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Abstract: The efficient design of Permanent Magnet Synchronous Motors (PMSMs) is crucial for
their operational performance. A key design parameter, cogging torque, is significantly influenced
by various structural parameters of the motor, complicating the optimization of motor structures.
This paper proposes an optimization method for PMSM structures based on heuristic optimization
algorithms, named the Permanent Magnet Synchronous Motor Self-Optimization Lift Algorithm
(PMSM-SLA). Initially, a dataset capturing the efficiency of motors under various structural parameter
scenarios is created using finite element simulation methods. Building on this dataset, a batch
optimization solution aimed at PMSM structure optimization was introduced to identify the set of
structural parameters that maximize motor efficiency. The approach presented in this study enhances
the efficiency of optimizing PMSM structures, overcoming the limitations of traditional trial-and-error
methods and supporting the industrial application of PMSM structural design.

Keywords: permanent magnet synchronous motors; heuristic optimization; structure design

1. Introduction

Permanent Magnet Synchronous Motors (PMSMs) have long been integral to advance-
ments in electronics and electrical engineering, distinguished by their high power density
performance—a primary focus of both application and research [1–3]. The quest for optimal
application efficiency in PMSMs hinges on the strategic structural design, wherein cogging
torque emerges as a pivotal factor. Variability in the air gap permeability of the stator
slot, leading to cogging torque, induces motor vibration and noise, detrimentally affecting
control precision. Consequently, the mitigation of cogging torque has garnered focused
research efforts, aiming to refine the structural parameters of PMSMs to suppress this
undesired effect [4–6].

The selection of these parameters, however, is beleaguered by their complexity and
abundance, coupled with their interrelated and nonlinear nature. Historically, the determi-
nation of structural parameters for PMSMs has relied heavily on finite element simulations
or manual calculations—a practice fraught with inefficiencies. With the burgeoning interest
in electric aircraft, the development of high power density PMSMs, necessitating reduced
cogging torque, has become critically important.

Addressing this need, various studies have explored methodologies to minimize cog-
ging torque through strategic parameter optimization. Reference [7] leverages the energy
method and Fourier series analysis, based on the air gap permeability and magnetic flux
density distribution of an equivalent slotless motor, to derive a generalized analytical
expression for cogging torque. This analytical approach facilitated the identification of
optimal design parameters, such as slot–pole combinations and skew angles, subsequently
validated via finite element analysis. Similarly, reference [6] examines a four-pole 24-slots
surface-mounted PMSM (SPMSM), employing the energy method to analyze cogging
torque generation mechanisms and determine optimization parameters. The ensuing simu-
lation and experimental validation underscored notable improvements in motor efficiency,
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cogging torque reduction, and torque ripple minimization. Furthermore, the influence
of magnetic pole edge effects on cogging torque has been scrutinized, and innovative
methods have been proposed to modulate the amplitude and phase shift of cogging torque
generated by each pole segment [8]. This approach, which aims to minimize cogging torque
in stepped-tilted structures, reinforces the importance of precision in the motor design
process. Additionally, the refinement of cogging torque calculation methods to enhance
accuracy reflects the ongoing evolution of PMSM optimization strategies [9].

Although researchers have done a lot of work in the optimization of motor structure
parameters, these methods are almost all from the perspective of trial and error, and the
optimization cost is high and the efficiency low. The heuristic algorithm for multi-objective
optimization provides an effective solution to this kind of problem. From this point, our
work involves a genetic algorithm-based approach for structure optimization, augment-
ing traditional methodologies with intelligent, data-driven strategies. Nevertheless, the
conventional genetic algorithms’ efficiency remains a challenge, prompting the adoption
of the SMS-EMOA algorithm to enhance optimization processes [10]. This novel strategy
prioritizes the maximization of dominated super volume, employing a selection operator
rooted in non-dominated sorting to yield a well-distributed set of solutions across the
Pareto front.

The comparative analysis of SMS-EMOA with bleeding-edge methodologies across
various benchmarks, including aerospace applications, underscores its efficacy in handling
multi-objective optimization challenges [11]. This paper delves deeper, proposing a refined
SMS-EMOA model to expedite and elevate the quality of optimization, particularly in reduc-
ing cogging torque. It posits a dual-phase optimization strategy—the initial optimization of
stator–rotor structural parameters followed by a focused optimization of significant param-
eters through response surface methodology, culminating in the application of SMS-EMOA
to ascertain optimal parameter values.

