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Abstract: Deforestation, landscape dynamics, and socioeconomic factors within the tropical Americas,
Africa, and Asia may have different impacts on malaria incidence. To evaluate how these drivers affect
malaria incidence at the global and regional scale, we collected malaria incidence rates from 2000 to
2019 from 67 tropical countries, along with forest loss, land use change types, and socioeconomic
elements. LASSO regression, linear mixed effect modeling, and k-fold cross validation were used to
create and evaluate the models. Regionality plays a role in the significance of varying risk factors.
The Tropical Americas model had the highest coefficient of determination (marginal R2 = 0.369),
while the Africa model showed the highest predictive accuracy with only a 17.4% error rate. Strong
associations between tree cover loss (β = −4037.73, p < 0.001) and percentage forest area (β = 5373.18,
p = 0.012) in Africa, and percent of key biodiversity areas under protection (β = 496.71, p < 0.001;
β = 1679.20, p < 0.001) in the tropical Americas and Asia with malaria incidence indicates that malaria
risk should be considered during conservation policy development, and recommends that individual
approaches to policy and investment be considered when implementing malaria interventions on
different spatial scales.

Keywords: malaria; environment; deforestation; land-use change; global

1. Introduction

In 2022, 249 million cases of malaria were reported in 85 malaria-endemic countries [1];
malaria is a vector-borne, protozoan infectious disease transmitted by the bite of the Anophe-
les sp. female mosquito. Two species compose 95% of all infections: Plasmodium falciparum
and Plasmodium vivax, with the former being the most dominant and causing the greatest
number of illnesses and deaths, while the latter is often considered less severe yet can in-
crease morbidity with recurrent infections [2–5]. Due to the vector’s preferred environment
of warm temperatures and increased precipitation and humidity, malaria is most common
in the tropical regions of the world, particularly throughout Africa, Southeast Asia, and the
Amazonian Basin [2,3,6]. Despite a global increase in malaria cases from 2019 to 2020 [6]
and 2019 to 2022 [1], many regions of the world have seen a decline or elimination of
malaria due to concentrated efforts from global humanitarian organizations and national
governments through acts of prevention and treatment (antimalarial drugs, intravenous
medications, vector control, insecticide-treated netting, indoor residual spraying) [2,4,5]
and health investment [6–8].

However, as measures are taken to control the most common parasitic disease in
the world, the landscapes that contain the infectious Plasmodium are rapidly shifting.
Global forest loss has approximated 4.7 million hectares per year since 2010 [9–12], with
tropical forests even more at risk. Countries such as Indonesia, Malaysia, Paraguay, Bolivia,
Zambia, and Angola show an increase in deforestation and a gross loss of 7.3 Mha per year
(yr-1) between 2000 and 2018 [10,13]. The reasons for deforestation are vast and varied,
dependent on the socioeconomics, climate, and resources of the region, and often pressured
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by importation demands from G7 countries and China [14]. Logging and other forestry
products are the primary drivers of forest degradation in Latin America and Asia (more
than 70%), while charcoal production and firewood collection are the prevailing reasons in
Africa (approximately 50%) [15], with forestry products globally totaling 0.8Mha loss per
year [16].

More destructive is the converting of native or primary forests to pasture, farmlands,
or urban landscapes; between 2005 and 2015, 62% (5.5 Mha per year) of forest loss was
attributed to expanding commercial croplands, pastures, and tree plantations [16]. Brazil
and Indonesia accounted for 44% of deforestation due to land-use change, followed by Ar-
gentina (7%) and Paraguay (4%) [16]. In Latin America between 2002 and 2015, expanding
pastureland for cattle ranching resulted in a 2.2 MHa loss of forestland per year [16–18],
while commercial agriculture (68% of deforestation) from soybeans resulted in approxi-
mately 0.4 MHa [15,16]. In Asia, deforestation is the result of logging and land-conversion
to plantations, which is estimated to be the direct cause of 3 to 50% of regional tropical
deforestation [18,19]. Africa’s tropical forests are not deforested at the rates of the tropical
Americas or Asia due largely to land-use change occurring from subsistence and small-scale
farming, yet commercial agriculture and logging are on the rise in the Congo Basin [15,18].

The relationship between malaria risk and deforestation or land-use change is still
contradictory. It has been hypothesized that deforestation can alter water availability and
pooling, as well as surface temperatures, which can affect the incidence of larval and adult
mosquitoes and increase malaria risk [3,20–23]. However, other studies have found oppos-
ing results. The majority of regional- or national-level studies in Latin America have found
a linked association to increased malaria or malaria risk, either directly through deforesta-
tion or from changes in land use or land cover from a forest landscape [24–30]. In Africa,
results are often more mixed due to complicating factors of socioeconomics, endemicity
of mosquitoes, and access to malaria treatment and prevention: it is hypothesized that
smallholder agriculture expansion into endemic regions may not show as intense of a rela-
tionship to malaria risk as countries that experience rapid expansion into in low endemicity,
while other studies acknowledge that consistent access to health plays a significant role in
malaria cases [31–39]; the region deserves closer attention due to impacts from having the
highest incidence of malaria in the world [6]. Like Africa, research results on deforestation
and malaria in Asia are more mixed [40–44]. Although papers have identified increased
malaria risk with palm oil plantations [45,46], others have determined that malaria risk
from deforestation is varying and at its highest during active deforestation and decreases
as the land becomes more pastural [44,47]; this same pattern is also found in other regions
of the globe such as the Amazon [29]. Global research highlights that malaria risk linked to
deforestation is highly dependent on regional factors such as elevation and water coverage,
type of land use change, mosquito species, and forest type [21,48,49].

Wide-reaching trends of deforestation and land use change on malaria risk are un-
known and well-needed. Although previous studies have found direct, singular links
between factors such as land use, health expenditures, or government aspects, few have
tried to link these multiple characteristics into one cohesive study design. Our aim is to
examine the current trend of malaria incidence and the global malaria risk in response to
forest loss and land use change, in addition to other socioeconomic and economic features,
by measuring country-level malaria for 67 countries with tropical forests. We further exam-
ined if regionality contributes to a significant role in the differing rates of malaria incidence
beyond the global level and if drivers of malaria risk vary according to each region. Our
results can be used to increase the understanding of which factors most affect malaria risk
in the different regions of the world, to understand their contribution, and thus to be aware
of the potential for new risks under a changing planet.

