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Abstract: Osteoporosis is a serious bone disease that affects many people worldwide. Various drugs
have been used to treat osteoporosis. However, these drugs may cause severe adverse events in
patients. Adverse drug events are harmful reactions caused by drug usage and remain one of the
leading causes of death in many countries. Predicting serious adverse drug reactions in the early
stages can help save patients’ lives and reduce healthcare costs. Classification methods are commonly
used to predict the severity of adverse events. These methods usually assume independence among
attributes, which may not be practical in real-world applications. In this paper, a new attribute
weighted logistic regression is proposed to predict the severity of adverse drug events. Our method
relaxes the assumption of independence among the attributes. An evaluation was performed on
osteoporosis data obtained from the United States Food and Drug Administration databases. The
results showed that our method achieved a higher recognition performance and outperformed
baseline methods in predicting the severity of adverse drug events.
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1. Introduction

Osteoporosis is a common and dangerous bone disease that can lead to serious pain,
disability, hospitalization, or even death. According to the International Osteoporosis
Foundation [1], older people and women over the age of 50 are at the greatest risk of
developing osteoporosis due to physiological changes that come with aging. To date, this
disease has affected 200 million people worldwide, and it is expected to increase in the next
5 to 10 years. Although there are a range of drugs used to treat osteoporosis, they may cause
various adverse events. An adverse drug event is defined as an injury that affects a patient
due to medical intervention linked to drug. Some adverse events are life-threatening and
require medical intervention.

There are studies that attempt to investigate adverse events caused by osteoporosis
drugs [2,3]. Classification methods are commonly applied to predict adverse events, where
data instances are mapped into one of the possible classes. The majority of these studies
assume that all attributes are equally important and have the same contribution to the
classification decision [4–6]. Such an assumption, however, may not be practical in real-
world applications. Methods based on attribute weights have been proposed to relax the
independence assumption. This approach assigns a continuous value to each attribute,
in which the more significant attribute has a higher weight. Some attribute weighting
methods have been successfully implemented in a naïve Bayes classifier [7].

Logistic regression (LR) is one of the most widely used classifiers in the biomedicine
domain. The maximum-likelihood estimation is used to determine the probability of class
membership in LR [8]. However, there are limited studies that apply attribute weights in
LR. Current studies applied LR directly on unweighted attributes, which may result in
biased estimates and fall short in predicting adverse events [9,10]. In this paper, a new
attribute weighted logistic regression is proposed to predict the severity of an adverse
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osteoporosis drug event. Our contribution is twofold. First, we propose a method to
incorporate attribute weights into LR. Second, we present a method to calculate the attribute
weights. Our method takes into account the relevance of each attribute in predicting the
severity, which not only reduces the impact of irrelevant attributes but also improves the
classification performance. We evaluated our method on an osteoporosis adverse events
dataset obtained from the U.S. Food and Drug Administration. We have also compared our
method with baseline methods.

The outline of this paper is organized as follows: In the next section, we discuss the
related work on attribute weighting methods. Section 3 presents our proposed method.
Section 4 describes the osteoporosis dataset used in this study. Section 5 presents the
experimental results and discussion. Section 6 concludes our findings.

2. Related Work

Attribute weight is a continuous value that represents the importance of each attribute
in classification. In [11–13], the information gain (IG) measure was used to calculate the
attribute weights. In the study of [4], their IG-based attribute weight has resulted in some
negative values. Ideally, when assigning a weight to an attribute, the weight should not be
a negative value.

There are works that used Kullback–Leibler divergence (KL) to calculate the attribute
weights for a naïve Bayes classifier [4,5,14]. However, the KL-based attribute weighting
method has a longer computational time as this method involves complex calculation steps,
including the estimation of weight for each category, the average attribute weight, split
information, split weight, and normalized weight, as described in [4].

Ouyed et al. [15] proposed an attribute weighting technique based on the Newton–
Raphson method for multi-nominal kernel logistic regression. In this study, each attribute’s
relevance to classification is estimated using the Newton–Raphson method. Instead of
estimating individual attribute weights for multi-nominal kernel logistic regression, ref. [16]
extended the method to allow the estimation of group attribute weights by using gradient
descent minimization. Such a method, which uses multiple kernel functions, increases the
complexity of the optimization when the data size is large.