Addressing the current optimization challenges, namely the extensive parameteriza-
tion of motor structures and the absence of a rapid motor simulation calculation model,
alongside the high coupling of motor structure parameters, this paper introduces a novel
motor simulation genetic algorithm optimization model. There are two innovative points
in this paper:

(1) An efficiency simulation method of PMSM based on finite element is established,
and the data set of permanent magnet motor structure optimization is formed. It can
provide support for motor structure optimization.

(2) An intelligent optimization model for motor structure parameters based on the SMS-
EMOA method is established, which is named the Permanent Magnet Synchronous
Motor Self-Optimization Lift Algorithm (PMSM-SLA).

This paper is organized as follows: fundamental equations of cogging torque and an
optimization analysis of the SMS-EMOA are given in the next section. After that, a new
PMSM case is studied in Section 3 for method validation, and the optimization method
is compared with conventional FEA-based optimization. Finally, Section 4 concludes
the paper.

2. Methodology

Optimizing the structure of motor slots can enhance motor performance, efficiency,
and output power [12]. However, the parameters influencing motor structure are numer-
ous and intricate. In response, this paper establishes a systematic approach for motor
structure optimization, grounded in an analysis of the physical characteristics that affect
motor efficiency, from the perspective of the motor’s physical properties. This method-
ology is divided into two steps: (1) analyzing the fundamental physical characteristics
of the motor structure and defining decision variables and goals for motor efficiency op-
timization, and (2) optimizing motor structure parameters using an enhanced heuristic
optimization algorithm.
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2.1. Physical Analysis of PMSM

The relative position of the stator and rotor of the SPMSM is shown in Figure 1. The
position of θ = 0

◦
is defined as the midline of the specified PM. The angle between the center

line of a stator tooth and the center line of the specified PM is designated as α. Neglecting
the magnetic potential drop on the stator core, the air-gap flux density distribution along
the circumference can be expressed as Equation (1):

Bag(θ, α) = µ0
F(θ)

hc + δ(θ, α)
(1)

where F(θ), hc, and δ(θ, α) represent the distribution of PM thickness, the air-gap magneto-
motive force (AMF), and the effective air-gap length along the circumference, respectively.
The magnetic co-energy stored in the air gap [9] can be described as Equation (2):

Wag =
1

2µ0

∫
V

[
Bag(θ, α)

]2dV =
µ0

2

∫
V

F2(θ)

[
1

hc + δ(θ, α)

]2
dV (2)
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Therefore, the cogging torque can be calculated by Equation (3):

Tcog = −
∂Wag

∂α
(3)

The Fourier expansion of F2(θ) on the interval
[
− π

2p , π
2p

]
can be expressed as Equation (4):

F2(θ) = F0 +
∞

∑
n=1

Fn cos(2npθ) (4)

where F0 = αpF2, Fn = 2
nπ F2 sin

(
nαpπ

)
, F = Brhc

µ0
. αp and Br are the pole–arc coefficient

and the remanent magnetization of the PM, respectively. Taking into account the influence
of the stator slot structure on the air-gap permeance, the effective air-gap length can be
calculated using the magnetostatic solver of finite element software. The magnetic potential
within a tooth pitch is practically identical to that at the tooth centerline due to the inner
surface of the stator within a tooth pitch being an equal magnetic potential surface. The
suitable vector magnetic potential is given at the left and right boundaries of the calculation
model for the effective air-gap length, as demonstrated in [9]. The magnetic potential within
a tooth pitch is basically the same as the magnetic potential Fδt, which can be obtained
using Equation (5):

Fδt =
BδtNδ′

µ0
(5)
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where BδtN is the flux density at point N and δ′ is the air-gap length at the tooth centerline.
The effective air-gap length within a tooth pitch can be obtained with Equation (6):

δ(θ, α) =
µ0Fδt

Bδt(θ, α)
− hc (6)

The distribution of the air-gap flux density within a tooth pitch is represented as
Bδt(θ, α). This method can be employed to efficiently and precisely determine the effective
air-gap length and air-gap permeance in electrical machines of various structures, while
also considering the impact of intricate slot configurations. The Fourier expansion of[

1
hc+δ(θ,α)

