be adapted to or have a custom adapter
created, which drives the engineering efforts and cost when constructing large-scale SoS
using semantic technologies. A more general approach to SoS interoperability is needed to
efficiently deal with missing and inconsistent information.

1.4. Learning-Based Approach

Deep learning is successfully used to solve problems that are difficult to address with
rule-based approaches, thanks to the statistical power of large datasets and increasingly
efficient computing architectures [25]. A notable example of such problems are translation
tasks, where Neural Machine Translation (NMT) has been an active research field in recent
years [26]. The main difference between using deep learning-based methods and rule-based
methods is that the former learn rules from data in a top-down manner according to some
goal/objective, whereas rule-based approaches are usually designed bottom-up through
deterministic algorithms, though efforts have been made to use rule-based approaches
together with machine learning (ML)-methods, e.g., cognitive networks and zero-touch
functionality [27]. However, the accuracy of a deep learning model is heavily dependent
on the quality and quantity of available data, and some models can behave stochastically,
unlike rule-based approaches where the failure modes are related to inconsistent or in-
correct definitions. Recent works integrating machine-learning techniques for message
interoperability in SoS [28] and multi-agent systems [29] demonstrate that there is a devel-
oping interest in such techniques, but further work is necessary to make machine learning
a viable approach to interoperability.

2. Research Methodology

This article is designed as a critical appraisal to look deeper into the indexed scientific
literature in a variety of databases to highlight the existing knowledge gaps. The given
topic is rather broad with a vast variety of applications across various domains due to
which defining any specific summarized research questions was not a doable task to begin
with. Therefore, we followed a qualitative research approach by first listing down the initial
(Primary) keywords for article searching and then continued updating and adding new
keywords (Secondary). We used Google Scholar and Scopus databases and a detailed flow
chart of the process is shown in Figure 1. The synthesis of this article is purely based on
subjective analysis in which the authors reviewed the articles and based on past experience
and knowledge included or excluded the articles.
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Figure 1. The flow diagram for the database search of publications for analysis.

2.1. Structure of the Sections

All the subjective knowledge presented in this article is drafted in a way to first
elaborate on the background of every topic, then listing down the key concepts involved,
next the technical details along with important citations, followed up by remarks on
limitations and/or challenges of that topic. Lastly, we add a brief discussion on knowledge
gaps if there are any. A breakout of sections is shown in Figure 2. Sections and their
subsections that follow this layout are Sections 4 and 5.

Figure 2. Layout of every section explicitly demonstrating the contents.

2.2. Search Results

Peer-reviewed articles were sourced from two data repositories, and literature searches
were completed by 20 April 2023. These searches were conducted across various interna-
tionally recognized databases to gather pertinent information from publications. Scopus
serves as a global database encompassing peer-reviewed publications worldwide. Google
Scholar’s advanced search engine is beneficial for accessing citations that other databases
do not include. Table 1 presents the search results.
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Table 1. Some of the search terms used and the total number of publications from each database.

Databases Searching Strings and Keywords
Number of Articles

Date of Acquisition
Title, Abstract, Keywords Entire Article

Scopus

Primary: Dynamic Interoperability, SoS,
Learning based Approach 1876 3520 20 April 2023

Secondary:

Operation Interoperability, Semantic
Translation, Cyber Physical Systems 2556 4309 20 April 2023

Emergent Communication, Ontology
Alignment, Message Translation 3965 4277 20 April 2023

Google
Scholar

Primary: Dynamic Interoperability, SoS,
Learning based Approach 50,978 150,903 20 April 2023

Secondary:

Operation Interoperability, Semantic
Translation, Cyber Physical Systems 45,881 90,034 20 April 2023

Dynamic Interoperability, SoS,
Learning based Approach 61,124 54,901 20 April 2023

3. Key Aspects of SoS Interoperability

The concept of SoSs was introduced to describe cooperation and collaboration among
autonomously operating systems [7] whose operation is defined by five properties [8]:

1. Autonomy: constituent systems are functionally independent;
2. Belonging: constituent systems choose what SoS to belong to at run-time;
3. Connectivity: constituent systems can exchange information with each other at all

times;
4. Heterogeneity: constituent systems use heterogeneous technologies and software

interfaces;
5. Emergence: constituent systems cooperate to exhibit new or improved functionality

related to SoS-level goals.

These five properties describe SoSs as constantly evolving systems that can assimilate
new and previously unknown systems, find and use novel configurations to improve
efficiency, or solve new tasks while not compromising the goals and functions of individual
constituent systems. The complex interactions expected within a SoS create a complex
environment for interoperability, potentially increasing time-to-deployment and costs due
to current methods relying on hand-made adapters and standards [30]. Thus, to enable the
large-scale SoS envisioned by, e.g., RAMI 4.0 and IIRA, automatic interoperability solutions
must be developed.

