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Abstract: The second-largest cause of death by cancer in Korea is liver cancer, which leads to acute
morbidity and mortality. Hepatitis B is the most common cause of liver cancer. About 70% of liver
cancer patients suffer from hepatitis B. Early risk association of liver cancer and hepatitis B can
help prevent fatal conditions. We propose a risk association method for liver cancer and hepatitis B
with only lifestyle features. The diagnostic features were excluded to reduce the cost of gathering
medical data. The data source is the Korea National Health and Nutrition Examination Survey
(KNHANES) from 2007 to 2019. We use 3872 and 4640 subjects for liver cancer and hepatitis B model,
respectively. Random forest is employed to determine functional relationships between liver diseases
and lifestyle features. The performance of our proposed method was compared with six machine
learning methods. The results showed the proposed method outperformed the other methods in
the area under the receiver operator characteristic curve of 0.8367. The promising results confirm
the superior performance of the proposed method and show that the proposed method with only
lifestyle features provides significant advantages, potentially reducing the cost of detecting patients
who require liver health care in advance.

Keywords: random forest; public health data; risk association model; liver cancer; hepatitis B; lifestyle
features

1. Introduction

The liver is the largest internal organ responsible for crucial body functions, such as
blood coagulation, protein production, and glycogen synthesis [1–4]. Despite the impor-
tance of the organ, liver cancer is the second-largest cause of death in Korea [5]. The leading
cause of liver cancer is a liver disease induced by obesity and alcohol, and hepatitis B [6].
Particularly, 70% of liver cancer patients are afflicted with hepatitis B. Hepatitis B is a dis-
ease caused by the immune response of the body to the hepatitis B virus (HBV) or contact
with contaminated inanimate objects and blood [7]. It is challenging to treat effectively
in the last stage of liver cancer, so that the best way to lower liver cancer mortality is to
prevent the transition from hepatitis B or detect liver cancer in the early stage [8].

Disease risk association has taken a significant role in the medical research field [9].
The main objective of disease risk association is detecting diseases in the early stage to
prevent leading to fatal conditions of patients [10]. We can obtain a variety of medical data
and apply modern machine learning methods to predict disease risk accurately [11]. The
machine learning methods have the potentials to find significant relationships between
patients’ personalized data and medical diagnosis results [12].

Results of previous studies on the risk association for liver cancer have been introduced
as follows: Wu et al. proposed a risk-classifier of liver cancer based on a support vector
machine (SVM) with 22 biomarkers such as alpha-fetoprotein [13]. Chen et al. proposed
to detect the risk of liver cancer by using clinic data such as alkaline phosphatase and
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aspartate transaminase and compared performances of logistic regression, decision tree,
and SVM. Previous studies predict the risk of liver cancer by using clinic data and machine
learning methods [14].

Other studies have attempted to predict risk for various diseases. Ward et al. proposed
atherosclerotic cardiovascular disease risk association based on machine learning method
with clinical data including cholesterol levels and blood pressure [15]. Perveen et al.
attempted to predict the risk of non-alcoholic fatty liver disease with a decision tree
and medical diagnosis results such as high-density lipoprotein and triglycerides [16].
Dimopoulos et al. proposed machine learning methods using both clinic and lifestyle
features to predict cardiovascular risk [17].

The previous studies have shown promising results in risk association of liver and vari-
ous diseases; however, they employ clinical diagnosis results. The clinical data enhances the
risk association model’s performance with personalized information. The approaches have
an explicit limitation to achieving the objective of early screening of patients. Leveraging
the data from various treatments in hospitals takes considerable time, and costs [18,19]. In
contrast, lifestyle features are relatively cost-effective and publicly available.

In this study, we propose a random forest-based method to predict the risk of liver
cancer and hepatitis B only using lifestyle features. In consideration of related works
which imply significant correlations between liver disease and lifestyle features [20,21],
we assume it is possible to predict disease risk reliably with lifestyle features only. We
introduce models that can predict liver cancer and hepatitis B by exploiting the same
lifestyle features. The model predicts the risk cost-effectively for high-risk people with
liver cancer and hepatitis B. Furthermore, it has a broader impact on managing liver health
regardless of the accessibility to medical institutions.

The remainder of this paper is organized as follows. Section 2 details data and
prediction methods, describing the input data, modeling, and sensitivity analysis. Section 3
presents a performance evaluation for risk association of hepatitis B and liver cancer.
Section 4 discusses comparative study and sensitivity analysis results. Finally, Section 5
offers our conclusive comments.