Although LR is a widely applied classification method, there are limited studies that
incorporate the attribute weights in LR. In some of the studies of LR, the attributes were
weighted to perform attribute selection by considering the most relevant attributes [17–22].
Krishnapuram et al. [17] introduced a sparse multi-nominal logistic regression to perform
automatic attribute selection. In this study, irrelevant attributes with weights equal to zero
were removed. Ryali et al. [18] developed a new whole-brain classification method based on
sparse logistic regression. Their method combined L1 and L2 norm regularizations to reduce
the weight of irrelevant attributes for better attribute selection. Liang et al. [19] investigated
the L1/2 penalty with sparse logistic regression for gene selection in cancer prediction. In
recent studies by Bertsimas et al. [20–22], they reformulated the sparse regression problem
on a larger dataset. Their proposed binary reformulation provides sparser classifiers with
similar accuracy as the Lasso regularization technique [23]. However, it was indicated in
the study that their method is not computationally efficient, especially on a smaller dataset.

Machine learning techniques have been implemented for drug discovery. Lin et al. [24]
compared four machine learning models (logistic regression (LR), support vector machine
(SVM), random forest (RF), and artificial neural network (ANN)) for personalized treat-
ment of osteoporosis. For testing the generalizability of the models, the main analysis
(196 patients) and subgroup analysis (154 patients) were conducted. A genetic algorithm
was used to select informative attributes of osteoporosis patients treated in a Taiwan hos-
pital. The grid search method was applied to tune the hyperparameters of SVM, RF, and
ANN. In terms of accuracy and precision, there were no differences between the four
methods. Neveen et al. [2] applied multi-label classification methods to detect adverse
events on the Fosamax drug. Their results showed that decision trees (DT) with classifier
chains have better recognition and computational performance compared to SVM and naïve
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Bayes. Jaganathan et al. [25] used the SVM to predict drug toxicity. Pearson correlation was
applied to remove redundant and irrelevant attributes. Recursive feature elimination and
cross-validation techniques were used to select the most significant attributes. They tuned
their SVM using the grid search method. The hyperparameter-tuned SVM achieved better
accuracy and f-score. In another study by Cano et al. [26], they performed RF in two ways:
one for attribute ranking and selection and the other for detecting the activity of different
drugs based on their chemical compounds. The optimal values of RF parameters were
selected based on the lowest prediction error. The results of tuned RF on selected attributes
outperformed the results of SVM and multi-layer perceptrons.

Table 1 provides a summary of studies using the attribute weighting method and the
attribute selection method.

Table 1. Summary of studies using (a) attribute weighting method and (b) attribute selection method.

(a)

Study Attribute
Weighting Method Classification Method Dataset Best Performing Model

Zhang et al.
[11]

IG and χ2 statistic
for words
weighting

Multinomial NB and weighted
NB

Benchmark textual data
obtained from WEKA
and Amazon website

IG weighted NB

Duan et al.
[12] IG NB and weighted NB Benchmark data from

UCI database IG weighted NB

Zhang and
Sheng [13]

IG, hill climbing
and Markov Chain

Monte Carlo
NB, weighted NB and DT Benchmark data from

UCI database
IG with hill climbing

weighted NB

Lee et al. [4] KL NB, KL weighted NB, Tree
Augmented NB, NBTree and DT

Benchmark data from
UCI database KL weighted NB

Lee [5] KL and DT

NB, KL feature weighted NB, KL
value weighted NB, DT

weighted NB, logistic, DT, Tree
Augmented NB and RF

Benchmark data from
UCI database KL weighted NB

Foo et al. [7] IG and KL NB and weighted NB Benchmark data from
UCI and FDA databases NA

Korkmaz and
Korkmaz [14] KL

KL weighted NB, Bayesian
neural network, SVM and neural

network

Breast cancer
mammography KL weighted NB

Ouyed and
Allili [15]