]2
on the interval

[
−π

z , π
z
]

can be expressed as Equation (7):

[
1

hc + δ(θ, α)

]2
= G0 +

∞

∑
n=1

Gk cos[kz(θ + α)] (7)

where G0 and Gk are the Fourier coefficients and z is the number of stator slots. Substituting
Equations (4) and (7) into Equation (2), the expression of the cogging torque [9] can be
simplified as Equation (8):

Tcog =
µ0πzLa

4

(
R2

2 − R2
1

) ∞

∑
n=1

kGkFn sin(kzα) (8)

where La is the axial length of the armature and R1 and R2 are the outer radius of the rotor
core and the inner radius of the stator separately. k, n are positive integers and satisfy
n = kz

2p , the minimum value of k is 2p
GCD(2p,z) .

2.2. Heuristic Optimization with SMS-EMOA

This section provides a brief overview of the fundamental principles of the heuristic
optimization algorithm utilized [13,14]. The basic workflow of the SMS-EMOA is depicted
in Figure 2. It comprises three core steps: population initialization, genetic mutation, and
iteration determination. Through repetitive training, it aims to identify the optimal solution
set under the constraints of multiple optimization objectives and boundary conditions [15,16].

2.2.1. Description of the Proposed Optimized Method

The hypervolume measure, also known as the φ metric, is a commonly used qual-
ity measure for comparing the outcomes of evolutionary multi-objective optimization
algorithms (EMOA). The fundamental Algorithm 1 outlines the process. Beginning with
an initial population of µ individuals, a new individual is generated through random-
ized variation operators. If another individual result in a population of higher qual-
ity is replaced according to the φ metric, the new individual becomes a member of the
subsequent population.

Algorithm 1. SMS-EMOA

1: P0 ← init() /* Initialize random population of µ individuals */
2: t← 0
3: repeat
4: qt+1 ← generate (Pt) /* generate offspring by variation */
5: Pt+1 ← Reduce(PtU{qt+1}) /* select µ best individuals */
6: t← t + 1
7: until termination condition fulfilled
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The procedure named Reduce, as outlined in Algorithm 2, selects the µ individuals
for the subsequent population. NSGA-II [17] is a steady-state algorithm founded on two
key principles: non-dominated sorting is utilized as a ranking criterion, and hypervol-
ume is employed as a selection criterion to eliminate individuals that contribute the least
hypervolume to the lowest-ranked front. The algorithm fast-nondominated-sort, used
in NSGA-II [17], partitions the population into v sets R1, . . . , Rv, based on the defined
non-dominated sorting. The sets, referred to as fronts, have an index that denotes their
hierarchical order based on domination levels, wherein the solutions within each front are
mutually non-dominated. The initial subset includes all non-dominated solutions from the
original set Q. The second front consists of individuals that are non-dominated in the set
(Q\R1), meaning each member of R2 is dominated by at least one member of R1. In a more
general sense, the ith front consists of individuals that remain non-dominated even when
individuals from fronts j with j < i are removed from Q.

Algorithm 2. Reduce(Q)

1: [R1, . . . , Rv]← fast-nondominated-sort(Q) /* all v fronts of Q */
2: r← argmins∈Rv

[∆φ(s, Rv)] /*s ∈ Rv with lowest ∆φ(s, Rv) */
3: return (Q\{r}) /* eliminate detected element */

Afterwards, one individual is discarded from the worst ranked front. Whenever this
front comprises |Rv| > 1 individuals, the individual s ∈ Rv is eliminated that can be
described as Equation (9):

∆φ(s, Rv) = φ(Rv)− φ(Rv\{s}) (9)
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The value of ∆φ(s, Rv) can be interpreted as the exclusive contribution of individual
s to the φ metric value of its corresponding front [16]. According to the definition of
∆φ(s, Rv), a dominating individual is always retained, and a non-dominated individual is
never replaced by a dominated one. This measure ensures that individuals maximizing the
population’s φ metric value are preserved, thereby preventing a decrease in the population’s
covered hypervolume through the application of the Reduce operator. Therefore, the
following invariant holds for Algorithm 1 that can be described as Equation (10):

φ(Pt) ≤ φ(Pt+1) (10)