2. Materials and Methods

Three selection criteria were employed in the country collection of the global dataset for our
study: (1) the country must have incidence of endemic malaria of either Plasmodium falciparum
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or Plasmodium vivax in 2019; (2) the country must include any amount of tropical forest in its
territory; and (3) the country must have data available in the Global Health Data Exchange
(GHDx) database (https://ghdx.healthdata.org/, accessed on 18 May 2023). A total of
86 countries were identified as having an incidence of malaria using visual identification
from the Malaria Atlas Project (https://malariaatlas.org/, accessed on24 April 2023). A list
of countries with tropical forests was generated using the criteria laid out by Grainger [50]
after exploring how inconsistencies in estimates of tropical forest areas from the Forest
Resource Assessments of the United Nations Food and Agriculture Organization have led
to widely varying numbers of countries identified with tropical forests. For this study, we
used Grainger’s [50] listed 90 countries with tropical forests. For the final global dataset,
71 countries fit the criteria above; countries were removed for either having an incidence
of malaria but not containing tropical forests or housing tropical forests but either had
no endemic incidence of malaria or malaria was eliminated from the country. Countries
were then grouped according to UN M49, or the Standard Country or Areas Codes for
Statistical Use, developed and maintained by the United Nations Statistics Division for
statistical groupings [51]; exceptions were Papua New Guinea, which was moved to
Southeastern Asia instead of its official classification of Melanesia, and Sudan, which was
moved to Eastern Africa instead of its official classification of Northern Africa, so to prevent
two regional groupings with a single country. Variables of interest to our study were collected
from online databases (Table 1). For each country, malaria incidence per 100,000 population
was collected from 2000 to 2019 for a total of 20 years. Malaria incidence from the online
database was defined as the number of new cases in a year divided by the mid-year population
size. The data period and analysis exclude the majority of the SARS-CoV-2 pandemic, and
therefore, the reported malaria incidence is not believed to have been impacted by the public
health complications of that time. Several datasets related to land change measurements,
socioeconomic status of country citizens, and national economic profiles were selected after
literature exploration for possible influence on malaria incidence in the countries of interest.
Variables were included in the final dataset if they contained enough yearly data (at minimum
15 years of data) or if the variables were static or linear enough to reasonably interpolate
missing data. Not one singular variable was selected to represent deforestation and land
use change: tree cover loss for forests of 30% or greater canopy cover, forest area percent of
total land area, and agricultural area percent of total land area capture aspects of land use
change in countries of interest. In addition, variables average proportion of terrestrial key
biodiversity areas (KBAs) covered by protected areas and total official development assistance
for biodiversity by recipient countries may indicate the quality of forest and other terrestrial
environments in the country as a result of government priorities on protecting important
areas of biodiversity. Total malaria spending per person, universal health coverage index,
and net official development assistance received as a percent of a country’s gross national
income (GNI) were variables used to represent a country’s efforts in healthcare and malaria
prevention, as well as citizen welfare. All variables were extracted at the country-level scale.
Finally, the economic variables of agricultural, forestry, and fishing as a percent of gross
domestic product (GDP), total natural resource rent as a percent of GDP, and GDP per capita
were selected to indicate a country’s economic status and industries related to forest presence
or quality.

Table 1. Variable names, year available from online database, definitions adapted from online sources,
and citation for online source.

Name Years Definitions Citation

Malaria Incidence
(per 100,000 population) 2000–2019 The number of new cases in a year divided by the

mid-year population size; per 100,000 population. [52]

Total Malaria Spending per Person
(constant 2019 USD$) 2000–2017

Total malaria spending (government,
out-of-pocket, prepaid private) per person

(constant 2019 United States Dollars)
[53]

https://ghdx.healthdata.org/
https://malariaatlas.org/
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Table 1. Cont.

Name Years Definitions Citation

Agricultural land (% of land
area) 2000–2019

Agricultural land refers to the share of land area
that is arable, under permanent crops, and under

permanent pastures.
[54]

Agricultural, forestry, and
fishing, value added (% of

GDP)
2000–2019

Agriculture, forestry, and fishing; includes forestry,
hunting, and fishing, as well as cultivation of crops
and livestock production. Value added is the net
output of a sector after adding up all outputs and
subtracting intermediate inputs. It is calculated
without making deductions for depreciation of

fabricated assets or depletion and degradation of
natural resources.

[55]

Forest area (% of land area) 2000–2019

Forest area is land under natural or planted stands
of trees of at least 5 m in situ, whether productive

or not, and excludes tree stands in agricultural
production systems (for example, in fruit

plantations and agroforestry systems) and trees in
urban parks and gardens.

[56]

GDP per capita (current USD) 2000–2019

GDP per capita is gross domestic product divided
by midyear population. GDP is the sum of gross

value added by all resident producers in the
economy plus any product taxes and minus any

subsidies not included in the value of the products.
It is calculated without making deductions for the

depreciation of fabricated assets or for the
depletion and degradation of natural resources.

[57]

Total natural resources rent (%
of GDP) 2000–2019

Total natural resources rents are the sum of oil
rents, natural gas rents, coal rents (hard and soft),

mineral rents, and forest rents.
[58]

Net ODA received (% of GNI) 2000–2019

Net official development assistance is
disbursement flows (net of repayment of principal)

that meet the DAC definition of ODA and are
made to countries and territories on the DAC list

of aid recipients.

[59]

Universal health coverage
(UHC) service coverage index

2000, 2005, 2010,
2015–2019

Coverage of essential health services (defined as
the average coverage of essential services based on

tracer interventions that include reproductive,
maternal, newborn and child health, infectious

diseases, non-communicable diseases, and service
capacity and access among the general and the

most disadvantaged population). The indicator is
an index reported on a unitless scale of 0 to 100,
which is computed as the geometric mean of 14

tracer indicators of health service coverage.

[60]

Average proportion of
Terrestrial Key Biodiversity
Areas (KBAs) covered by

protected areas (%)

2000–2019 Proportion of important sites for terrestrial
biodiversity that are covered by protected areas. [61]

Total official development
assistance for biodiversity by
recipient countries (millions of

constant 2020 USD)

2002–2019

Official development assistance on conservation
and sustainable use of biodiversity, defined as

gross disbursements of total Official Development
Assistance (ODA) from all donors for biodiversity

by recipient country.

[62]
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Table 1. Cont.