The cost and complications of these aspects also apply to Systems of Cyber-Physical
Systems (SoCPSs), SoSs consisting of CPSs, where Operational Technology (OT) and In-
formation Technology (IT) should seamlessly integrate, and communication errors could
propagate and cause physical systems to malfunction [18]. The cause of these errors is
the symbol grounding problem, mismatches between symbolic models in the cyber domain,
and the physical reality those models represent [31]. The symbol grounding problem
is well known in robotics but is rarely highlighted in interoperability research. Symbol
grounding could, in principle, be introduced by using an AI solution that can learn from
the messages passed around in a SoCPS [32]. Such an AI solution, which can utilize and
handle the semantic, dynamic, and operational requirements of a system, can achieve
automatic interoperability, i.e., interoperability with minimal human input during opera-
tion. Automatic interoperability between constituent systems is a goal of SoSE and must
comply with the properties of SoS stated above. To aid in the analysis of AI approaches
to dynamic interoperability, we have developed seven requirements that an autonomous
SoCPS should fulfill:

• Autonomy: constituent systems should be able to pursue system-level goals independently.
• Runtime Operation: new systems and policies should be integrated and responded to

swiftly and appropriately.
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• Fault Resilience: a SoCPS should gracefully adapt, potentially with degraded func-
tionality, in the event of errors or changes in the constituent CPSs.

• Information Integration: all available data/metadata sources and knowledge repre-
sentations should be utilized.

• Resource Efficiency: a SoCPS should implement the policies efficiently to minimize
costs, including both monetary and environmental aspects.

• Security: privileged information should not be leaked to unprivileged parties.
• Generality: a proposed solution should be applicable to a wide variety of SoCPSs,

thus being standard agnostic.

4. Interoperability Overview

Interoperability is the broad study of how systems can share and utilize shared infor-
mation [12], and SoS interoperability is a broad subject that, in practice, includes aspects
ranging from physical processes to security requirements. The main objective of this section
is to describe the different roles and functions interoperability plays, not to introduce
a new definition of interoperability. In this section, we present work done in the fields
of semantic, dynamic, and operational interoperability, with a focus on machine-to-machine
(M2M) communication and the related knowledge gaps [33].

4.1. Semantic Interoperability

Semantic interoperability is the interoperability of structured information artifacts,
or semantic assets [34,35]. The components of semantic assets gain meaning from their
structure and the context in which they are used, e.g., a list of two floating point numbers
gain the meaning of coordinates when used in the context of geography. Similarly, a list of
three strings could also mean two coordinates with an extra string defining the format of
the first two strings. These two lists are semantically equivalent given a function that can
relate these two lists as containing the same information.

Semantic assets can take many different forms, the aforementioned list is an example.
Ontologies are a widely studied form of semantic asset, where the information forms a
hierarchy of named/defined concepts and relations using first-order logic, providing the
information required to perform inference on symbolic data, see for example [36]. From
here on, when referring to semantic interoperability, we assume that the semantic asset is
an ontology of some kind.

Ref. [36] addresses semantic interoperability by designing a service composition
system that enables the goal-driven configuration of smart environments for end users. The
new engineered system combines semantic metadata and reasoning with a visual modeling
tool. The key feature they proposed is the embedded semantic services descriptions used
for dynamically creating service mashups as per users’ goals.

Further, in another work the authors presented an Open Semantic Framework (OSF) to
address the interoperability challenges of how to make sense of all the connected resources
within a Web of Things (WoT) to create intelligent systems [23]. Their designed OSF is built
on an extensible set of core ontologies that is designed to capture concepts from across
domains. The core ontologies get integrated with domain-specific knowledge packs (KPs)
that enable specific applications to access their required information. After testing their
model on a use case, integrated with real-time data acquisition, the authors demonstrated
that OSF could successfully provide straightforward access to knowledge models which
could codify complex constraints for workplace safety and only exposes it through a
moderated query API. Although these designs aim to achieve interoperability across the
IOT Silos, when it comes to an extendable generically and automatically applicable solution
for more than one use case, such solutions are still under systematic development.

These days we find semantic interoperability state-of-the-art in several dimensions
such as semantic annotations, compatibility verification, and generation of translators for
XML messages across a heterogeneous framework [16]. Likewise, several solutions are
built for Machine-to-Machine Communication (M2MC) based on annotation rules for a
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system’s meta-data that enables translation of data exchanged across heterogeneous devices
in IoT [37]. A brief summary of existing models is presented in Figure 3 in which they are
mapped onto the four tiers of industrial revolution. Clearly one can see that ML brought
much more to the table in Industry 4.0.; however, whether any solution will work on more
complex schema or not is still an open question. Currently, many models (discussed above)
are limited to XML and lack the ability to incorporate JSON or multiple schemas.

Figure 3. Key features of The Industrial Revolution from Industry 1.0 to Industry 4.0, including some
features that ML adds to the recent development.

Ref. [29] presents a solution for interoperability between a base context defined in the
FIPA-ACL language and agent-specific context described with ontologies. The proposed
architecture uses neural networks to decode messages into a list of components that are
further analysed to decide agent states, for example “Permanent danger”.