2. Material and Methods
2.1. Data Source

We use data from the Korea National Health and Nutrition Examination Survey
(KNHANES) [22] which is publicly available and consists of health status, examination,
and nutrition survey. Data collection is conducted annually to evaluate Koreans’ health
and nutritional status and monitor trends in health risk factors and the prevalence of
major chronic diseases according to Korean Article 16 of the National Health Promotion
Act [22]. Therefore, the target population of KNHANES comprises Korean citizens residing
in Korea, and representative samples for the survey are newly extracted every year to
obtain generalizable survey data according to the sampling plan. The sampling plan
follows a multi-stage clustered probability design. We use KNHANES data gathered over
13 years, from 2007 to 2019, as cross-sectional data to develop risk association models. It
has 510,747 cases, and adult data were extracted. We selected 13 features closely related
to the lifestyle. The list of desired features is presented in Table 1. We use the KNHANES
dataset to develop models which detect potential patients who require liver health care
in advance.
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Table 1. Input features for the proposed methods. There are nine continuous features and three
categorical features.

Type Feature

Continuous

Age
Height
Weight
BMI
Drinking age
Average weekday sleep time per day
Average weekend sleep time per day
Total monthly household income
Average weekly working hours

Categorical

National health insurance type
Private health insurance status
Hepatitis B
Sex

2.2. Data Preprocessing

We extracted liver cancer and hepatitis B samples to train risk association models.
Figure 1 shows the data preprocessing flow configuring the liver cancer and hepatitis
B dataset. The hepatitis B dataset consists of 856 subjects. The 58 subjects in the liver
cancer dataset have experienced liver cancer. All cases with hepatitis B and liver cancer
are provided by the national health and nutrition survey. Each dataset was divided into
train and test sets. Train sets account for 70% of entire data sets, and test sets for 30%.
Additionally, we construct train sets by randomly sampling subjects with and without a
liver disease diagnosis in equal proportion to handle the class imbalance. By sampling sub-
jects with and without a liver disease diagnosis to construct train sets in equal proportion,
we improve the models to learn both majority class and minority class in equal weight.
The train set consists of 82 and 1198 subjects sampled from liver cancer and hepatitis B
datasets, respectively. Half of the train set is the liver disease cases, and the other half is
cases without liver disease.

Figure 1. Workflow of producing data sets for the prediction modeling. The liver cancer and hep-
atitis B datasets consist of 3872 and 4640 subjects, respectively. The datasets are divided into 70%
training data and 30% testing data.
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We imputed missing values in the dataset with mice [23], simple, and K-nearest
neighbor (K-NN) imputation [24,25]. The final imputation method is determined by a
comparative study. We present the imputation study result in Section 3.

2.3. Risk Association Model

We adopt the random forest for the risk association method. Random forest is repre-
sentative ensemble method based on decision tree and have shown promising results in
disease risk association [26,27]. We validate the random forest with grid search-based cross-
validation (GridSearchCV) [28] to determine optimal hyperparameters. GridSearchCV vali-
dates all combinations of hyperparameters in terms of validation accuracy. Tables 2 and 3
show the result of hyperparameter tuning. After tuning the hyperparameters, we compared
the performances in terms of accuracy and an area under receiver operator characteristic
curve (AUC) [29].

Table 2. List of optimized hyperparameters for the random forest.

Model Parameter Liver Cancer Hepatitis B

Random forest

N estimators 300 100
Max depth 30 10
Criterion entropy entropy

Min samples split 5 10
Min sample leaf 1 1

Bootstrap True True
Warm strat True False

Max features auto auto

Table 3. List of optimized hyperparameters for the comparative models.