Name Years Definitions Citation

Country tree cover loss (km2) 2001–2019

Country tree cover loss: Hectares of tree cover loss
at a national level between 2001 and 2021. Tree

cover is defined as all vegetation greater than 5 m
in height and may take the form of natural forests
or plantations across a range of canopy densities.
“Loss” indicates the removal or mortality of tree

cover categorized by percent canopy cover in 2000
(≥30% threshold) and can be due to a variety of

factors, including mechanical harvesting, fire,
disease, or storm damage. As such, “loss” does not

equate to deforestation.

[10]
Global

Administrative
Areas Database,

version 3.6.
Available at

http://gadm.org/
(accessed

12 Janauary 2023)

When applicable, variables were converted to SI units. For variables that included
missing data, one of three methods were applied: (1) if yearly data at the beginning of the
time series were missing, values were replaced using “first observation carried backward”;
(2) if yearly data at the end of the time series were missing, values were replaced using
“last observation carried forward”; (3) if yearly data in the middle of the time series were
missing, values were replaced using linear interpolation; all methods were conducted with
the R package “zoo” [63]. Due to excessive missing data in multiple independent variable
datasets that could not be addressed through interpolation or other missing-data correction
methods, the countries Cabo Verde, Somalia, South Sudan, and Venezuela were removed;
the final dataset for analysis contained 67 countries. Subregions were then grouped into
one of three regions: tropical Americas region (Central America, South America, and the
Caribbean), Africa (Eastern Africa, Middle Africa, Western Africa, and Southern Africa), and
Asia (Southern Asia and Southeastern Asia). The global data were subset into the three regions
for a total of four datasets (Table A1).

Malaria incidence forecasting was performed using the R package “Fable” [64]. To
apply the best model specification, both exponential smoothing (ES) and autoregressive
integrated moving average (ARIMA) were calculated and averaged, then applied to the
forecasting model. Malaria incidence rates at the global and three regional scales were
forecasted five years out.

Although care was given to the varying scales of the selected variables, such as
preferring variables presented as percentages or “per person” measurements, ultimately,
all independent variables were standardized (mean = 0, std = 1) to account for the scale
inconsistencies and aid in normalization of the data, as well as aid in the comparison
between variable and model comparison and selection. Model coefficients were reported
as both standardized and unstandardized. All values were limited to measurements within
the country’s boundaries. A correlation exists within each location (country) due to the
repeated yearly measures, which are accounted for in the variable “year”. To understand
how regionality may affect an independent factor’s influence on malaria incidence, the
variable selection was performed using Least Absolute Shrinkage and Selection Operator
(LASSO) with R package “glmmLasso” [65] with a gaussian distribution on all four datasets
(global, tropical Americas, Asia, and Africa). To find the optimal lambda, candidate lambdas
were looped in until the best model was found using Schwarz’s Bayesian Information
Criterion (BIC). Significant variables were then fitted to a linear mixed-effects model with
R package “lme4” [66]. Country acted as the random effect in the model, with year and the
significant landscape, socioeconomic, and economic variables as the fixed effects.

To assess model fit and prediction power, we employed two methods appropriate
for linear mixed-effect models. First, we evaluated the coefficient of determination (R2)
using Nakagawa’s marginal and conditional R2 [67]. Marginal R2 represents the variance
of the fixed effects, while the conditional R2 represents the variance of both the fixed
and randoms effects. Second, we performed k-fold cross validation to assess the models’

http://gadm.org/
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performance. A common concern when using k-fold cross validation with mixed effect
models is the inaccurate division of the random effect data into the training folds. The
R package “hetoolkit” contains the function “model_cv” that accounts for the random
grouping factor by ensuring that the observations for each group are split as evenly as
possible across the k-folds [68].

All statistical analyses were conducted using R ver. 4.3.3, developed by the CRAN
team at the Vienna University of Economics and Business in Vienna, Austria, and RStudio
ver. 2023.12.1+402, developed by Posit Software, PBC in Boston, MA, USA.

3. Results

Malaria incidence and trends were examined in 67 countries from years 2000 to 2019
(Table A1). Through the twenty years, malaria incidence per 100,000 population across all
countries ranged from 0.16 to 58,908.94 with a mean of 15,030.43 (SD: 16,810.25) (Table A2).
Average malaria incidence is highest in the African region (26,392.56; SD: 14,941.43)
(Table A2), followed by Asia (1647.82; SD: 3576.21) and the tropical Americas (891.35;
SD: 1787.62). Similarly, landscape and socioeconomic parameters also range between re-
gions, with the tropical Americas region retaining the largest average amount of forest
cover (52.47; SD: 21.09), average GDP per capita (4576.80; SD: 3112.49), average universal
health coverage index (62.67; SD: 11.78), and average tree cover loss (263,266; SD: 741,793)
(Table A2). Africa had the highest average malaria spending (3.23; SD: 2.66); agricultural
land as a percent of land cover (44.08; SD: 19.63); agricultural, forestry, and fishing value
added as percentage of GDP (24.04; SD: 11.27); total natural resources rent as percentage
of GDP (8.99; SD: 9.07); and average proportion of Terrestrial KBAs covered by protected
areas (51.92; SD: 23.12) (Table A2). Finally, Asia had the largest amount of total official
development assistance for biodiversity (65.32; SD: 114.75) (Table A2).s

Malaria incidence yearly data were graphed at the global and regional scales; in
addition, malaria incidence was forecasted five years into the future (Figure 1). Between
2000 and 2019, total global malaria incidence fell from 1,350,169.30 new cases to 744,711.80;
according to the forecasting model, it is projected malaria incidence will continue to fall to
possibly 631,185.40 (ES), 547,060.10 (ARIMA), or 589,122.80 (model-averaged) by 2025 at
p ≤ 0.05. At a regional level, a similar decreasing trend was observed from 2000 (tropical
Americas: 29,383.10; Africa: 1,278,910.17; Asia: 41,876.09) to 2019 (tropical Americas:
6075.88; Africa: 725,039.98; Asia: 13,595.91). The tropical Americas were projected to fall
to possibly 3818.63 (ES), 2877.40 (ARIMA), or 3348.017 (averaged model) by 2025 at p ≤
0.05. Although Africa has a significantly larger malaria incidence than the other regions,
it too was predicted to decrease to 617,530.277 (ES), 549,187.75 (ARIMA), or 583,359.01
(model-averaged) by 2025 (p ≤ 0.05). Asia was projected to decrease by 2025 to (p ≤ 0.05)
9891.90 (ES), 1514.21 (ARIMA), or 5703.06 (averaged model) (p ≤ 0.05) of malaria incidence.