4.2. Dynamic Interoperability

In statically configured systems, interoperability can be solved at design time and
need not be considered until the system is modified. However, SoSs are dynamic because
systems can change characteristics over time and may join or leave the SoS at any time. In
particular, new, previously unknown systems should be able to join SoS and co-operate
without requiring an engineer for manual system reconfiguration. This is known as dy-
namic interoperability, which is different from establishing and maintaining interoperability
between static and slowly changing systems.

Dynamic interoperability is about “how” a system works, and not about what technol-
ogy is used to enable interoperability. An example is the Internet Protocol, which enables
interoperability on the internet level of the TCP/IP stack for diverse systems. A previ-
ously unknown system can connect to a router and now have access to billions of other
devices on the internet. In SoS research, dynamic interoperability has been investigated
in different ways, see e.g., [13] for dynamic protocol interoperability and [16] for dynamic
semantic interoperability, both of which work by means of translating between protocols
and ontologies.

4.3. Operational Interoperability

Operational interoperability is the ability of systems to cooperate and achieve goals
which cannot be achieved by any individual system. Operational interoperability is impor-
tant for coordination and orchestration of constituent systems to perform goals on a higher
level than their autonomous goals. The term originally applied to human actors and their
ability to cooperate [38], not that of software systems, but CPSs can be represented by both
a human actor and an IT system. Examples of operational interoperability are cognitive
networks [27], where the business intent is described using, e.g., an ontology; see [39], who
designed a multi-agent systems architecture capable of detecting and mitigating anomalies



Sensors 2024, 24, 2921 8 of 19

in a manufacturing environment. The cognitive network will use the intent description and
available data to decide what actions systems need to take, which is computed through a
combination of reasoning and machine learning.

5. Towards Automatic Interoperability

In this section we present work done in the AI/ML community that potentially can
be adapted into new concepts and models enabling automatic interoperability. The devel-
opment of machine learning methods for natural language processing, knowledge-based
reasoning, and concept learning are timely opportunities to manage semantic heterogeneity
in automation by aligning the physical and digital worlds by optimization, for example,
as outlined in the architecture illustrated in Figure 4. In this architecture, M2M message
transcoding, concept learning, and policy-based reasoning are combined to automatically
optimise the SoCPS given a set of policies. The SoCPS is defined top-down by the policies,
which optionally can include utility optimisation directives at the SoCPS level, as well
as credentials and constraints. For example, energy production information available in
CPS A could be part of a SoCPS energy-optimisation policy (collaborative benefit), or the
predefined utility of CPS B can be optimised by information transfer from CPS A (coop-
erative benefit). The concept representations are grounded and semantically aligned to
heterogeneous metadata definitions and knowledge (graphs) in each CPS, and the mes-
sage/event encoders and decoders are optimized in a similar way as in natural language
processing, see Section 5.2. The (neuro-symbolic) reasoning module require grounded
concept representations to effectively deal with semantic heterogeneity, while maintaining
an observable state throughout the optimisation process via semantic alignment to policies
and knowledge defined in the CPSs. Such reasoning mechanisms are actively developed,
for example in visual concept learning and question answering, see Section 5.5. While there
are several open problems that need to be addressed before a functional architecture of this
type that fully addresses the requirements specified in Section 3 can be realized, the rapid
developments in the aforementioned machine learning areas create a timely opportunity
to investigate and enable AI-based automation at the level of SoCPS. In the subsequent
subsections, we outline the state-of-the-art approaches, provide an overview of each, and
discuss their respective limitations.

  CPS B
Physical domain (processes, causation, correlation)

  CPS A
                    Semantics B

Symbolic domain (data, knowledge, events)
     Semantics A

DA EA EB DB

Concept

M2M-Message
Encoder/Decoder

SoCPS PoliciesReasoning
Actions

Figure 4. Example of SoCPS automation architecture in the case of two CPS. M2M message transcod-
ing, concept learning, and policy-based reasoning are combined to automatically optimise the SoCPS
and the concept representations (grounding) given a set of policies and the metadata/knowledge
that defines the CPSs.

5.1. Ontology Alignment

Ontology Alignment focuses on matching schemas of more than a single RDF dataset
or Knowledge Graph (KG). Ontologies have become a vital approach to representing
knowledge in a formal format. Over the years, many variants of ontology-based solutions
have been developed. When it comes to dynamic interoperability among heterogeneous
omnipresent networks built on multiple taxonomies, the challenge of semantically linking
all ontologies arises [21,40]. Although, as per the Semantic Web Community guidelines,
many ontologies are designed on similar syntax and semantics, they often differ consider-
ably in various elements (e.g., naming or structure). Therefore, the automated process of
discovering relations between representations of multiple ontologies has become relevant
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for designing applications in heterogeneous distributed environments. Theoretically, such
alignment methods should have a number of necessary underlying attributes, a few of
which are:

• Rational: representation of a real-world problem conceptualizing explicit specifications;
• Flexible: to be transferred to other applications;
• Extendable: can be utilized for other domains with different semantic structures;
• Dynamic: models should be applicable to run-time-operations of IoT frameworks;
• Automated Parameter Updates: must be boosted by ML techniques where weights or

interpretation schemes are learnt and evolved;
• Visualization and Comparison: the model must be equipped with an illustrative

representation of metadata and results where conclusive comparisons can be drawn.