2.2.2. Key Hyperparameter of the Optimizer

(1) Steady-state selection

Due to the significant computational effort involved in calculating the hypervolume,
a steady-state selection scheme is employed. Since only one individual is created in each
generation, only one individual needs to be removed from the population. Consequently,
the selection operator must calculate a maximum of (µ + 1)φ metric values (precisely
µ + 1 values if all solutions are non-dominated). These values correspond to the subsets
of the lowest-ranked front, with one point left out in each subset. In contrast, a (µ + λ)

selection scheme would necessitate the computation of
(

µ+λ
µ

)
possible φ metric values to

identify an optimally composed population that maximizes the net value of the φ metric.
Additionally, the use of a steady-state scheme allows for effortless parallelization through
asynchronously distributed function evaluations.

(2) Population size

In contrast to other strategies that archive non-dominated individuals, the SMS-EMOA
maintains a population of both non-dominated and dominated individuals at a constant
size. Retaining only non-dominated individuals can result in small or single-member
populations, leading to a significant loss of population diversity. Modifications in the
SMS-EMOA with dynamic population sizes have been explored in [18]. These variants are
particularly useful when an acceleration of the initial stages of the evolutionary process
is desired. To prevent the loss of diversity, it is recommended that a minimum limit be
imposed on the population size.

2.2.3. Handling of Boundary Solutions

In a two-dimensional solution space, the reference point yre f is solely required for
calculating the hypervolume between the two extreme points, representing the best and
worst objective values, respectively. For simplicity, we have chosen to omit yre f and always
retain these extreme solutions. However, when dealing with multiple objective functions,
additional points within the boundary may contribute to the hypervolume, depending
on the selection of reference points. These boundary points encompass at least one worst
objective value. Not all boundary solutions are preserved; their inclusion depends on their
respective contributions. To address this, we adopt a dynamic approach to handling the
reference points, recalculating yre f for every generation. Specifically, yre f is determined
as the vector of the currently worst objective values, increased by 1.0. Consequently, the
contribution of a point with a worst objective value is assessed based on the difference to
the reference point, with a neutral effect in the product. As a result, favorable non-extreme
solutions may exhibit superior hypervolume performance. Initial observations indicate
that dynamic reference point handling is preferable to a static approach.

2.2.4. Selection Variants of SMS-EMOA

A comparative analysis of various selection modes within the SMS-EMOA framework
was presented in [19]. These approaches all incorporate the concept of hypervolume
contribution in conjunction with non-dominated sorting, the shared dominance criterion,
or the count of dominating points. In this paper, we will provide more detailed descriptions
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of the latter approach. The number of dominating points d(s, P(t)) is the number of points
from set P(t) that dominate point s, formally can be described as Equation (11):

D(s, P(t)) = |{y ∈}P(t)|y ≺ s | (11)

The modified Reduce procedure is illustrated in Algorithm 3. In the case of dominated
solutions, the number of dominating points, denoted as d(s, P(t)), is employed as the
selection criterion. Conversely, if all individuals in P(t) are non-dominated, the contributing
hypervolume ∆φ is utilized. When dealing with a population that consists of multiple
fronts, the individual with the highest value of d(s, P(t)) among the solutions in the lowest-
ranked front is discarded. In instances where all individuals have a d(s, P(t)) value of zero,
the ∆φ selection is implemented instead.

Algorithm 3. Reduce(Q)

1: [R1,. . .,Rv]← nondominated-sort(Q) /* all v fronts of Q */
2: if v > 1 then
3: r ← argmaxs∈Rv

[d(s, Q)] /* s ∈ Rv with highest d(s, Q) */
4: else
5: r← argmaxs∈R1

[∆φ(s, R1)] /* s ∈ R1 with lowest ∆φ(s, R1) */
6: end if
7: return (Q\{r}) /* eliminate detected element */

One motivation for developing such a measure is the smaller runtime complexity
compared to that of the hypervolume measure. Additionally, the objective was to achieve a
different ranking of dominated solutions, with an emphasis on sparsely filled regions of
the solution space. In this approach, individuals are retained in subsequent generations to
fill gaps in the approximation of the Pareto front. The contributing hypervolume is utilized
to distribute solutions advancing the front on which they reside. Although the ultimate
aim is to distribute solutions advancing the first non-dominated front (R1), this is not the
sole objective on other fronts. The measure favors solutions located in regions where the
superior fronts are sparsely populated. The idea behind this is that offspring solutions
can progress to higher-ranking fronts and occupy those vacancies. In densely populated
regions of the non-dominated front, it is not beneficial to retain dominated individuals.