LASSO selection was performed on the independent variables for the four datasets:
global, tropical Americas, Africa, and Asia. Insignificant variables from LASSO selec-
tion were not included in the linear mixed effects models (Table 2). Our LASSO model
computed all variables from the global dataset to be significant (optimal lambada from a
minimized BIC = 1668) and was therefore included in the linear mixed effects model. In
the tropical Americas LASSO model (optimal lambda = 100,000), year; forest area percent;
% of KBAs covered by protected areas; universal health coverage index; agriculture land
%; agriculture, forestry, and fishing % of GDP; GDP per capita; natural resource rent %;
net ODA received; and malaria spending were found as significant variables and kept for
further analysis. The Asia LASSO model (optimal lambda = 1668.101) kept year; forest
area percent; % of KBAs covered by protected areas; Universal Health Coverage index;
agriculture land %; agriculture, forestry, and fishing % of GDP; natural resource rent %; net
ODA received; developmental assistance for biodiversity; malaria spending; and tree cover
loss as significant variables. The Africa LASSO model (optimal lambda = 100,000) identified
the least number of variables as significant: forest area percent; % of KBAs covered by
protected areas; universal health coverage index; agriculture land %; agriculture, forestry,
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and fishing % of GDP; GDP per capita; natural resource rent; malaria spending; and
tree cover loss. Despite being insignificant, the variable year was kept in the Africa dataset
to capture the longitudinal aspect of the data.
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Figure 1. Actual malaria incidence per 100,000 population for the years 2000 to 2019 and projected
malaria incidence from years 2020 to 2025 using models exponential smoothing, ARIMA, and an
averaged model of both at p-value ≤ 0.05 and confidence interval of 90%. Forecasts are divided by
global and the three regions: Africa, tropical Americas, and Asia.

Significant variables identified from the LASSO selection were fit into a linear mixed
effects model, where unstandardized (Table 2) and standardized (Table A3) coefficient
values, direction, and significance were recorded (Figures 2 and 3). For the global model,
the variables year, GDP per capita, and malaria spending per person were significant
(p ≤ 0.05), yet the fixed effects explained only 4.3% of the variance (marginal R2: 0.043;
conditional R2: 0.955) (Tables 2 and A3). Year had the largest magnitude of effect on malaria
incidence (β = −2372.18, p < 0.001), with a negative relationship showing that malaria
incidence decreases by −410.94 incidence for each subsequent year (Table 2). Malaria
spending also showed a large, negative relationship with malaria incidence, with each USD
1 of total malaria spending per person decreasing malaria incidence by −651.97 (p < 0.001,
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β = −1607.94.) in the global model. The only significant variable to indicate a positive
relationship was GDP per capita (b = 0.56, p < 0.001, β = 1585.97). The average prediction
error rate for the global model is 0.260 and is the second-best for model accuracy (NRMSE
max–min = 0.066).
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Table 2. Linear mixed effect model with malaria incidence as the dependent variable and country as the random effect. The table reports the model estimates as
unstandardized (b). Bolded p-values indicate significance at p ≤ 0.05. Missing values indicate that the variable was not significant during the LASSO variable
selection. Root mean squared error (RMSE) and normalized root mean square error (NRMSE) values were generated from 10 k-fold cross validation. FA = forest area
(% of land area); KBA = average proportion of terrestrial key biodiversity areas covered by protected areas (%); UHC = universal health coverage service index;
AL = agricultural land (% of land area); AFF = agricultural, forestry, and fishing (% of GDP); GDP = GDP per capita; NRR = total natural resources rent (% of
GDP); ODA = net ODA received (% of GNI); DAB = total official development assistance for biodiversity, by recipient countries (millions of constant 2020 USD);
MS = malaria spending per person; TCL = country tree cover loss.

GLOBAL TROPICAL AMERICAS AFRICA ASIA

Estimates CI p Estimates CI p Estimates CI p Estimates CI p

(Intercept) 8.44 × 105 6.170 ×
105–1.072 × 106 <0.001 5.10 × 104 3.33 × 104–1.35 × 105 <0.001 4.86 × 105 3.82 × 14–9.34 × 105 0.033 3.69 × 105 2.51 × 105–4.86 × 105 <0.001

Year −410.94 −524.82–
−297.07 <0.001 −23.61 −65.71–18.50 0.271 −227.43 −452.93–−1.93 0.048 −187.51 −246.65–−128.38 <0.001

FA 15.79 −106.08–
137.67 0.799 −10.32 −49.60–28.97 0.606 215.94 47.65–384.22 0.012 −9.29 −60.65–42.07 0.722

KBA 2.91 −32.29–38.10 0.871 21.49 9.65–33.32 <0.001 −22.04 −74.28–30.20 0.408 72.63 42.66–102.61 <0.001
UHC −23.50 −102.47–55.47 0.559 −35.88 −63.99–−7.77 0.013 −395.92 −570.36–−221.48 <0.001 80.89 47.70−114.08 <0.001
AL −74.67 −188.79–39.44 0.199 −34.76 −70.64–1.11 0.057 67.65 −109.26–244.56 0.453 71.18 −4.05–146.41 0.064

AFF 8.41 −48.60–65.43 0.772 75.10 22.49–127.72 0.005 53.52 −25.94–132.99 0.186 64.55 33.16–95.94 <0.001
GDP 0.56 0.37–0.75 <0.001 −0.10 −0.16–−0.03 0.003 0.19 −0.13–0.51 0.250 - - -
NRR −23.51 −68.72–21.70 0.308 −30.72 −59.58–−1.85 0.037 −29.56 −88.84–29.73 0.328 49.29 6.02–92.56 0.026
ODA −2.55 −49.02–43.92 0.914 80.55 36.23–124.88 <0.001 - - - 271.27 190.51–352.02 <0.001
DAB −2.89 −7.03–1.25 0.171 - - - - - - −0.18 −1.47–1.12 0.787

MS −651.97 −851.51–
−452.43 <0.001 69.31 −111.13–249.76 0.450 198.99 −86.52–484.51 0.172 −874.04 −1157.68–−590.39 <0.001

TCL −0.05 −0.21–0.10 0.509 - - - −0.95 −1.42–−0.49 <0.001 0.03 −0.04–0.11 0.398

Random Effects

σ2 1.472 × 107 σ2 5.329 × 105 σ2 2.038 × 107 σ2 6.866 × 105

ICC 0.95 ICC 0.81 ICC 0.88 ICC 0.97

Marginal R2/Conditional R2 0.043/0.955 Marginal R2/Conditional R2 0.369/0.882 Marginal R2/Conditional R2 0.209/0.908 Marginal
R2/Conditional R2 0.163/0.976