There are several successful applications in the domain including [41] which addresses
the problem of loosely connected pieces of information within Linked Open Data (LOD)
where schema-level information gets ignored while building alignment-based solutions.
Another model titled BLOOMS is based on instance-level ontology mapping and was
designed around measuring the similarities between a pair of concepts according to the
number of similar instance of ontology concepts [42]. Moreover, a significant work on
sequence alignment-based ontology mapping architecture is presented in [43]. Their
ontology mapping emphasises solving the problem of ontology heterogeneity by finding
schema-level links in LOD for the Chinese Language. However, their solution is restricted
to semi-automated applications as it requires a set of initial rules from which the model can
learn further complex alignments. Likewise, so far every proposed solution specifically
targets its domain and a continued challenge is to design a flexible model that can address
all aspects of the problem.

5.2. Transcoder Architectures

Translation of natural language and text often uses transcoder architectures, also called
encoder–decoder architectures (e.g., [13,44,45]), see Figure 5.

In transcoders, the source text is fed to an encoder, which transforms the source to
an intermediary format, and the translated text is reconstructed from the intermediary
format using a decoder. For transcoders using neural networks to encode and decode, the
intermediary format is a vector, often of a lower dimension than the input and output, which
condenses or compresses the information in the source text. A special case transcoder is the
autoencoder, which uses the same encoder–decoder architecture, but instead of translating
data, the goal is to reconstruct the input [46]. Autoencoders are mainly used to generate
embeddings—compressed representations of the input data—which can be used for data
compression, feature extraction, or generation of new data [47]. Metadata embeddings are a
particular kind of embedding, where the input to the autoencoder is, e.g., RDF-triplets [48]
or Web Ontology Language (OWL) [49] data, which allows the use of metadata and
knowledge graphs in neural networks.

Transcoder architectures have worked well for translation of natural languages where
large parallel corpora, i.e., texts in multiple languages that share meaning, exist. However,
parallel corpora cannot be obtained for all language pairs, which will likely also be true
for the SoS translation task, and some other approach has to be used. Instead of training
a transcoder on parallel data, backtranslation uses the shared structure of transcoders and
autoencoders to train a translation model with few or no parallel examples. The idea is to
first train autoencoders for one or more languages, then use backtranslation (translation
from language A → B and then back B → A) to fine-tune the encoders and decoders
for translation. Backtranslation shows promising results for translation on both natural
languages and programming languages [50], while attempts to adapt backtranslation for
message translation require further experimentation [28].
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(“temperature”, “has-a”, “value”      ),
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(a) Encoder

(“temperature”, “has-a”, “value”      ),
(“temperature”, “has-a”, “unit”       ),
(“t”,           “is-a”,  “temperature”),

556

Aggregator

Modular
Decoder

Concept
Mapper

Latent
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{“t”: 10  ,
 “unit”: “C” ,
 “pos” : “10/10”} C

P
S
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Message

Concept
Embeddings

(b) Decoder

Figure 5. Example of a modular M2M transcoder architecture for structured messages, which
integrates metadata for accurate and explainable transcoding of messages. The fields of the input
messages, such as JSON, are mapped to concepts defined in an ontology by a concept mapper, and
the resulting field–concept tuples are transcoded by specialized modules. The transcoded message
fields are finally aggregated to complete messages that can be interpreted by the receiving CPS.

In the modular M2M message transcoder architecture illustrated in Figure 5, metadata
are used to generate field–concept tuples that modular neural networks can encode into
optimized concept embeddings. The decoder has a similar architecture but uses as input
the latent representation and the metadata defining the symbols of, e.g., the receiving CPS.
The latent representation is decomposed into concept embeddings, which are used by a
joint decoder to reconstruct the message for the target system. The network modules can be
defined automatically from the metadata and can be either specific to a particular system or
taken from a pool of pretrained prototypes tuned through metalearning, allowing sharing
of modules between systems. The role of modular neural networks, concept-based learning
and reasoning, and metalearning are further described in the following subsections.

5.3. Modular Neural Networks

Modularity is an approach that provides flexibility to neural network design. Instead
of training different models for different tasks end-to-end, modularity allows the network
to be decomposed into task-dependent subnetworks. This is called task decomposition.
Ref. [51] uses a modular approach to train policy networks for a small set of robotic arms
performing a set of tasks. Each robotic arm and each task gets one subnetwork, which
reduces the total amount of models needed to be trained compared to an end-to-end model
(n + m vs. n m). In this model, the networks were composed, i.e., the input to the policy
network was given to the task subnetwork, and the output of the task network was the
input to the robotic arm subnetwork, whose output is the final output of the model.