Newton Raphson
method

NB, Sparse multinomial LR,
feature relevance multinomial

kernel LR, kernel SVM and
Lasso

Benchmark data from
UCI database and

simulated data
Multinominal kernel LR

Ouyed and
Allili [16]

Gradient descent
minimisation

Multinominal kernel LR, SVM
and deep learning network UT-interaction dataset Multinominal kernel LR

(b)

Study Attribute Selection
Method Classification Method Dataset Best Performing Model

Krishnapuram
et al. [17] L1 regularization

SVM, relevance vector machine,
sparse multinomial LR and ridge

multinomial LR

Benchmark data from
UCI database and online

sources
Sparse multinomial LR

Ryali et al.
[18]

Combination of L1
and L2

regularization

SVM based recursive feature
elimination, LR based L1 and L2 Whole brain dataset L1 and L2 based LR
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Table 1. Cont.

Liang et al.
[19] L1/2 regularization k-nearest neighbor Cancer datasets NA

Lin et al. [24] Genetic algorithm LR, SVM, RF, ANN Osteoporosis patients LR and ANN

Jaganathan
et al. [25]

Recursive feature
elimination and
cross-validation

SVM, LR, RF, DT, NB, MLP, XG
boosting and k-nearest neighbor Drug toxicity Hyperparameter-tuned

SVM

Cano et al.
[26] Random forest RF, SVM and MLP Drug activity Hyperparameter-tuned

RF

3. Proposed Method

Our method is described in two parts: Section 3.1 describes our approach to incorpo-
rating attribute weights into LR, while Section 3.2 describes our approach to calculating
attribute weights based on the chi-square statistic.

3.1. Weighted Logistic Regresion

Logistic regression is a classification method to predict the logit of a class Y from one
or more independent attributes as follows:

logit(Y) = α + β1x1 + β2x2 + . . . + βnxn (1)

where α is the intercept, xi (i = 1, . . . , n) is the attributes, and βi (i = 1, . . . , n) is the log odds
ratios. Both α and βi are estimated using the maximum-likelihood method, which converts
to a probability of belonging to a class Y as follows:

Probability(Y) =
eα+β1x1+β2x2+...+βnxn

1 + eα+β1x1+β2x2+...+βnxn
(2)

Our method incorporates the attribute weight wi of attribute xi as term aln(wi) into the
LR model as follows:

logit(Y) = α + (β1 + aln(w1)) × x1 + (β2 + aln(w2)) × x2 + . . . + (βn + aln(wn)) × xn (3)

where a denotes a positive or negative sign and ln(wi) is the natural logarithm value of wi.
The coefficient βi in logistic regression is the estimated log odds ratio obtained for a

unit change in attribute xi. The βi value determines the type of relationship between xi
and the logit of Y. If βi is positive, larger xi values are associated with a larger logit of Y.
Conversely, if βi is negative, larger xi values are associated with a smaller logit of Y [27].
Since ln(wi) is negative when wi is less than 1, we proposed to incorporate the weights
differently for different combinations of βi and wi, as shown in Table 2. For the cases where
(1) βi is negative with wi < 1 and (2) βi is positive with wi > 1, the weight is incorporated
by adding a positive ln(wi) to βi. For the cases where (3) βi is negative with wi > 1 and
(4) βi is positive with wi < 1, the weight is incorporated by adding a negative ln(wi) to βi.
By adding the attribute weights as proposed, the intrinsic relationship between xi and the
logit of Y is maintained.

Table 2. Adding attributes’ weight based on β value.

βi
Adding Attribute Weight

The Resulted Value
wi < 1 wi > 1

Negative +ln(wi) −ln(wi) Negative
Positive −ln(wi) +ln(wi) Positive
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Table 3 shows an example of the resulting parameter values for different combinations
of βi and wi. Referring to the example in Table 3, attribute x1 has a negative β value, while
attribute x2 has a positive β value. For x1, if the attribute weight is larger than 1, the weight
is incorporated into the model by adding a negative ln(w). Conversely, if the weight of x1 is
less than 1, the weight is incorporated by adding a positive ln(w). For x2, we add positive
ln(w) to β if the weight of x2 is larger than 1, and negative ln(w) if the weight is less than 1.
By incorporating weights as proposed, the sign of the resulted coefficient, which represents
the log odds ratio of the attributes, remains unchanged, and the magnitude of the weight
contribution can be incorporated correctly.