K-fold Cross Validation

RMSE 3902.758 RMSE 767.204 RMSE 4595.974 RMSE 877.666
NRMSE

(RMSE/mean (y)) 0.260 NRMSE
(RMSE/mean (y)) 0.8601 NRMSE

(RMSE/mean (y)) 0.174 NRMSE
(RMSE/mean (y)) 0.533

NRMSE (RMSE/y max–y min) 0.066 NRMSE (RMSE/y max–y min) 0.0814 NRMSE (RMSE/y max–y min) 0.078 NRMSE (RMSE/y
max–y min) 0.043
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Figure 2. Linear model prediction plots for each of the significant variables found from the linear
general mixed global and regional models. The regression line is highlighted in blue. GDP = GDP per
capita; MS = malaria spending per person; FA = forest area (% of land area); AGB = above-ground
biomass in forest; KBA = average proportion of terrestrial key biodiversity areas covered by protected
areas (%); NRR = total natural resources rent (% of GDP); ODA = net ODA received (% of GNI);
UHC = universal health coverage service index; TCL = country tree cover loss; AFF = agricultural,
forestry, and fishing (% of GDP).

For the tropical Americas model, % of KBAs covered by protected areas, universal
health coverage index; agricultural, forestry, and fishing % of GDP; GDP per capita; natural
resources rent percentage of GDP; and net ODA received % of GNI were significant at
p-value ≤ 0.05 (Figures 2 and 3). In addition, the fixed effects explained 36.9% of the
variance (marginal R2: 0.369; conditional R2: 0.882) (Table 2). Agricultural, forestry, and
fishing % of GDP had the strongest positive significant relationship with malaria incidence
in the tropical Americas region, with every one percent increasing malaria incidence by
75.10 (β = 971.14, p = 0.005). The percentage of KBAs covered by protected areas also
showed a strong positive relationship, and a 1% increase in KBA covered by protected
areas increases malaria incidence by 21.49 (β = 496.71, p < 0.001). Net ODA received
was also positively associated with malaria incidence (b = 80.55, p < 0.001, β = 625.44)
(Tables 2 and A3). The two economic variables, natural resource rent and GDP per capita,
negatively influence malaria incidence, leading to a decrease in malaria incidence by 30.72
for every one percent of total natural resources (p = 0.037, β = −321.78) and a decrease of
0.10 for every USD 1 of GDP per capita (p = 0.003, β = −276.92) (Tables 2 and A3). Finally,
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an increase in the universal health coverage index decreases the malaria incidence rate
(b = 35.88, p = 0.013, β = −561.60) (Tables 2 and A3). The tropical Americas model,
unfortunately, held an 86.01% prediction error rate when tested using k-fold cross validation
and was the worst-performing of the group (NRMSE max–min = 0.0814).
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Figure 3. Forest plot of the standardized model estimates for each variable of the global, tropical
Americas, Africa, and Asia linear mixed effects model. Colored squares indicate the mean estimate,
and the line is the confidence interval. FA = forest area (% of land area); KBA = average proportion of
terrestrial key biodiversity areas covered by protected areas (%); UHC = universal health coverage
service index; AL = agricultural land (% of land area); AFF = agricultural, forestry, and fishing
(% of GDP); GDP = GDP per capita; NRR = total natural resources rent (% of GDP); ODA = net
ODA received (% of GNI); DAB = total official development assistance for bio-diversity, by recipient
countries (millions of constant 2020 USD); MS = malaria spending per person; TCL = country
tree cover loss.

Year, forest area percent, universal health coverage index, and tree cover loss were
significant (p ≤ 0.05) in the Africa model, with a marginal R2 of 0.209 (conditional R2:
0.908) (Table 2, Figures 2 and 3). The variable universal health coverage index had the
strongest magnitude out of any variable in all of the four models (β = −6196.58, p < 0.001)
(Table A3), with a one-point increase in universal health coverage index decreasing malaria
incidence by 395.92, indicating that health coverage meaningfully minimizes malaria risk
in Africa (Table 2). In addition, tree cover loss is strongly associated with decreased malaria
rates (b = 0.95, p < 0.001, β = −4037.73) (Tables 2 and A3). Finally, the data show that
malaria incidence has significantly fallen over time (b = −227,43, p = 0.048, β = −1312.84)
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(Tables 2 and A3). The only positive relationship with malaria incidence in the Africa model
is forest area percent, with each one percent of forest area leading to an increase of 215.94
malaria incidence (p =0.012, β = 5373.18) (Tables 2 and A3). The model for the African
region of the globe had the best predictive power: the percentage error rate was 17.4%, and
it was one of the best-performing models (NRMSE max–min = 0.078).

Finally, the Asia model identified variables year, % of KBAs covered by protected
areas; universal health coverage index; agriculture, forestry, and fishery % of GDP; nat-
ural resource rent; net ODA received as a percent of GNI; and malaria spending per
person at 0.05 significance (Figures 2 and 3). The model explained 16.3% of the variance
(marginal R2: 0.163; conditional R2: 0.976) (Table 2). Malaria spending per person was the
most impactful variable, with each USD 1 spent decreasing malaria incidence by 874.04
(p < 0.001, β = −2155.62) (Table A3). The model also showed that malaria incidence has
significantly reduced over time (b = −187.51, p < 0.001, β = −1082.43) (Tables 2 and A3).
Counterintuitively, the universal health coverage index is positively related to increased
malaria in the Asia region of the globe (b = 80.89, p < 0.001, β = 1266.02) (Tables 2 and A3).
Percentage of KBA covered by protected areas (b = 72.63, p < 0.001, β =1679.20); natural
resource rent (b = 49.29, p = 0.026, β = 516.37); and agriculture, forestry, and fishing as a
percent of GDP (64.55, p < 0.001, β = 834.67) also significantly increased malaria incidence
(Tables 2 and A3). The Asia model, when tested with k-fold cross validation, had a percent
error rate of 53.3%, yet performed the best when evaluating the normalized RMSE using
the malaria incidence minimum subtracted by maximum (0.043).