Model Parameter Liver Cancer Hepatitis B

Decision tree

Max depth 10 10
Criterion entropy entropy

Min samples split 2 5
Min sample leaf 1 1

Logistic regression Class weight none balanced
Max iter 50 50

ANN

Slover sgd adam
Activation tanh tanh

Alpha 0.0001 0001
Learning rate constant constant

Hidden layer size (100, 50) (50, 25)

XGboost

Eta 0.1 0.3
Min child weight 0 5

Max depth 6 6
Gamma 0 5

Colsample bytree 0.5 0.6
N estimators 100 100

LightGBM

Num leaves 31 5
Max depth −1 −1
N estimator 1 100

Learning rate 0.05 0.1
Min data in leaf 10 20
Num iteration 100 100

Colsample bytree 0.6 1.0
Boosting dart gbdt

SVM
Kernel sigmoid rbf
Degree 1 1
Gamma auto scale
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2.4. Performance Evaluation and Model Interpretation

We examine the validity of proposed method by comparing with logistic regres-
sion [30], decision tree [31], artificial neural networks(ANN) [32], extreme gradient boost-
ing(XGboost) [33], light gradient boosting machine(lightGBM) [34], and SVM [35]. The
metrics for evaluation are AUC and accuracy. The AUC is the representative value-based
metric for risk association models by quantitatively measuring the entire two-dimensional
area under the receiver operating characteristic (ROC) curve [36–38]. It measures how
much the model is capable of distinguishing between classes. The higher the AUC, the
better the model is in distinguishing between classes. In the medical field, previous studies
generally used AUC as an evaluation index for disease risk association [39–41]. Accuracy
is an index of the proportion of correctly predicted cases among all cases. We averaged the
validation results repeated 30 times and calculated the standard deviation.

We conducted a sensitivity analysis after training prediction models to interpret the
training results [42]. Random forest is usually more accurate than other models, but it has
the disadvantage of being difficult to interpret. Even the decision tree, the base model for
random forest, is interpretable, ensembe makes the random forest lose the interpretability.
To address the issue, we performed a sensitivity analysis in two methods.

As the first method, we performed a sensitivity analysis by randomly permuting one
feature in the dataset and then retraining with the same model. We can analyze the result
whether the corresponding feature significantly affects the performance of disease risk
association by observing significant drop in the model’s performance after the re-fitting.
We identified the performance drop with AUC. The second method is a Shapley additive
explanation (SHAP) [43]. SHAP captures the influence of each feature on the model’s
performance through the Shapley value, the average marginal contribution of a feature
over all possible coalitions of features. Therefore, we can identify significant features having
a large Shapley value.

3. Case Study Results
3.1. Results of Imputations

We compare the three imputation methods: simple imputation, K-NN imputation,
and mice imputation. Tables 4 and 5 illustrate the comparison results over imputation
methods by AUC. In the risk association model for liver cancer, simple imputation achieves
the highest AUC of 0.8317. The overall results imply that the simple imputation is the
best for imputing missing values in our dataset in all models as well as random forest. In
the risk association model for hepatitis B, mice imputation achieves the highest AUC of
0.8632. Mice imputation shows better performance than simple imputation. We subse-
quently use the simple imputation and mice imputation for liver cancer and hepatitis B
risk association, respectively.

Table 4. Average AUC values for each combination of the liver cancer risk association model and
missing value imputer. Standard deviation is calculated in the parentheses.

Risk Association Model for Liver Cancer

Simple Imputation K-NN Imputation Mice Imputation

Random forest 0.8317 (0.0345) 0.8062 (0.0501) 0.8248 (0.0276)
Decision tree 0.7671 (0.0531) 0.7546 (0.0569) 0.7710 (0.0543)

Logistic regression 0.8211 (0.0447) 0.8186 (0.0469) 0.8199 (0.0539)
ANN 0.8129 (0.0431) 0.8066 (0.0463) 0.8129 (0.0393)

XGboost 0.8153 (0.0433) 0.7788 (0.0587) 0.8154 (0.0411)
lightGBM 0.7992 (0.0464) 0.7636 (0.0419) 0.7925 (0.0447)

SVM 0.8098 (0.0555) 0.8025 (0.0581) 0.8055 (0.0470)
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Table 5. Average AUC values for each combination of the hepatitis B prediction model and missing
value imputer. Standard deviation is calculated in the parentheses.

Risk Association Model for Hepatitis B

Simple Imputation K-NN Imputation Mice Imputation

Random forest 0.8567 (0.0124) 0.7050 (0.0147) 0.8632 (0.0113)
Decision tree 0.7818 (0.0132) 0.6295 (0.0178) 0.7947 (0.0157)

Logistic regression 0.6384 (0.0144) 0.6313 (0.0147) 0.6338 (0.0137)
ANN 0.8015 (0.0121) 0.6548 (0.0120) 0.7990 (0.0150)

XGboost 0.8469 (0.0108) 0.7505 (0.0119) 0.8611 (0.0094)
lightGBM 0.8534 (0.0115) 0.7520 (0.0126) 0.8636 (0.0098)

SVM 0.7401 (0.0149) 0.6560 (0.0167) 0.7235 (0.0127)

3.2. Performance Evaluation

Table 6 shows evaluation results over comparative methods. Both risk association
models with random forest for hepatitis B and liver cancer performed well with AUC values
of 0.8367 and 0.88083. Values of accuracy in the test set were 0.9245 for the hepatitis B risk
association model and 0.8190 for the risk association model for liver cancer. The overall
results demonstrate that the proposed method outperformed other comparative methods.