2.2.5. Calculation of Contributing Hypervolume ∆φ

The best-known algorithms compute the hypervolume with a runtime that is poly-
nomial in the number of points but exponentially increases with the number of objectives.
Moreover, dedicated algorithms have been developed to efficiently calculate all values of
∆φ in cases of two and three objectives simultaneously. These specialized algorithms are
substantially faster than repeatedly calling procedures to compute the overall hypervolume.

In the case of two objectives, the points from the front with the lowest rank among the
non-dominated ones are examined, and they are arranged in ascending order according
to the values of the first objective function, f1. As a result, a sequence is obtained that
is sorted in descending order based on the f2 values, since the points are mutually non-
dominated. To calculate ∆φ for a sorted front Rv =

{
s1, . . . , s|Rv |

}
, the following formula

is used (i = 2, . . . , |Rv| − 1):

∆φ(si, Rv) = ( f1(si+1)− f1(si)) · ( f2(si−1)− f2(si)) (12)

The paper [18] presents a rapid algorithm for computing all contributions in a three-
objective space. This algorithm has a runtime of O

(
µ3) and relies on a two-dimensional

projection of the point set. Specifically, the f1 − f2 plane is divided into a grid based on
the coordinates of all µ + 1 solution vectors, including the reference point. For each grid
cell cij(i = 1, . . . , µ + 1, j = 1, . . . , µ + 1), the µ + 1 values of f3 are computed at the corner
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point dominating it in the f1 − f2 plane. Based on these values, the best value, h1
(
cij
)
,

and the second-best value, h2
(
cij
)
, are determined. Storing this information in two matri-

ces of dimensions (µ + 1)× (µ + 1), the exclusive contribution of the ith solution vector
(i = 1, . . . , µ + 1) can be calculated as follows. For any grid cell cij with the h1

(
cij
)

value
determined by the ith solution, the volume vij is obtained by multiplying the surface area
of cij with the difference

∣∣h1
(
cij
)
− h2

(
cij
)∣∣. By accumulating the values of vij, the exclusive

contribution of the ith solution to the dominated hypervolume can be determined. The
O
(
µ3) runtime arises due to the quadratic number of cells and the linear-time calculations

for each cell value. While it may be possible to further optimize this algorithm, such as
through incremental updates, the performance of the algorithm in the computations per-
formed in this paper is reasonably fast. Another potential advantage is the non-recursive
nature of the algorithm and its use of simple data structures, making it relatively easy to
implement and debug.

2.3. PMSM Structure Optimization Based on SMS-EMOA

Based on the analysis of motor structural physical factors conducted in Section 2.1, the
decision variables in the optimization design should include the inner and outer diameters
of the motor’s stator and rotor, the number of pole pairs, winding turns, the pole arc
coefficient, and the skew angle. The optimization objectives are to reduce cogging torque
and increase the motor’s power density. The two-step modelling flowchart is shown in
Figure 3.
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3. Numerical Example
3.1. Experimental Setup

To verify the effectiveness of the proposed method, this paper conducts case studies on
a surface-mounted permanent magnet synchronous motor (SPMSM) of the 20p24s model.
Initially, a simulation model of the motor is established based on a finite element model,
and the motor efficiency under various structural parameters is calculated.

Motor Simulation Calculation

The prototype of the 20p24s SPMSM is shown in Figure 4. The main parameters are
summarized in Table 1.
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Figure 4. The prototype test platform of the 20p24s SPMSM.

Table 1. The main structure 31kW of the 20p24s SPMSM.

Parameters Unit Range of the Value

Rated power kW 28~35
Length of armature mm 75~85
Rated speed r/min 1800~2100
Number of poles - 15~25
Number of slots - 20~30
Magnet thickness mm 4.9~5.8
Pole-arc coefficient - 0.835~0.865

The simulation experiments for this motor were conducted. The magnetic field lines
are reasonable, and the magnetic density distribution is correct.

3.2. SPMSM Structure Optimization with SMS-EMOA
3.2.1. Procedure of the Multi-Objective Optimization with SMS-EMOA

In this section, the SMS-EMOA is applied to search the optimal combination of pole–
arc coefficients of magnetic poles [20]. The key steps are summarized as Algorithm 4.