Table 3. Example of adding attribute weight to different β values.

Attribute βi Weight (wi) ±ln(wi) βi ± ln(wi)

x1 −0.751
1.84 −ln(1.84) −1.36
0.86 +ln(0.86) −0.901

x2 0.262
1.84 +ln(1.84) 0.871
0.86 −ln(0.86) 0.412

3.2. Attribute Weight Based on Chi-Square

Chi-square (χ2) is a statistic used in various hypothesis tests. One of them is to test if
two categorical attributes are dependent. We propose measuring the weight of an attribute
by calculating the χ2 value between this attribute and the target attribute. Given the target
attribute T with classes tk (k = 1, . . . , z) and an attribute xi with values bj (j = 1, . . . , s), the
joint distribution of T and xi is shown in Table 4.

Table 4. Joint distribution of target attribute T and attribute xi.

xi
b1 b2 . . . . bs

T

t1 O11 O12 . . . . O1s MR1
t2 O21 O22 . . . . O2s MR2
. . .
. . .
. . .
. . .
tz Oz1 Oz2 . . . . Ozs MRz

MC1 MC2 . . . . MCs M

Okj is the observed number of attribute value bj that belongs to class tk, MRk is the sum
of each row, MCj is the sum of each column, and M is the total sample size.

The χ2 statistic of attribute xi is calculated as follows:

χ2
i = ∑

(O kj − Ekj)
2

Ekj
(4)

with Ekj =
MRk× MCj

M
(5)

Ekj is the expected number of attribute value bj that belongs to class tk.
The final weight wi for attribute xi based on χ2 is computed as follows:

wi =
χ2

i × n

∑n
i=1 χ2

i
(6)

where n is the total number of attributes.
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Algorithm 1 shows our proposed attribute weighted logistic regression, where the
weights are calculated using χ2 measure. First, the attribute weight in the training dataset
is calculated using χ2 measure. Then, these attribute weights are incorporated to train the
LR model (Equation (3)).

Algorithm 1 Attribute weighted logistic regression

Input: training data
1: For each attribute xi in the training data

- Compute χ2
i following Equation (4)

- Compute wi following Equation (6)
2: Incorporate attribute weights to train the weighted LR model (following Equation (3))

If wi = 0 then set aln(wi) = 1 × 10−10

Else if (βi > 0 and wi > 1) or (βi < 0 and wi < 1) then a = positive
Else if (βi > 0 and wi < 1) or (βi < 0 and wi > 1) then a = negative

4. Dataset and Evaluation Methods

This section describes the dataset, data preparation, and evaluation methods used in
this study.

4.1. Description of the Data

The dataset used in this study was obtained from the online U.S. Food and Drug
Administration database from 2004 to 2018 [28]. The data files included in our study are
patients’ demographics, drugs, indication (disease), outcome, and therapy. These files are
linked via patient ID.

There are 228 drugs reported for adverse events in this dataset. The top ten drugs
that were reported as the primary suspects with the most reported adverse events were
included in this study. The resulting dataset has 20,576 records with 36 attributes. In this
study, we included attributes that are directly related to patient characteristics (age and
gender), the drug that caused the adverse event, drug regimens (dose amount, dose unit
(microgram or milligram), and dose frequency), the therapy start date, the date of the
adverse event, and the stage of osteoporosis disease. There are three stages of osteoporosis
disease, which is measured by a Dual-energy X-ray Absorptiometry machine. Osteopenia
(pre-osteoporosis) is the first stage and happens when bone density is between −1.5 and
−2.5. The second stage is osteoporosis, in which bone density is −2.5. The third stage is
the patients who used the related drugs for protection (osteoporosis prophylaxis).