In addition, to demonstrate the superiority of the proposed method over comparative
methods, we conducted Wilcoxon signed-rank test on the random forest and comparative
methods with rank statistics. In each validation step, we calculate the rank of the methods,
and after validation, the number of rank results for each method is equal to 30. The
30 rank results are statistically compared with Wilcoxon signed-rank test. Table 7 shows the
Wilcoxon signed-rank test results between random forest and other comparative methods.
The result demonstrates the statistical significance between the random forest and others.
In Table 7, all p-values are less than 0.05. The result demonstrates that the performance gap
between random forest and others is statistically significant.

Table 6. Performances of risk association models and comparative models. Standard deviation is
calculated in the parentheses.

Liver Cancer Risk Association Hepatitis B Risk Association

AUC Accuracy AUC Accuracy

Random forest 0.8367
(0.0357)

0.8190
(0.0384)

0.8803
(0.0030)

0.9245
(0.0060)

Decision tree 0.7921
(0.0568)

0.7807
(0.0481)

0.8224
(0.0206)

0.8423
(0.0305)

Logistic
regression

0.8211
(0.0447)

0.8302
(0.0289)

0.6341
(0.0136)

0.6541
(0.0159)

ANN 0.8206
(0.0526)

0.8312
(0.0311)

0.8306
(0.0142)

0.8466
(0.0111)

XGboost 0.8260
(0.0392)

0.8075
(0.0409)

0.8778
(0.0103)

0.9309
(0.0057)

LightGBM 0.8234
(0.0474)

0.8118
(0.0485)

0.8764
(0.0117)

0.9299
(0.0068)

SVM 0.8130
(0.0507)

0.8408
(0.0351)

0.7235
(0.0127)

0.6919
(0.0137)
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Table 7. Results of Wilcoxon signed-rank test between random forest and comparative models.

p-Value

Liver Cancer Risk Association Hepatitis B Risk Association

Decision tree 0.0000 0.0000
Logistic regression 0.0210 0.0000

ANN 0.0336 0.0000
XGboost 0.0074 0.0000

LightGBM 0.0408 0.0022
SVM 0.0042 0.0000

3.3. Sensitivity Analysis

We conducted a sensitivity analysis to identify which features significantly improve
random forest’s performance using two approaches. The first method randomly permutates
a specific feature and then retrains the random forest model with the randomly permuted
feature. Sensitivity analysis also used AUC to evaluate the performance. We average the
AUC values obtained from 30 retrained models for accurate comparison and calculate
the standard deviation. The second method uses SHAP to evaluate the influence of each
feature on random forest model learning. Similarly, we average the each feature’s SHAP
values obtained from test dataset for an accurate comparison.

We established the hypothesis based on well-known prior studies [44–46] on the
correlation between liver health and lifestyle features. The established hypotheses are: first,
high body mass index (BMI) is closely related to the risk of hepatitis B and liver cancer
because it can cause various adult diseases. BMI is the weight (kg) divided by the height (m)
square, commonly used to measure a person’s health condition [44]. Second, hepatitis B is
generally known as a high-risk factor for liver cancer [45]. It is assumed that hepatitis B is
a noteworthy feature in the risk model of liver cancer. Finally, drinking is closely related
to liver health [46]. Therefore, we assume that the drinking age will significantly impact
hepatitis B and liver cancer risk.

We interpret the sensitivity analysis result according to the above hypothesis. Table 8
shows no significant difference between the sensitivity analysis results of the BMI, and
the existing model’s performance. Interestingly, average weekend sleep time per day is
the noteworthy feature that causes the most considerable performance degradation in the
model. The difference of mean AUC between original model and permutated model by the
average weekend sleep time per day is 0.0311. Considering the confidence intervals, the
difference is significant.

Table 8. Sensitivity analysis results of hepatitis B risk association model. Standard deviation is
presented in parentheses.