Another approach to task decomposition presented in [52,53] is to have a single net-
work that learns the number of subnetworks necessary, which adapts the architecture
dynamically during training. This is done by having a task-decomposition layer that clus-
ters the input and provides it to the task-specific subnetworks, whose output is combined
in the next layer. The idea is that the task-decomposition layer will start with zero clusters
and add more until some criterion is fulfilled, which is architecture specific.

Modularity and task decomposition are suitable approaches to neural network design
for the dynamic interoperability task in SoSs. For the translation task, translating between a
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new pair of systems can be considered a new task, and if an encoder–decoder architecture
is used, the encoder and decoder can be specialized for the systems in question. Further,
the semantic metadata describing the messages, systems, and SoS in question could also
be used to modularize a translator, as each metadata element describes how the system
can interact with other systems, see Figure 5. If SoS-level goals are incorporated into the
metadata, the modular approach could also help to achieve operational interoperability.

Choosing what modules are present in the network depending on the metadata used
is a discrete view of modularity. Furthermore, as is often the case in neural network design,
more granular approaches could be used. Consider the LSTM, a recurrent neural network
that uses gating to choose what information gets preserved and what gets forgotten in the
next time step [54]. A gating approach could be adapted, where the gating is dependent
on the data, metadata, or both, and this approach would likely require the metadata to be
embedded first, e.g., using OWL2Vec. One can also see the metadata as a data source for an
attention mechanism, similar to techniques used in image captioning [55]. The idea is that
each time step of an input sequence gets a summary of all previous inputs and an image
and learns what part of the input and image the network should pay attention to [56]. In
the interoperability case, the sequence would be a message, and the image is swapped with
metadata elements.

5.4. Emergent Communication

The communication between learning agents in a system does not need to be estab-
lished at design time. Instead, the communication protocols used can emerge from the
behaviours of the learning agents and systems, a process called emergent communication in
the field of multi-agent systems ([15], Section 5.2). Ref. [57] present early investigations in
this field, using evolutionary algorithms to evolve agents that can combine a static set of
sounds into words and sentences to describe objects.

Emergent communication has recently been getting more attention in the deep learning
community. Ref. [58] present a metalearning approach to quickly converge the language
of populations of pre-trained agents. The pre-trained agents serve as a prior for language
evolution, and it is shown that both pre-trained networks and human language can be used
as a basis for the metalearner.

Ref. [59] explores how agents can learn compositional languages, i.e., languages where
the number of combinations of tokens and grammar rules is larger than the amount of
tokens and grammar rules. They set up a speaker–listener game, where agents communicate
via embeddings created by variational autoencoders [60] using discrete latent variables,
and explore how model capacity and channel bandwidth affects the emergent language.
They find that while there is a lower limit where bandwidth and capacity to where the
emergent language is composite, an upper bound could not be determined.

Ref. [61] explores the effect of connectivities and group size on emergent language,
using a model similar to [59]. They set up an experiment with two groups of agents using
variational autoencoders, where the first group learns the shapes of objects, and the second
group learns the color of objects. Agents from these groups can communicate, using an
emergent language, and cooperatively perform the combined task of shape and color
recognition. They find that by manipulating the size and shape of the communication
graphs they are able to influence the formation of local varieties of emergent language,
i.e., dialect formation. Despite the formation of dialects, agents of distant dialects can still
effectively perform the combined task.

Ref. [62] investigates how the construction of discrete communication tokens affect
communication learning. They provide theoretical arguments to show that using a static
set of discrete communication tokens is not powerful enough to evolve emergent commu-
nication in general. Instead, they propose to use neural networks to learn an underlying
semantic space, from which discrete communication tokens can be extracted. This tech-
nique generalizes better, and they show that the tokens learned are semantically meaningful
to humans agents.
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5.5. Concept-Based Learning and Reasoning

People can learn new concepts from just one or a handful of examples, whereas stan-
dard algorithms in machine learning typically require orders of magnitude more. In partic-
ular, people learn feature-rich representations of entities and their relations, constructed
by composing simpler primitives, leading to a high capacity for generalisation [63,64].
Generalizing to novel tasks given only a few labeled examples is a fundamental challenge
in closing the gap between machine- and human-level performance. A recent trend to-
wards these goals is the explicit representation and manipulation of concepts in a paradigm
known as Concept Learning. Approaches like these, where symbolic information is mapped
to semi-structured grounded representations of entities and events in the world via an
optimisation process is a natural way to bridge the gaps between semantics, data, and
causal powers.

For example, Ref. [65] synthesises a computational graph where extracted object and
concept representations are used as inputs. The nodes of the computational graph are
taken from a pool of parameterless functions representing reasoning constructs such as
functions for selecting an object, or relating the relative position of two objects. Ref. [66]
further extends this definition to include learnable functions, metaconcepts, representing
relationships between concepts: f (Ca, Cb, R; Θ), a learnable definition of the RDF triple.