Each model shows distinct differences, with no one variable considered significant for
every model. This demonstrates that the environment and socioeconomic characteristics
of a region vary and that specific characteristics may influence malaria incidence more
in one region than in another. The year variable, when significant, collaborated with our
forecast (Figure 1) that malaria incidence is decreasing over time. Total official development
assistance for biodiversity by recipient countries was the most frequently removed from
the LASSO selection, being absent in both the tropical Americas and Africa models and
non-significant in the global and Asia models. Agricultural land as a percentage of total
land area was never considered significant in any model.

4. Discussion

Our goal was to examine the current trend of malaria incidence across the globe and
examine its relationship to forest loss and land use change, as well as identify possible key
factors that may impact malaria risk at both the global and regional levels. Our results
demonstrate that malaria has been and will continue to decrease in prevalence in tropical
forested countries through the near future. In addition, modeling malaria incidence against
various landscape and socioeconomic variables has highlighted significant differences
between regions, indicating that in order to continue to minimize the risk of malaria on
global health, regionality must be considered in government policy-making and other
intervention methodologies.

From 2000 to 2019, malaria incidence has steadily decreased on both global and
regional scales in tropical forested countries (Figure 1). Global malaria has fallen 44.8%,
while the tropical Americas, Africa, and Asia have decreased by 79.3%, 43.3%, and 67.3%,
respectively. Forecasting using the ES and ARIMA average predicts that global malaria
will fall an additional 28.9%, tropical Americas 52.6%, Africa 19.5%, and Asia 58.1% from
2019 to 2025. The trend over the past twenty years is a testament to the joint efforts of
governments, non-profits, and individuals in slowing the incidence of malaria on a global
scale through new policies, medical treatments, and preventive techniques. However, the
world has continued to rapidly change with new threats to both the climate and landscapes
that inhabit the tropical regions of the world [69,70]. In a potential domino effect, changes
to the environment can impair livelihoods and health and, therefore, immobilize economic
status for both individuals and countries; countries with higher cases of malaria experience
slower economic growth than countries with lower incidence [71]. Broad policies may
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or may not be successful in individual regions around the world as each country brings
its own history and regional challenges; therefore, it would be advantageous to identify
patterns of influence on malaria risk at both the global and regional levels.

Malaria, similar to other infectious diseases, has been linked to a multitude of different
landscapes and socioeconomic factors that can affect risk to populations. The variables
selected for the study are broad interpretations of potential influences on malaria incidence,
such as forest cover and quality, healthcare and socioeconomic status for citizens, and
government commitment to malaria elimination. Although more focused datasets created
through fieldwork or complimentary projects could target individual influences on malaria
incidence more successfully, it was of interest to determine the strength of the models
composed of only readily available datasets found through databases and other online
sources, many of which are continually updated by international research and governing
agencies. However, due to the unspecific nature of the public datasets to direct malaria
incidence, the LASSO variable selection was an attempt to specify key components of
malaria incidence at both a global and regional scale and to further model to capture the
greatest influence at these varying spatiotemporal levels.

Our models showed varying success in capturing malaria incidence risk. Working
with numerous ecological variables for 67 different countries made describing broad trends
incredibly difficult. The tropical Americas model had the largest marginal R2 at 0.369,
which can be considered a poor fit when compared to the suggested guidelines [72]. Testing
the models using k-fold cross validation indicated that some models, particularly the
global and African models, were adequate in prediction with a minimal error rate of 26.0%
and 17.4%, respectively (Table 2). The difference between the unsatisfactory coefficient
of determination and satisfactory NRMSE may be an indication that the model makes it
difficult to fit the existing data yet is still proficient at predicting the values of new data.
Tropical Americas had the highest error rate at 86.0% (Table 2) despite also having the
highest marginal R2, which may lead credence to the opposite: that this particular model
fits the data better but is not quite as adept at the prediction of new values. However, the
complexity of ecological data may prevent models from reaching higher coefficients of
determination or better prediction power, and therefore, it may be wise to explore the novel
relationships presented by the models [73].

One goal of the study was to evaluate how deforestation and land use change can
impact malaria incidence both globally and regionally. Forest area as a percent of land
area, agricultural land as a percent of land area, and tree cover loss were used to explore
this relationship, while the average proportion of terrestrial key biodiversity areas covered
by protected areas was an attempt to evaluate forest quality [74], or locations within
countries with untouched forest. Agricultural land as a percentage of total land area
was not significant in any of our models and, therefore, was not evaluated further for
interpretation (Table 2. Forest area and tree cover loss were only significant in the Africa
model; however, it was interpreted that increased forest area and minimized forest loss are
associated with increased malaria incidence (forest area: b = 215.94, p = 0.012, β = 5373.18;
tree cover loss: b = −0.95, p < 0.001, β = −4037.73) (Tables 2 and A3). Although many
studies have concluded that malaria incidence is increased by deforestation, especially in
the Amazon or Asia [75–79], a few have indicated that the relationship is not always so
clear, especially in African regions: one study found that childhood malaria was generally
associated with complete forest cover [80], while another could not find that malaria
was associated with deforestation or intermediate forest cover in 17 different African
countries [38]. The reason for this relationship has multiple possibilities. First, Anopheles nili
is a deep or closed-forest mosquito species and is considered one of the largest contributors
of malaria in Africa due to its effectiveness and wide range [81]. Although not as prolific as
other non-forest species on the continent, there are plenty of deep forests that cover large
expanses and house numerous communities; in Central Africa, there is 1.4 million km2 of
forest under malaria risk, homing a population of 18.7 million people [82]. The amount of
forested areas and large populations in malaria-risk areas may be enough to influence the
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model to assign a positive association between forest areas or areas with low tree cover loss.
Another confounding factor is that there can be large variations in malaria incidence within
a country. By using country-level data only, in-country regional differences in malaria
incidence and trends, as well as distribution of forest in comparison to communities, can
get lost. It is possible that a different relationship between forest cover and malaria risk
could exist if examining a finer regional scale, but is altered at the country-level. Finally,
forests are often areas of high biodiversity; it is not yet fully understood how issues such as
hidden reservoirs or disease transmission dynamics may be impacted by regions of high
species diversity [83].

This was explored in our model by examining the average proportion of terrestrial
key biodiversity areas covered by protected areas. The variable was significant and posi-
tively associated with malaria incidence in both the tropical Americas (b = 21.49, p < 0.001,
β = 496.71) and Asia model (b = 72.63, p < 0.001, β = 1679.20) (Tables 2 and A3). Multiple
studies have shown that high biodiversity regions or areas under protection can positively
influence malaria incidence [84–86], and our models seem to echo a similar finding. Despite
the possible risk of malaria incidence, forest conservation and protection of biodiversity
hotspots have many other positive benefits that cannot be ignored. They provide key
ecosystem services like carbon sequestration, water and soil regulating services, mainte-
nance of ecosystems, and production of natural resources [87–89]; they also can mitigate
risk for many other zoonotic or infectious diseases and play key roles in the health of human
populations [90]. Therefore, the answer is not an increase in the loss of key habitats to
minimize malaria risk but a more complete approach to conservation that considers disease
ecology and other potential harms when developing and managing protected areas [91].