According to the World Health Organization, a “severe adverse event” concerns the
critical cases of patients who need immediate medical consultation, for instance, death,
disability, hospitalization, or life-threatening conditions. Otherwise, the event is consid-
ered non-severe. Following this definition, we have divided the target attribute into two
categories—severe and non-severe. The final dataset used in our study has 11,956 severe
events and 8620 non-severe events.

4.2. Data Preparation

For each record, we calculated the number of days between the start of therapy and
the occurrence of the adverse event and labelled this as “duration”. Since the dose amounts
were reported in milligrams or micrograms, we have converted those dose amounts from
milligrams to micrograms. We have standardized the distribution of the three continuous
attributes (i.e., age, duration, and dose amount) to have a mean of 0 and a unit standard
deviation to avoid bias towards attributes with a large range. For attribute weights cal-
culation, attributes with continuous values have to be discretized [4–6,13,29–32]. These
three continuous attributes were discretized by applying the Minimum Description Length
method [33]. The process of discretization starts by sorting continuous values in ascending
order and then evaluating each candidate cut point, which is the midpoint between each
successive pair of data. For cut-point evaluation, the data are divided into two partitions,
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and the resulting class information entropy is estimated. Finally, the cut-point that has the
minimum entropy among all potential cut-points will be chosen to discretize the continuous
attributes [33]. As a result of discretization, both age and duration attributes have been
converted to categories. The dose amount is excluded from this study as there are no
cut-points and all the records belong to the same interval after discretization. Table 5 shows
the list of attributes used in this study. An overview of our method is shown in Figure 1.

Table 5. List of attributes in the osteoporosis dataset.

No Attribute Description Attributes Values Count Severe
Count

Non-Severe
Count

1 Disease
A medical terminology based on

medical dictionary for
regulatory activities

Osteoporosis
Osteopenia

Osteoporosis
prophylaxis

19,622
789
165

11,536
342
78

8086
447
87

2 Gender Patient’s sex
Female 18,522 10,633 7889
Male 2054 1323 731

3 Drug name The name of reported medicine

Forteo 11,980 7929 4051
Aclasta 1633 863 770

Zolendronic acid 1270 522 748
Prolia 1221 508 713

Reclast 1179 580 599
Fosamax 1141 564 577
Actonel 824 441 383
Evista 544 267 277
Boniva 519 147 372

Alendronate
sodium 265 135 130

4 Dose frequency The reported dosage frequency

Once 349 185 164
Every day 12,788 8364 4424

Every week 1801 886 915
Every month 611 192 419

Every 3 months 74 28 46
Every 6 months 1043 443 600

Every year 3910 1858 2052

5 Age Patient’s age at event date From 0 to 105 year 20,576

6 Duration The period of using the drug until the
event occurring From 0 to 8677 day 20,576

7 Target attribute The patient’s outcome of using the drug Severe 11,956
Non-severe 8620

4.3. Evaluation Methods

The classification performance was measured in terms of accuracy, precision, recall,
and F-score. The severe class is considered the positive class. Following the definition
in [34], accuracy is the ratio of correct predictions, precision is the ratio of positive class
predictions that actually belong to the positive class, recall is the ratio of positive class
predictions out of all positive records, and F-score is the mean between the precision and
the recall.

Accuracy = (True Positives + True Negatives)/All

Precision = True Positives/(True Positives + False Positives)

Recall = True Positives/(True Positives + False Negatives)

F-score = (2 × Precision × Recall)/(Precision + Recall)
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5. Experiments and Results

The performance of our method was evaluated on the osteoporosis dataset (described
in Section 4.1). First, the weights of the attributes were calculated from the training data.
Table 6 shows the attribute weights (following Equation (6)) across the 10-fold. These
weights are then incorporated into LR.

Table 6. The calculated attribute weights across the 10-fold.