In the context of evolutionary algorithms, the optimization process begins with sam-
pling, which establishes an initial solution set, utilizing random sampling methods and
initializing a Population object with either new or pre-evaluated variables. Selection mech-
anisms then determine mating pairs for producing offspring, employing strategies such
as random selection, neighborhood-based selection, or tournament selection to introduce
selection pressure. Crossover operations generate offspring by combining selected parents,
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while mutation operations, typically initialized with a specific probability, are applied to
increase population diversity and enhance performance. The algorithm includes a feature
to eliminate duplicate solutions post-crossover and mutation, ensuring a unique set of
offspring. The offspring parameter controls the number of offspring generated, with the
default setting producing offspring equal to the population size, although it can be adjusted
to achieve a steady-state algorithm version.

Algorithm 4. Fast Non-dominated Sort

1: Initialize the sets and counters for each individual p ∈ P
2: for each individual p ∈ P do
3: p.sp← {} {Initialize the set of dominated solutions for p}
4: p.np← 0 {Initialize the domination counter for p}
5: end for
6: F1← {} {Initialize the first Pareto front}
7: for each individual p ∈ P do
8: for each individual q ∈ P do
9: if p dominates q then
10: Add q to p’s set of dominated solutions: p.sp← p.sp ∪ {q}
11: else if q dominates p then
12: Increment domination counter for p : p.np← p.np + 1
13: end if
14: end for
15: if p.np == 0 then
16: Assign rank 1 to p : p.rank← 1
17: Initialize crowding distance for p : p.crowding distance← 0
18: Add p to the first Pareto front: F1← F1∪ {p}
19: end if
20: end for
21: F ← {F1} {Initialize the set of Pareto fronts}
22: i← 1 {Initialize Pareto front counter}
23: while |F[i− 1]|> 0 do
24: Q← {}{ Initialize the next Pareto front}
25: for each individual p ∈ F[i− 1] do
26: for each individual q ∈ p.sp do
27: Update domination counter for q : q.np← q.np− 1
28: if q.np == 0 then
29: Assign rank i + 1 to q : q.rank← i + 1
30: Initialize crowding distance for q : q.crowding_distance← 0
31: Add q to the next Pareto front: Q← Q ∪ {q}
32: end if
33: end for
34: end for
35: i← i + 1{ Increment Pareto front counter}
36: Add the next Pareto front to the set of Pareto fronts: F ← F ∪ {Q}
37: end while
38: return Pareto fronts F with Tcog given by:

Tcog =
µ0πzLa

4
(

R2
2 − R2

1
)
∑∞

n=1 kGkFnsinkzα

3.2.2. Definition of the Optimization Space

After defining the basic process of multi-objective optimization, it is necessary to
further clarify the optimization objectives and boundary conditions. The objective function
and associated constraints can be determined with Equation (13):

minT
(
αp

)
= min

{
maxTcog(α)

}
0.835 ≤ αp ≤ 0.865

(13)
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It can be seen that the determined tilt angle basically satisfies sin bkzγ
2 = 0. Conse-

quently, the optimal pole–arc coefficients of the adjacent magnetic poles can be determined
using Equation (14): {

αp1 + αp2 = 2αp
cos nπ

4
(
αp1 − αp2

)
= 0

(14)

3.2.3. Approaching for Pareto Optimal Solution

The SMS-EMOA produces a Pareto front that represents all optimal solutions from
the last generation [21]. The number of dominating points can be efficiently calculated
by comparing the selection candidates with all solutions to check for dominance. This
process has a time complexity of O

(
mµ2), where m represents the number of objectives

and µ is the population size. The expected runtime complexity is lower than that of
the basic SMS-EMOA algorithm. While the worst-case complexity remains the same,
as the population may exclusively consist of non-dominated solutions, the average-case
complexity is assumed to be better. Figure 5 displays the optimization results for PMSM,
with a distinct Pareto front evident at the bottom of the graph. An optimal solution is
selected and substituted into the iterative formula for verification.
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Figure 5. Objective value distributions and Pareto-front points.