Healthcare is one of the most direct ways in which the malaria burden can be reduced
in populations. Malaria spending per person and the universal healthcare coverage index
were two variables included in our models to examine their direct impact on malaria
incidence. Malaria spending per person was significant in two of our models, with an
increase of USD 1 per person decreasing malaria incidence by 651.97 (p < 0.001) and 874.04
(p < 0.001) in the global and Asia models, respectively (Table 2). Health expenditures by
governments have shown to be beneficial, if not significant, in select African countries [92].
In addition, universal health coverage was demonstrated to strongly reduce the burden
of acute illnesses [93]. However, the Asia model had the unique case of universal health-
care coverage being positively associated with malaria incidence (b = 80.89, p < 0.001,
β = 1266.02) (Tables 2 and A3). A similar issue was seen in a paper commenting on Zika in
countries with or without universal healthcare coverage; although Zika was largely seen in
countries with no universal coverage, a few universal health coverage countries had higher
Zika incidence than those without. In those situations, it may be that the increased coverage
had led to more accurate reporting and, therefore, a higher incidence [94]. Further studies in
Asia examining healthcare coverage and spending on malaria incidence may be warranted.

Finally, our models examined several economic variables to capture the effect in-
dustries, financial growth, and foreign assistance may have on malaria risk. GDP per
capita was significant for both the global (b = 0.56, p < 0.001, β = 1585.97) and tropical
Americas model (b = −10, p = 0.003, β = −276.92) (Tables 2 and A3). GDP has already
been shown to be negatively impacted by malaria, with one study in Tanzania finding
malaria burden equaling 1.1% of the GDP [95]. In assessing how GDP impacts malaria,
we were surprised to find a positive correlation in the global model despite the linear
prediction plots (Figure 2) identifying a positive relationship. We believe that variation
in levels of malaria risk between countries caused GDP to behave like a constant in the
global model; in fact, when examined regionally in the Tropical Americas, we see the
negative relationship expected. Net ODA received was also significant in both the tropical
Americas model (b = 80.55, p < 0.001, β = 625.44) and the Asia model (b = 271.27, p < 0.001,
β = 2106.21) (Tables 2 and A3). The variable was not specific to aid given for malaria or
health but general promotion for economic development and welfare in countries and
territories; therefore, it reflects the countries with a need for aid stimulation. Another
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paper, although focused specifically on development assistance for health and disease
burden, also found a positive correlation between ODA and malaria risk [96]. The apparent
indication is that countries in most need of aid may be those with the strongest disease
burden. Two variables were focused on economic outputs and were an attempt to cap-
ture countries’ interactions with natural areas: total natural resource rents as a percent of
GDP and agriculture, forestry, and fishing as a percent of GDP. The latter was significant
for both the tropical Americas (b = −30.72, p = 0.037, β = 971.14) and Asia (b = 64.55,
p < 0.001, β = 834.67) models with a positive association with malaria risk (Tables 2 and A3).
A previous study had previously linked malaria to deforestation-related commodities,
including timber, cocoa, coffee, and other natural products, with approximately a 20%
increase in malaria incidence in areas of deforestation attributed to the exportation of these
products [97]. Although our variable contained additional exportation revenues, including
fishing, it may still be an indication that our models are capturing the increased malaria
risk from natural resource-based industries and driving incidence in these regions. Lastly,
natural resources rent, like net ODA, was significant in the tropical Americas (b = −30.72,
p = 0.037, β = −321.78) and Asia (b = 49.29, p < 0.001, β = 516.37) (Tables 2 and A3). The
relationship between resource-rich countries and human well-being is contradictory among
papers; Lyatuu et. al. found that the short-term effects of natural resource rent incomes are
correlated to increased life expectancies within sub-Saharan Africa and that the increased
revenue results in additional revenue for governments for new policies and programs [98].
However, Chang and Wei discovered the opposite when examining malaria especially, and
that resource-rich countries are more highly associated with malaria cases of infection and
death, attributed to reluctance by governments to reinvest in national programs and poor
conditions in mining and drilling areas [99]. Our models indicate a positive relationship
between natural resource rents and malaria incidence in Asia but a negative relationship
in the tropical Americas, suggesting that the impact may be region-specific. Whether
the increase revenue from natural resources helps or hinders malaria incidence may be
dependent on how the government reinvests that income, and that varies by each country.

We experienced limitations and challenges when creating our models. Many of our
dependent and independent variables violated the assumption of normality even after
standardization and showed imperfection with the linearity of residuals and, therefore,
may not have been the best fit for a linear mixed model. Improvement in model fit and
explanation of variance for both global and regional datasets may occur if other modeling
methods are implemented. In addition, a few countries had more missing data than others,
especially in the early years of agriculture, forestry, and fishing, which valued an added
percent of GDP for Djibouti. The missing data were added through the “first observation
carried backwards” methodology. We felt it was important to include the agricultural,
forestry, and fishing percent of GDP variable and not remove it from the model due to
one country. In addition, a more detailed analysis of the data indicated there was very
little variation in value for the years available (0.69%), and considering the missing data
were the most historic, we decided that “first observation carried backwards” would be an
appropriate solution.

In addition, the choice of using country-level spatial data introduced an intrinsic set
of limitations on how results can be interpreted by individual countries or regions within
countries. The goal of the study was to determine the broad trends of malaria across
vast geographical regions, whether these regions carry their own unique risk of increased
malaria incidence, and how these regions compare to a global view of malaria incidence.
However, our selected variables may vary greatly across an individual country, and areas
of high malaria incidence may not always correlate to the country-wide data found for each
of our proposed risk factors. Moreover, we attempted to best capture vulnerabilities for
populations to malaria through a varied selection of landscape and socioeconomic variables;
however, specific variables related to social inequalities were not included due to data
unavailability for all the countries at the level we wanted. This problem was compounded
by the use of country-level data, which may limit insight into the in-country regions most
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at risk for malaria due to these inequalities. Increased malaria incidence has an established
link to social inequalities [100–102], and not having more detailed variables exploring that
relationship may lead our results to miss a key component of malaria incidence in certain
countries and, therefore, greater geographical regions versus others.