Permutated Feature Mean of AUC

- 0.8803 (0.0030)
Age 0.8750 (0.0069)
Sex 0.8799 (0.0050)

Height 0.8795 (0.0051)
Weight 0.8803 (0.0051)

BMI 0.8788 (0.0062)
Total monthly household income 0.8773 (0.0070)
Average weekly working hours 0.8664 (0.0060)

Average weekday sleep time per day 0.8516 (0.0090)
Average weekend sleep time per day 0.8492 (0.0087)

Drinking age 0.8710 (0.0154)
Private health insurance status 0.8767 (0.0064)
National health insurance type 0.8790 (0.0054)
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In Table 9, we present the sensitivity analysis results of the liver cancer risk association.
The drinking age, average weekend sleep time per day, hepatitis B, and weight affect the
performance of the prediction model. As a result of hypothesis testing, the hepatitis B and
BMI have relatively large effects compared to other features, but the drinking age has no
significant impact on performance. The hepatitis B causes the most critical performance
degradation of mean AUC 0.0432.

Table 9. Sensitivity analysis result of the risk association model for liver cancer. Standard deviation is
presented in parentheses.

Feature Mean of AUC

- 0.8367 (0.0357)
Age 0.8126 (0.0483)
Sex 0.8216 (0.0368)

Height 0.8327 (0.0376)
Weight 0.8255 (0.0429)

BMI 0.8253 (0.0424)
Total monthly household income 0.8229 (0.0444)
Average weekly working hours 0.8312 (0.0352)

Average weekday sleep time per day 0.8288 (0.0429)
Average weekend sleep time per day 0.8301 (0.0428)

Drinking age 0.8307 (0.0378)
Private health insurance status 0.8327 (0.0374)

Hepatitis B 0.7935 (0.0379)
National health insurance type 0.8344 (0.0374)

As shown in Table 10, we present the SHAP results of the hepatitis B risk association.
The average weekend sleep time per day, weekday sleep time per day, and total monthly
household income have relatively larger influence on the prediction model than other
features. As a result of hypothesis testing, the drinking age has no significant impact on
performance. The SHAP value of the drinking age is 0.0190. Table 11 shows the age and hep-
atitis B have relatively significant influence on prediction model’s performance. However,
the drinking age is the feature that causes the no considerable influence on performance.

Table 10. SHAP values of hepatitis B risk association model.

Feature SHAP Value

Age 0.0476
Sex 0.0093

Height 0.0089
Weight 0.0122

BMI 0.0116
Total monthly household income 0.0482
Average weekly working hours 0.0349

Average weekday sleep time per day 0.1240
Average weekend sleep time per day 0.1175

Drinking age 0.0190
Private health insurance status 0.0290
National health insurance type 0.0019
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Table 11. SHAP values of the risk association model for liver cancer.

Feature SHAP Value

Age 0.0940
Sex 0.0090

Height 0.0159
Weight 0.0219

BMI 0.0147
Total monthly household income 0.0421
Average weekly working hours 0.0499

Average weekday sleep time per day 0.0327
Average weekend sleep time per day 0.0748

Drinking age 0.0200
Private health insurance status 0.0229

Hepatitis B 0.0776
National health insurance type 0.0021

We interpret the models in sensitivity analysis and SHAP. The overall results are
meaningful because it can explain features that have a great effect on the prediction models.
Table 12 shows the top 5 features of sensitivity analysis and SHAP about hepatitis B risk
association models. There are four in common features (average weekend sleep time per
day, average weekday sleep time per day, average weekly working hours, and age) that
have relatively significant effects on model’s performance. Table 13 demonstrates that
hepatitis B, age, and total monthly household income have relatively large impact on the
liver cancer risk association model.

Table 12. The top 5 significant features of the sensitivity analysis for hepatitis B risk association model.

Sensitivity Analysis SHAP

Average weekend sleep time per day Average weekday sleep time per day
Average weekday sleep time per day Average weekend sleep time per day

Average weekly working hours Total monthly household income
Drinking age Age

Age Average weekly working hours

Table 13. The top 5 significant features of the sensitivity analysis for liver cancer risk association model.