In [64] a semantic reasoning structure is layered on top of a prototype-based network
for image classification where the semantic reasoner provides an attention-like mechanism
controlled by metadata. The model input is routed to specialised parameterised modules
whose output is subsequently weighted according to a local importance score and aggre-
gated. Extraction of concepts is done independently, there is no joint learning of concepts
and their representation, and this can come from, e.g., ontological data. In this way the
network can choose to include or exclude an entire concept at the abstract level, make use
of fine-grained information in the concept representation, and explain the importance of
each input concept for the final output.

Motivated by the restricted local receptive field of kernels in a convolutional network
and the ability of humans to manipulate abstract semantic concepts, ref. [67] introduces
a computationally efficient reasoning module with sparse interactions between concepts
in a multi-branch architecture where each branch is taken to represent a concept. A key
feature is the ability of the network to modulate the output of each branch depending on
a non-local context vector computed by using an attention-based sampling mechanism
to derive a succinct concept representation from the feature maps in each branch, which
is further refined by a fully-connected graph operation. The resulting model is able to
achieve competitive performance on a multitude of datasets with similar computational
requirements as the backbone network. The concept extraction and modulation process
is automatic and fully trainable (in contrast to [64]) but the connection to human-level
concepts is less clear. The authors show that some feature maps seem to correspond to clear
features, but not all concepts learned are easily interpretable; a direction not explored in
the work is how these concepts can be connected to ontologies or knowledge bases.

An early example of concept-based learning and reasoning for SoSs automation is
presented in [68], where concepts are represented in a vector-symbolic architecture and
actions are automated using a combination of causality-based imitation learning and
analogy making.

A related, but different, approach to symbol manipulation is provided by logic reasoners:
programs executing a logical query on a knowledge base or ontology. These systems allow
automatic answering of complex queries, yet it is unclear how to integrate them into a
deep learning framework. A work in this direction is [69], where an approximate SAT
solving layer is developed that discovers logical rules during the learning process; it can
jointly learn input–output mapping and rules for that mapping based on the relationships
between input variables and is shown to outperform a method based on local connectivity
between input features.
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Incorporating concept-based reasoning can produce models with better generalisa-
tion from less data, increasing resource efficiency and allowing translation to novel tasks
facilitating runtime operation, both in part due to the increased level of abstraction. The
model can benefit both from high-level relational information and fine-grained details in
specific features. This is desirable for integration into SoSs, where gathering significant
amounts of data for all possible devices is prohibitively expensive. In fact, all possible
devices are not even defined at training time. Generalisation to novel tasks is a funda-
mental requirement for such systems. Additionally, explicit representation of concepts
allows these to be manipulated directly, which could increase fault resilience and system
robustness, for example, by mitigating internal representation drift in the online setting.
There is opportunity to integrate the ontological metadata available for SoSs, an area cur-
rently under-explored. Ontologies, rich representations of data, could be used to inform
model initialisation or extend the application of concept learning to simpler models. They
furthermore allow model output to be expressed in terms of human-relatable concepts
facilitating interpretability. Finally, incorporating differentiable logic reasoners, particularly
when applied to the concept level where the input space is sparse, can provide top-down
feedback that can be difficult or impossible to discern from a bottom-up approach.

5.6. Metalearning

In metalearning the target is to learn an algorithm capable of instantiating well-
performing models given a task definition, metadata, and possibly by inspecting input
data samples. This way, metalearning operates on a distribution of tasks in a systematic,
data-driven way, leveraging prior experience to bootstrap performance in novel, but related,
settings. AutoML and k-shot learning are two examples where metalearning is used to
address problems that can be useful in addressing the M2M message transcoding problem
described here.

AutoML was introduced to lower the threshold for applying machine learning to a
given problem and aims to automate the selection and execution of an entire data pro-
cessing pipeline comprising a large, structured parameter search space containing both
differentiable and non-differenetiable parameters. Bayesian optimisation is an attractive
option to effectively explore such a search space, however, without leveraging prior knowl-
edge it is time-consuming. The search process can be warm-started by seeding it with
pipelines known to perform well on similar tasks. Motivated by this, nearest-neighbour
search in metafeature space is used [70], i.e., using summary statistics calculated on the
dataset to select suitable pre-generated pipelines optimised to perform well in its given task.
Calculating useful metafeatures can be time consuming, and some measures are ill-defined
in the presence of, e.g., categorical data, reducing their applicability. As an alternative to
warm-start Bayesian optimisation, when a full search is prohibitively costly to run, recent
efforts, [71], adopt portfolios, pre-computed, complementary pipelines that perform robustly
across a large set of tasks.

Training in machine learning is often data-intensive; humans, however, can effectively
learn new tasks without a even a single training example, relying on a task description
and prior knowledge. This is the main motivation behind k-shot learning in which the
model is only allowed to sample k examples from the input data. A general approach
is presented in [72,73] which has been successfully applied in regression, classification,
and reinforcement learning settings. The objective is to find a location in parameter space
which is easy to specialise, where the latter uses a more expensive second-order approach
with comparable performance. The initial model parameters Φ are updated using a fixed
number of gradient descent iterations yielding parameters W. The initial parameters Φ
are then updated with a small step in the direction of W: Φ← (1− ϵ)Φ + ϵW. In this way
the final model parameters Φ are well-suited for rapid adaptation with only a few steps of
gradient descent.