Multiple results on standard benchmark problems demonstrate that the SMS-EMOA
is well-suited for Pareto optimization with two and three objectives. It consistently outper-
forms established techniques such as SPEA2 [22], ϵ-MOEA, and NSGA-II [17] in terms of
both convergence and φ metric values. The examples reveal a well-distributed set of results
on the Pareto front, with particular emphasis on the boundaries and regions around knee
points. A notable feature of the SMS-EMOA is its ability to approximate the Pareto set with
a small number of individuals, which is frequently desirable in practice.

A novel selection criterion has been developed to supplant hypervolume-based selec-
tion in the presence of dominated solutions within the population. This criterion evaluates a
solution by considering the number of solutions that dominate it, directing the evolutionary
search toward less explored regions near the Pareto front. Both variants of the SMS-EMOA
(the basic algorithm and the coupling with the number of dominated points criterion) out-
performed conventional strategies, implying the effectiveness of the hypervolume selection
mechanism irrespective of the specific details of the selection scheme.
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The SMS-EMOA not only improved the distributions of solutions but also identified
solutions that clearly dominate the baseline design. Furthermore, the SMS-EMOA was
coupled with a metamodeling tool, which provided fast fitness function approximations
to save costly exact evaluations in unfavorable regions. The SMS-EMOA was the first
algorithm to consistently produce solutions that dominate the baseline design. Moreover,
this algorithm produced robust solutions.

In these cases, the runtime of the operations performed within the EMOA can almost
be neglected, and the SMS-EMOA is certainly a well-suited optimizer.

3.3. Results and Discussion
3.3.1. Optimization Results and Verification

Figure 6 shows the flowchart for calculating cogging torque. The cogging torque can
be calculated using the SPMSM motor’s data. A data type that reduces the cogging torque
is needed. Therefore, the flowchart demonstrates that the data require a loop condition
where the loop will be exited, and the desired optimal solution will be outputted when the
optimized data meet the condition. 

2 
Figure 6. Flowchart of cogging torque calculation. (a) structure optimization. (b) validation for
PMSM optimization.

Firstly, the relevant data of the motor, including winding, magnetic field, and geometric
features, need to be collected. Then, based on this data, an initial calculation of the cogging
torque will be performed.

Next, a loop is entered that includes the optimization of motor parameters. By fine-tuning
the parameters in each iteration of the loop, the cogging torque can be gradually reduced.

In each iteration of the loop, the cogging torque needs to be calculated by using the
optimized parameters. If the calculated cogging torque satisfies the predefined reduction
condition, the loop will be exited, and the optimal solution will be outputted.

If the cogging torque does not meet the reduction condition, a further adjustment of
the parameters and recalculation are required until the condition is fulfilled [23].
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In summary, this flowchart describes the process of calculating cogging torque and
presents a loop condition to optimize and output the optimal solution. Through this
process, data can be obtained that effectively reduce cogging torque to improve the
motor’s performance.

As shown in Figure 6a, Tcog represents the initial cogging torque, and Tcog1 represents
the cogging torque obtained after optimization. Setting the value ε = 1× 10−3, as verified
by Figure 6b, it can be confirmed that∣∣∣∣Tcog − Tcog1

Tcog

∣∣∣∣ = 0.00931182 > ε (15)

The optimum value of PMSM is selected, and the loop is exited after the values have
been outputted.

Through the data set calculation analysis, the final motor optimization results are
shown in Table 2.

Table 2. Final motor optimization results.

Parameters Unit Range of the Value

Rated power kW 31
Length of armature mm 80
Rated speed r/min 2000
Number of poles - 20
Number of slots - 24
Magnet thickness mm 5.6
Pole-arc coefficient 0.855

3.3.2. Hyperparameter Optimization

Model parameters define how the input data are transformed into the desired out-
put and are learned during training to optimize a loss function [24]. On the other hand,
hyperparameters, which influence the structure of the model, cannot be directly trained
from the data [25]. Instead, they are used to tune the model and improve its performance.
Various methods exist for adjusting the hyperparameter space to achieve an optimal model
when using a single algorithm [26,27]. Grid search and random search are commonly
used approaches for exploring the hyperparameter space and finding the best model
configuration. Grid search involves building a model for each possible combination of
hyperparameters in a pre-defined grid and selecting the model with the best performance.
While grid search can be exhaustive, it may also be inefficient. In contrast, random search
randomly samples hyperparameter values from a statistical distribution, rendering it less
restrictive. Random search assumes that all hyperparameters are not equally important
and tends to work well in practice. Another approach to tune hyperparameters is through
a genetic algorithm, as introduced in this work. Figure 7 illustrates the steps involved in
the genetic algorithm-based hyperparameter tuning method. Initially, an initial popula-
tion of models is generated by randomly selecting hyperparameters. The models in the
population are evaluated based on a loss function that measures the discrepancy between
the model’s predicted values and the true values. A new population is created using the
following steps:

(I) The best models from the previous generation, those with the lowest error, are selected.
These models have performed well and are taken as the foundation for creating the
next generation.