Sensitivity analysis SHAP

Hepatitis B Age
Age Hepatitis B
Sex Average weekend sleep time per day

Total monthly household income Average weekly working hours
BMI Total monthly household income

Tables 14 and 15 present the example of SHAP analysis for each observation and show
how to interpret significant features involved in each observation. The SHAP results of
each observation with liver and non-liver cancer are shown in Table 14. Age and hepatitis B
are common features that significantly affect model performance. However, depending
on the personal history of liver cancer for each observation, there is a difference in how
lifestyle features affect the risk association of liver cancer with the model. For instance,
the SHAP value of hepatitis B in the observation with liver cancer is 0.1450. It shows that
hepatitis B leads the model to predict the observation having a high risk of liver cancer.
However, the SHAP value of hepatitis B in the observation without liver cancer is −0.0639.
It presents that non-hepatitis B forces the model to predict that the observation has a low
risk of liver cancer.

Table 15 shows the SHAP results of each observation with hepatitis B or non-hepatitis B.
Three common features (average weekday sleep time per day, average weekend sleep time
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per day, and average weekly working hours) significantly affect the model’s performance.
Observation with hepatitis B has shorter weekday and weekend sleep time per day than
the observation without hepatitis B. The SHAP values of average weekday sleep time per
day and average weekend sleep time per day in observation with hepatitis B are 0.1811 and
0.2252, respectively. Conversely, in the observation without hepatitis B, the SHAP value of
average weekday sleep time per day is −0.1255, and the average weekend sleep time per
day is −0.1111. Therefore, the results imply a positive correlation between average sleep
time per day and the risk of hepatitis B.

Table 14. Example of SHAP analysis for observations of the liver cancer risk association model.

Liver Cancer Non-Liver Cancer

Feature Value SHAP Value Value SHAP Value

Age 72 0.1451 53 −0.0269
Sex Man 0.0087 Man 0.0094

Height 169.7 0.0180 168.3 −0.0088
Weight 71 0.0193 70.4 0.0072

BMI 24.7 0.0042 24.9 −0.0104
Total monthly

household income
250 0.0172 390 −0.0281

Average weekly
working hours

21 0.0206 40 0.0286

Average weekday
sleep time per day

420 0.0319 440 0.0134

Average weekend
sleep time per day

480 0.0590 440 −0.0268

Drinking age 26 0.0217 21 0.0153
Private health

insurance status
Subscriber −0.0096 Subscriber −0.0326

Hepatitis B Yes 0.1450 No −0.0639
National health
insurance type

Employee −0.0015 Employee −0.0073

Table 15. Example of SHAP analysis for observations of the hepatitis B risk association model.

Hepatitis B Non-Hepatitis B

Feature Value SHAP Value Value SHAP Value

Age 52 0.0295 57 0.0093
Sex Man 0.0063 Woman −0.0121

Height 164.1 0.0063 155.9 −0.0204
Weight 56.7 0.0138 58.6 −0.0038

BMI 21.1 0.0036 24.1 −0.0027
Total monthly

household income
126.7 0.0846 166.7 0.0159

Average weekly
working hours

20 −0.0770 60 −0.0315

Average weekday
sleep time per day

426.5 0.1811 540 −0.1255

Average weekend
sleep time per day

460.7 0.2252 540 −0.1111

Drinking age 16 −0.0034 45 0.0186
Private health

insurance status
Subscriber −0.0070 Subscriber −0.0246

National health
insurance type

Non-employee 0.0011 Non-employee −0.0058

3.4. Ablation Studies

We conducted ablation studies to evaluate models’ performance in various experiment
settings. We present the changes of model performance according to the number of training
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datasets in Figures 2 and 3. As can be seen in Figures 2 and 3, random forest outperformed
other comparative methods in the all training dataset ratio settings. Note that in Figure 2,
the result for random forest and the lightGBM is relatively close. To objectively examine
the performance, we refer Tables 16 and 17, where the AUC results are averaged over
30 validation runs.

Figure 2. Line plot of hepatitis B risk association model’s performance according to the number of
train dataset. x and y axes represent the proportion of training data and AUC, respectively.

Figure 3. Line plot of liver cancer risk association model’s performance according to the number of
train dataset. x and y axes represent the proportion of training data and AUC, respectively.