A special case, zero-shot learning, has k = 0 forcing the metamodel to rely only on
prior knowledge provided by auxiliary data sources such as knowledge bases or ontologies.
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In [74], semantic vector representations of class labels are refined by incorporating a rela-
tional network and predefined knowledge bases to address problems of representations,
e.g., polysemic words and handling multi-word label.

An extension of the k-shot learning problem is the generalised setting [75,76], where
the definition is changed to include both novel and seen classes during evaluation to better
match real-world applications. Existing techniques in both zero- and few-shot learning
fail to establish a globally consistent label space; when presented only unseen classes
discrimination is successful, but when the joint label space is used models show a clear bias
towards seen classes.

AutoML explores the setting where large amounts of data are available, while k-shot
learning focuses on limited-data tasks. Zero-shot learning must, by construction, rely on
metadata and auxiliary data sources. For example, the integration of ontological data is
actively explored. In heterogeneous SoCPS we cannot expect to have access to training data
from all systems and will see a mixture of both previously known and unknown systems.
Thus, techniques pertaining to the generalised k-shot problem setting are relevant.

6. Open Questions and Future Research Challenges
6.1. Development of ML-Based Methods for SoS Interoperability

The task to dynamically establish interoperability between SoCPS in heterogeneous
environments is a challenging problem. Different standards, semantic models, and legacy
systems result in an inconsistent mix of semantic spaces, which are non-static in the presence
of, e.g., reconfigurations, software updates, technology migration, and maintenance. Thus,
the mainstream approaches to establish interoperability via standardization and translation
at the symbolic/metadata level using, e.g., JSON and XML plaintext messages, have
limited automation and scalability potential, which motivates further research on ML-
based methods in this context. This observation motivates the survey of ML methods in
Section 5, which can be helpful to address the general SoCPS dynamic interoperability
problem. The concepts and methods described, like metadata-driven concept learning
and metalearning, represent prominent examples that have proven useful to address real-
world tasks that share some qualities with the SoCPS dynamic interoperability problem. In
particular, transcoder architectures, like that illustrated in Figure 5, have proven effective
for translation problems in several domains [44] and require only one encoder–decoder
pair for each system, O(n), as opposed to each system pair, O(n2), thus requiring less
resources and training data. Additionally, such an architecture allows for integrating system
metadata, for example, by letting each encoder–decoder pair receive metadata embeddings
as input. Taking a modular ML model approach would allow for decomposition of the
problem into smaller parts.

However, several details of a fully functional architecture of the type outlined here
remain to be investigated, and the set of ML-based automation opportunities surveyed
here are limited to some particularly evident cases and should not be considered a com-
prehensive review, especially considering the rapid progression of the research on these
topics. While the above aspects are being examined in isolation in an increasing body of
research, the application to dynamic interoperability in the SoCPS setting requires their
joint intersection, which is an area essentially missing in the literature with only a few
recent contributions, see for example [28] and references therein. The architecture for M2M
communication outlined in Figure 5 and related discussion of the SoCPS interoperability
problem define some general research directions, but the details of the implementation
remains to be understood and developed. For example, the data and metadata are often
textual representations of a graph structure, which means that both character-, word-,
and graph-level models could be used to encode such data, but there is yet no consensus
on the best approach. Furthermore, the aggregating and concept mapping steps in our
proposed model (Figure 5) could also be done in different ways, either as fully trainable ML
models, logical predefined models, or a mix of predefined and trainable components. The
modular encoder part has similar open problems; what concepts and tasks should have
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their own modules, and should the modules always be the same or should they depend on
the translation target? While the modularization approach seems reasonable in principle,
there are open questions regarding architecture and efficient optimization protocols.

A solution of the SoCPS dynamic interoperability problem based on policies and
heterogeneous system utility definitions will likely require a (federated) reinforcement
learning protocol for the reasoning process outlined in Figure 4, possibly in combination
with digital twins needed for safe parameter tuning and validation. This is further compli-
cated by the numerous standards, data/metadata formats, and LOD datasets with loosely
connected pieces of symbolic information which need to be dynamically integrated in a
SoCPS. Recent work on emergent and learning-based communication in the context of
agent based-systems can provide some guidance, such as the agents that learn to commu-
nicate in a simple game using symbols that are also meaningful for humans [62]. Further
work is necessary to map the basic research on emergent communication in agent-based
systems to the SoS interoperability problem, particularly in realistic scenarios involving
complex heterogeneous definitions of the individual systems.

6.2. SoCPS Engineering Challenges

While the challenges of creating ML models suitable for SoCPS interoperability are
themselves great, there will also be practical challenges involved with deploying ML in
SoCPS. Here we highlight the prominent ones:
1. Lack of open datasets: There is a lack of open datasets suitable for end-to-end

optimization and potential logistical and practical issues with gathering data from
business-critical automation systems. Addressing these engineering issues requires
further work, which could involve sharing digital twins and developing open testbeds.