Attribute
Attribute Weights Using χ2

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Disease 0.19 0.14 0.15 0.16 0.18 0.17 0.17 0.18 0.17 0.18
Gender 0.07 0.06 0.07 0.09 0.09 0.08 0.05 0.08 0.07 0.07

Drug name 2.07 2.06 2.02 2.08 2.08 1.98 2.07 1.92 1.98 2.07
Dose frequency 1.87 1.83 1.78 1.84 1.89 1.82 1.82 1.71 1.84 1.81

Age 0.75 0.78 0.87 0.72 0.68 0.78 0.72 0.87 0.87 0.76
Duration 1.05 1.13 1.11 1.11 1.08 1.17 1.17 1.24 1.07 1.11

We have conducted four experiments. The first experiment compared the classification
performance of our method against the standard LR, i.e., without applying any attribute
weighting method. The second experiment compared our proposed χ2 attribute weights
with two baseline attribute weighing measures: the KL-based attribute weights [4] and the
IG-based attribute weights [12]. The third experiment compared our method with three
baseline classification algorithms, i.e., random forest, support vector machine, and decision
tree. The fourth experiment compared the computational times of our method and all other
baseline methods.

The training set is prepared using the balanced sampling technique, in which we
randomly selected 7000 severe and 7000 non-severe records. The remainder (i.e., 6576) is
used for testing. The training-test ratio is approximately 70:30. The severe adverse event
is defined as a true positive, and we have carried out 10-fold cross-validation for each
experiment. The results are presented using comparative boxplots.
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5.1. Proposed Method against the Standard Logistic Regression

Figure 2 compares the performance of our method, the χ2 weighted logistic regression
(LRCS), with the standard logistic regression (LR). LRCS outperformed LR in accuracy,
recall, and F-score. The performance of LRCS is about 10% better than that of LR in accuracy
and F-score and 20% better in recall. In terms of precision, LR performed slightly better
than LRCS.
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5.2. Proposed Method against the Baseline Attribute Weighing Methods

Figure 3 compares the performance of LRCS with two baseline attribute weighing
measures, i.e., the weights calculated using IG (LRIG) and the weights calculated using KL
(LRKL). These weights are incorporated into LR. Referring to Figure 3, LRCS performed
equally to LRIG in all the measures. When comparing to LRKL, our method performed
better in accuracy, recall and F-score, but not as good in precision.
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5.3. Proposed Method against the Baseline Classification Methods

Figure 4 compares the performance of LRCS with three baseline classification methods,
i.e., decision tree (DT), random forest (RF), and support vector machine (SVM). Following
the approach taken in [26,35], we tuned both the RF and SVM using the grid search method
on our training data. For the tuned RF (TRF), the optimal number of trees was 1000, and
the optimal number of splits was 2. For the tuned SVM (TSVM), the optimal values for cost
and gamma were 0.5. LRCS performed better compared to all the five baseline methods in
terms of accuracy (8–15% higher), recall (20–30% higher), and F-score (8–15% higher), but
has a slightly lower precision (about 3% lower).
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Figure 4. Performance of our method (LRCS) against the baseline classification methods (decision
tree (DT), random forest (RF), tuned random forest (TRF), support vector machine (SVM), and tuned
support vector machine (TSVM)).

5.4. Computational Performance

Figure 5 shows the running time of LRCS against all the baseline methods. Both the
runtimes of TSVM and TRF were calculated after the tuning process was complete. The
tuning of SVM took about 1.5 days, while the tuning of RF took about 30 min. All the
experiments were performed using RStudio (ver. 1.1.453) on a desktop computer with an
Intel Core i5-6500 3.2 GHz and 8 GB RAM. The standard LR and all weighted LR (LRCS,
LRIG, and LRKL) have comparable computational times. These results showed that our
method to incorporate attribute weights into LR does not increase the computational time.
In comparison to the five baseline classification methods (DT, RF, TRF, SVM, and TSVM),
LRCS has a comparable computational time with DT, while RF, TRF, SVM, and TSVM have
a longer running time. The running time of SVM is almost twofold longer than LRCS.
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In terms of running time, our method does not affect the computational performance of
logistic regression, and the running time is lower compared to random forest, support vector
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study to propose attribute weighted logistic regression to incorporate the significance of
attributes for binary classification. Adverse drug events are sometimes unavoidable, but
serious events should be reduced to safeguard patients’ health. The experimental results
showed that our method performed well in predicting serious adverse drug events in
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