The results shown in Tables 16 and 17 illustrate random forest results over comparative
methods. Both risk association models with random forest for hepatitis B and liver cancer
performed better than other methods in the all training dataset ratio. AUC values in the test
set were 0.8288 for the hepatitis B risk association model and 0.7963 for the risk association
model for liver cancer when they used 10% of the training dataset. The results confirm that
the proposed approach is robust to real-world small data problems.
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In addition, we conducted a Wilcoxon signed-rank test by setting the Type I error α to
0.05 to evaluate the robustness of random forest to small training data. Table 18 shows the
Wilcoxon signed-rank test results between random forest and other comparative methods
when they used 10% of the training dataset. In Table 18, there was a clear performance
difference between the random forest and the other comparative methods in liver cancer
risk association. Moreover, the P-values of the comparative methods are less than 0.05 in
the hepatitis B risk association. We verify that random forest had robustness to real-world
small data problems.

Table 16. Changes of hepatitis B risk association model’s performance according to the number of
train dataset.

Train Dataset
Ratio 10% 20% 30% 40% 50% 60% 70%

(Default)

Random
forest

0.8288
(0.0025)

0.8513
(0.0043)

0.8614
(0.0023)

0.8691
(0.0038)

0.8732
(0.0044)

0.8771
(0.0022)

0.8803
(0.0030)

Decision
tree

0.7723
(0.0269)

0.7854
(0.0241)

0.8039
(0.0133)

0.8066
(0.0130)

0.8161
(0.0147)

0.8172
(0.0135)

0.8224
(0.0206)

Logistic
regression

0.6040
(0.0173)

0.6223
(0.0101)

0.6274
(0.0119)

0.6309
(0.0086)

0.6351
(0.0100)

0.6343
(0.0121)

0.6341
(0.0136)

ANN 0.6633
(0.0273)

0.7390
(0.0253)

0.7808
(0.0161)

0.8055
(0.0105)

0.8148
(0.0084)

0.8250
(0.0091)

0.8306
(0.0143)

XGboost 0.8157
(0.0108)

0.8415
(0.0075)

0.8515
(0.0066)

0.8567
(0.0066)

0.8610
(0.0074)

0.8647
(0.0099)

0.8778
(0.0103)

Light
GBM

0.8253
(0.0167)

0.8497
(0.0098)

0.8597
(0.0086)

0.8659
(0.0079)

0.8678
(0.0071)

0.8712
(0.0107)

0.8764
(0.0117)

SVM 0.6576
(0.0165)

0.6855
(0.0119)

0.7001
(0.0092)

0.7083
(0.0106)

0.7156
(0.0129)

0.7202
(0.0119)

0.7235
(0.0127)

Table 17. Changes of liver cancer risk association model’s performance according to the number of
train dataset.

Train Dataset
Ratio 10% 20% 30% 40% 50% 60% 70%

(Default)

Random
forest

0.7963
(0.0102)

0.8011
(0.0371)

0.8151
(0.0276)

0.8191
(0.0321)

0.8199
(0.0326)

0.8296
(0.0418)

0.8367
(0.0357)

Decision
tree

0.6855
(0.0941)

0.7345
(0.0628)

0.7523
(0.0531)

0.7541
(0.0536)

0.7557
(0.0493)

0.7574
(0.0582)

0.7921
(0.0568)

Logistic
regression

0.7343
(0.0575)

0.7847
(0.0312)

0.7981
(0.0356)

0.7984
(0.0371)

0.7951
(0.0529)

0.7986
(0.0440)

0.8211
(0.0447)

ANN 0.7362
(0.0625)

0.7770
(0.0423)

0.7970
(0.0326)

0.8023
(0.0308)

0.8136
(0.0435)

0.8141
(0.0436)

0.8206
(0.0526)

XGboost 0.7428
(0.0545)

0.7884
(0.0312)

0.8045
(0.0301)

0.8083
(0.0304)

0.8074
(0.0375)

0.8207
(0.0283)

0.8026
(0.0392)

Light
GBM

0.5000
(0.0000)

0.7194
(0.0683)

0.7564
(0.0410)

0.7923
(0.0396)

0.8104
(0.0410)

0.8267
(0.0338)

0.8234
(0.0474)

SVM 0.7319
(0.0482)

0.7745
(0.0490)

0.7891
(0.0304)

0.7943
(0.0408)

0.7965
(0.0452)

0.8005
(0.0569)

0.8130
(0.0507)
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Table 18. Results of Wilcoxon signed-rank test between random forest and comparative models using
10% of the training dataset.