(II) With a certain probability, crossover is performed to create offspring. During crossover,
the hyperparameters of two parent models are combined to produce a new model. If
crossover is not performed, the offspring will be an exact copy of its parent.
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(III) The latest offspring undergo mutation, with a certain probability. During mutation,
the hyperparameters of the model are slightly changed. This introduces diversity in
the population, allowing for an exploration of different regions of the search space.

(IV) The offspring are added to the new population, joining the models from the
previous generation.
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The newly generated population is then used for further optimization. The process of
selection, crossover, and mutation is repeated for several generations.

Furthermore, a certain elite population is retained based on an elite percentage. These
elite models represent the top-performing individuals and are given priority in the next
generation. This helps to maintain the best solutions and prevent regression.

The process continues until the specified number of generations is reached. At the end,
the hyperparameters of the best model obtained throughout the generations are reported
as the optimal configuration.

Overall, this algorithm combines elements of evolutionary computation, such as
selection, crossover, and mutation, to iteratively search for the best set of hyperparameters
for a given problem.

The model tuning process is depicted in the flowchart shown in Figure 7. Initially,
the raw dataset is obtained, and subsequently, feature engineering is performed to extract
features and targets employing domain knowledge. Following this, the processed dataset
is partitioned into training, test, and validation datasets. The model is initially constructed
using either default base learners or previously tuned base learners trained on the training
datasets. The performance of the trained model is assessed using the test dataset. In the
event that the further optimization of the base learners is required based on prediction
accuracy, additional hyperparameter optimization is carried out. If no further optimization
is deemed necessary, the model is validated using a separate validation dataset that was
not utilized during the model training. If the results meet the desired criteria, the model is
saved for future use. Otherwise, the hyperparameter optimization process is repeated. This
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iteration continues until an acceptable model is obtained. Figure 7 demonstrates the use of
grid search and random search for hyperparameter tuning. Although these techniques are
effective, they have some disadvantages compared to manual tuning.

Due to its attempt to try every combination of hyperparameters and select the best
combination based on cross-validation scores, grid search becomes extremely slow [28–30].

The limitation of random search is its inability to ensure the identification of the opti-
mal parameter combination. Consequently, in the conventional tuning process, algorithms
are trained through the manual inspection of randomly generated hyperparameter sets,
and ultimately, the parameter configuration that aligns most effectively with our objectives
is selected.

In this section, the population size is set to 120 and the mutation probability to 0.06,
and the innovativeness of SMS-EMOA is confirmed through validation.

4. Conclusions

The optimization of motor structure parameters can significantly weaken cogging
torque. A segmented skewed magnet pole design was developed to weaken cogging
torque, and the optimal solution for different combinations of pole–arc coefficients was
summarized using the SMS-EMOA. Finally, the cogging torque of the 20p24s slot–pole
combination in a permanent magnet synchronous motor was analyzed, and the results
showed that adopting segmented magnetic poles with different combinations of pole–arc
coefficients can significantly weaken the cogging torque while having minimal impact on
other motor performances.

The paper focuses on the hyperparameter optimization section, which demonstrates
that manual tuning is crucial in determining the most suitable parameters. In order
to further advance research, it is recommended that additional algorithmic variants be
explored and a comprehensive analysis of strategy parameters conducted.

However, the SMS-EMOA may not be suitable for higher dimensional problems,
which typically require a large number of function evaluations. Nonetheless, there are
many real-world applications that only allow for a limited number of evaluations due to
the expensive simulations that govern the optimization runtime of the PMSM. In such
cases, the computational time taken by the operations carried out within the EMOA can be
considered negligible, and the SMS-EMOA is undoubtedly an effective optimizer.
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