2. Privacy and security concerns: Privacy and security aspects are critical for the transfer
of new SoCPS technologies developed in such model environments to real-world
applications, and the problems to establish privacy and security while allowing
for systems to share the information required for learning and optimization are
challenging. These challenges are partially addressed in the fields of federated ML and
ML under fully homomorphic encryption, see for example [77,78], but the solutions
developed need to be adapted to the SoCPS domain.

3. Lack of protocols for production environments: Furthermore, the training and
validation protocols developed need to be aligned with the requirements of production
environments, and a working culture which often emphasises the importance of
explainable and predictable solutions. This includes developing effective exception
handling solutions for graceful degradation in the case of M2M communication
failures, etc.

7. Conclusions

In this paper, we describe the problems within establishing dynamic interoperability
in SoCPS and present a literature survey of AI and ML approaches that could potentially
be used in automatic interoperability solutions.

The results of the survey are summarized in Table 2, where we have organized the
papers by the kind of interoperability their approach establishes (dynamic/static) or if
the article discusses general AI concepts useful for SoCPS interoperability. We further
note if the approach uses a rule-based (symbolic) or learning-based (subsymbolic) ap-
proach, if the approach utilizes goal-based cooperation, and if they consider fault re-
siliency and resource efficiency. Subsymbolic approaches have increased in popularity
recently and we have identified nine papers that show interesting research and approaches,
namely [23,28,29,43,58,59,61,62,68]. Not all of these papers mention interoperability ex-
plicitly, due to research groups working in separate fields with different goals in mind.
Nevertheless, we think that the problems these papers are investigating are fundamentally
linked to the interoperability, and combining these approaches is essential to address the
dynamic SoCPS interoperability problem.
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Table 2. Summary of system/agent interoperability aspects and AI concepts considered in the
reviewed literature (sorted in columns by order of succession).

References

Run-Time (Dynamic)
vs. Pre-Defined (Static)

Interoperability, or
Generic AI Concept

Rule-Based (Symbolic)
or Learning-Based

(Subsymbolic)

Utility- or Goal-Based
Cooperation (Yes/No)

Fault Resilience
Aspects (Yes/No)

Resource Efficiency
Aspects (Yes/No)

[13] static symbolic no no yes
[44] static symbolic no yes yes
[42] static symbolic yes no yes
[41] static symbolic yes no yes
[16] static symbolic yes yes yes
[29] static subsymbolic no no no

[69] dynamic symbolic no no no
[70] dynamic symbolic no no no
[71] dynamic symbolic no no no
[72] dynamic symbolic no no yes
[73] dynamic symbolic no no yes
[36] dynamic symbolic yes no no
[16] dynamic symbolic yes no no
[57] dynamic symbolic yes no no
[39] dynamic symbolic yes yes no
[27] dynamic symbolic yes yes yes
[28] dynamic subsymbolic no no yes
[68] dynamic subsymbolic no yes no
[29] dynamic subsymbolic yes no no
[58] dynamic subsymbolic yes no no
[23] dynamic subsymbolic yes no yes
[43] dynamic subsymbolic yes no yes
[61] dynamic subsymbolic yes yes no
[62] dynamic subsymbolic yes yes no
[59] dynamic subsymbolic yes yes yes

[48] concept subsymbolic no no no
[45] concept subsymbolic no no no
[49] concept subsymbolic no no no
[67] concept subsymbolic no no no
[65] concept subsymbolic no no yes
[66] concept subsymbolic no no yes
[63] concept subsymbolic no no yes
[76] concept subsymbolic no no yes
[64] concept subsymbolic no no yes
[74] concept subsymbolic no yes no
[52] concept subsymbolic yes yes yes
[51] concept subsymbolic yes yes yes
[53] concept subsymbolic yes yes yes

While there are several open problems that need to be addressed before a generic
architecture of the kind outlined in Figures 4 and 5 can be realised, see Section 6, the rapid
developments in the aforementioned machine-learning areas creates a timely opportunity to
investigate and develop AI-assisted dynamic interoperability solutions for scalable SoCPS
engineering. Such technology is key given the present development of operational technol-
ogy and production value chains, which require a shift towards large-scale optimization
and SoS solutions, as well as for dealing with societal challenges that require large-scale
system coordination and optimisation. This development drives the invention of many
new standards, data/metadata formats and symbolic definitions, which increases system
heterogeneity and scalable SoCPS technologies thus need to become increasingly standard
invariant. In general, since the number of communicating systems will far outnumber
people on the planet, and our society depends on their cooperation, a take-away message
for machine learning researchers is that machine language processing in heterogeneous
environments deserves more attention. Recent progress on other challenging tasks, like
visual concept learning and multimodal transcoding using for example combinations of
encoder–decoder networks and generative adversarial networks (GANs), are encouraging
for addressing the SoCPS dynamic interoperability problem with similar ML concepts. This
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requires development of appropriate open data sets, simulators (digital twins) and test
beds to support the advancement of models and solutions.
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