p-Value

Liver Cancer Risk Association Hepatitis B Risk Association

Decision tree 0.0000 0.0000
Logistic regression 0.0000 0.0000

ANN 0.0000 0.0000
XGboost 0.0000 0.0000

LightGBM 0.0000 0.0000
SVM 0.0000 0.0000

We evaluate the performance of multi-disease risk association models and comparative
models. Multi-disease risk association models predict both liver cancer and hepatitis B risk
simultaneously. Table 19 illustrates the comparison results over seven models by AUC.
Note that the test results of hepatitis B do not exceed 0.61. Even though we optimize
hyperparameters of each model, they have no remarkable performance improvements. An
AUC value of hepatitis B from a random forest is only about 0.5350. The test results of
hepatitis B shown in Table 19 validate that it is not comparable to our method to predict
hepatitis B risk. Consequently, we believe that building new models for each liver disease
is desirable.

Table 19. AUC values of multi-disease risk association models and comparative models.

Liver Cancer Hepatitis B

Random forest 0.7680 (0.0535) 0.5350 (0.0579)
Decision tree 0.7430 (0.0577) 0.5437 (0.0669)

Logistic regression 0.7518 (0.0580) 0.6019 (0.0632)
ANN 0.7106 (0.0625) 0.5480 (0.0591)

XGboost 0.7944 (0.0531) 0.5472 (0.0444)
LightGBM 0.8037 (0.0482) 0.5564 (0.0450)

SVM 0.6949 (0.0696) 0.5183 (0.0344)

4. Discussion

risk association models generally use clinical data requiring costly and time-consuming
procedures [39,40,47]. However, the lifestyle features are much more accessible and cost-
efficient [48]. We selected lifestyle features related to liver disease by referring to previous
studies. All citizens in Korea subscribe to health insurance through the national insurance
system [49]. The types of national insurance include local subscribers, work subscribers, and
medical benefits. According to a preliminary study, the status of medical service usage, such
as vaccination, is highly correlated with the type of national insurance subscription [50].
Based on the result, we assume that individuals’ medical life, such as vaccination, can
be identified through the type of national insurance subscription and private insurance
subscription. Therefore, we included a feature for identifying the subscription status of
health insurance.

Additionally, referring to the previous research [51], the transmission of the hepatitis
B virus occurs in contact with body fluids or contaminated inanimate organisms. Sufficient
protein intake and rest can help recover from hepatitis B [52]. Thus, we included dietary
life, sleep time, and working environment features.

The comparison study results verify that the random forest is superior to comparative
methods (logistic regression, decision tree, ANN, XGboost, lightGBM, and SVM) in the
risk association of liver disease. The logistic regression and decision tree lag behind the
random forest because the methods are appropriate for linear or simple data distribution.
The logistic regression is based on the linear transformation of input features and nonlinear
activation. The capability of representing complex data distribution is generally weaker
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than the random forest. The decision tree divides data space with a vertical line and has
limited capability in representing nonlinear data distributions [53]. Although the ANN
can model the nonlinear relationships between input and outputs, it is not enough to
perform better than a random forest. Variance reduction of ensemble significantly enhances
the prediction performance compared to single classifiers. XGboost and LightGBM are
boosting models showing comparable performance against the random forest. However, in
the liver disease data, the variance reduction effect of the bagging procedure dominates the
boosting effects.

Various studies have used the random forest for disease risk association in the medical
field. Xu et al. [26] built a model to predict type II diabetes risk using clinical data, and
it had an accuracy of 0.8413. Kabiraj et al. [54] established a risk association model for
breast cancer. They trained the random forest and the XGboost classifier. The random
forest achieves the best performance with an accuracy of 74.73%. The model was trained
with clinical data such as start tumor size, end tumor size, irradiate, and menopause.
Hashem et al. [55] developed a model with the accuracy of 0.7381 to predict hepatocellular
carcinoma, which is malignant liver cancer. They adopted the random forest and calibrated
the model with clinical characteristics, including hemochromatosis, arterial hypertension,
and chronic renal insufficiency. Although our proposed method is trained with lifestyle
features, it shows comparable or superior performance in terms of AUC and accuracy
among related works.

5. Conclusions

We proposed a risk association method for liver cancer and hepatitis B with random
forest. The proposed method showed superior performance over comparative methods.
In particular, the results of the risk association of hepatitis B verified that the proposed
method is more robust than different approaches. The sensitivity analysis demonstrated
that some lifestyle features strongly correlate with hepatitis B. The results can potentially
reduce the cost of detecting potential patients who require liver health care in advance.
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