Another failing of our model is the exclusion of information on Plasmodium sp. in
reported malaria cases. Plasmodium knowlesi is a zoonotic malaria parasite primarily found
in Southeastern Asia [103] and may be influenced by different landscape, socioeconomic,
and economic risk factors compared to human malaria [104]. Further studies on region-
ality for malaria risk should consider zoonotic malaria cases in comparison to the other
forms of human malaria to possibly highlight emerging risk factors that could increase
p. knowlesi incidence.

Finally, although our study data and analysis focused on the period pre-SARS-CoV-2
global pandemic, the lack of inclusion of the pandemic may have led to inaccurate malaria
projection in our forecasting model or incomplete risk factors for our global and regional lin-
ear mixed effects models. The COVID-19 pandemic impacted healthcare and government
systems, resulting in indirect increases in malaria incidence, particularly in African coun-
tries and other malaria-endemic countries [105–107]. These causes range from interruptions
to healthcare systems, including delayed diagnosis or treatment, to disruption in preven-
tative and control measures [108]. Our forecast does not include information about the
pandemic in its model, nor do our global and regional linear mixed-effects models account
for the effects of the COVID-19 pandemic on tested risk factors and their subsequent models.
However, there is increased concern about new zoonotic disease spillover and pandemics
from land-use change, decreasing ecosystem health, and deforestation [109,110]. The same
risk factors for increased malaria incidence may also increase the risk of new pandemics;
therefore, it is worthwhile to determine how malaria incidence may fluctuate in the future
with more epidemics or pandemics. A prospective research aim would be to determine
the extent of the discrepancy between the malaria forecasts and actual malaria incidence
numbers post-pandemic and discover the best method to capture potential increases in
indirect disease incidence during a global health crisis. In addition, the risk models can
be run using new risk factors related to vulnerability to COVID-19 and determine which
countries may be more at risk for future pandemics coupled with increased endemic disease
incidence due to their health or government systems.

5. Conclusions

Malaria cases around the globe are decreasing, but as the world continues to experience
increased deforestation and land use change, it is unclear what relationship it will have
on malaria incidence in tropical forest countries. Through variable selection and linear
mixed effect models, we found that regionality plays an important role in influencing forest
loss, land use change, and socioeconomic factors on malaria incidence. However, low
model fit or predictive accuracy for some of our models indicates that further refinement
can be accomplished. Our models also highlighted key areas of future research, including
the relationship of forest cover to malaria risk in Africa, an exploration into the effects of
universal health coverage on disease reporting to better evaluate program or healthcare
policies, the potential negative impacts of increased disease risk with some conservation
policies, and how best to negate the ill-effects to maximize the positive benefits of ecosystem
services that come from protected areas.
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Appendix A

Table A1. Final list of countries used in the study (n = 67). Countries were removed from the analysis
if they did not meet the criteria of having tropical forests, endemic incidence of malaria, and complete
and usable datasets for variables of interest. * El Salvador was declared malaria-free in February
2021 by WHO [111], while Belize was declared malaria-free by WHO in June of 2023 [112]; the
two countries’ data were still included due to the analysis taking place during the period of 2000–2019
and providing insights into the factors leading to its elimination.

TROPICAL AMERICAS

Belize * Bolivia Brazil Colombia
Dominican Republic Ecuador El Salvador * Guatemala
Guyana Haiti Honduras Mexico
Nicaragua Panama Peru Suriname
AFRICA

Angola Benin Botswana Burkina Faso
Burundi Cameroon Central African Republic Chad

Cote d’Ivoire Democratic Republic of the
Congo Djibouti Equatorial Guinea

Gabon Gambia Ghana Guinea Bissau
Guinea Kenya Liberia Madagascar
Malawi Mali Mauritania Mozambique
Namibia Niger Nigeria Republic of the Congo
Rwanda Senegal Sierra Leone Sudan
Togo Uganda United Republic of Tanzania Zambia
Zimbabwe
ASIA

Bangladesh Bhutan Cambodia India
Indonesia Lao PDR Malaysia Myanmar
Nepal Pakistan Papua New Guinea Philippines
Thailand Vietnam

Appendix B

Supplementary Methodology: All data variables were selected on a country-wide scale.
No regionality within countries was selected when constructing the dataset; all regions
within a country were used for the analysis, even if said region did not fit the data selection
criteria of having tropical rainforest and endemic incidence of malaria. This study was
concerned with country-level analysis only. Preference to variable selection was given to in-
tergovernmental organizations or not-for-profits with an established history of strict quality
control, detailed methodologies and metadata, and adherence to standardized formats.

The R package “Fable” utilizes both exponential smoothing state space (ETS) model-
ing and autoregressive integrated moving average modeling (ARIMA) to forecast malaria
five years into the future. ETS is a forecasting model that gives greater importance to
recent values in a series, while ARIMA uses lagged moving averages to make forecasts.
Fable decided which model specification to use for the user [64]. EST and ARIMA were
averaged to create a third forecast, the average forecast. To compare the best model fit, all

https://osf.io/kn7gb/?view_only=ba06cf02b572488fb697748f9616af28
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three models were graphed with a p-value less than or equal to 0.05 and a confidence inter-
val of 90% to predict malaria incidence five years out for the global and three regional scales.

Appendix C

Table A2. Statistical summary for the original dependent variable and independent variables at
the global and regional levels for the years 2000 to 2019. Negative values indicate countries paid
back more official development assistance (ODA) than they received. MI = malaria incidence (per
100,000 population); MS = malaria spending per person; AL = agricultural land (% of land area);
AFF = agricultural, forestry, and fishing (% of GDP); FA = forest area (% of land area); GDP = GDP
per capita; NRR = total natural resources rent (% of GDP); ODA = net ODA received (% of GNI);
UHC = universal health coverage service index; KBA = average proportion of terrestrial key biodiver-
sity areas covered by protected areas (%); DAB = total official development assistance for biodiversity,
by recipient countries (millions of constant 2020 USD); TCL = country tree cover loss.

GLOBAL (n = 67) TROP. AMERICAS (n = 16) AFRICA (n = 37) ASIA (n = 14)

n Mean (SD) Min/Max n Mean (SD) Min/Max n Mean (SD) Min/Max n Mean (SD) Min/Max

MI 1328 15,030.43
(16,810.25) 0.16/58,908.94 320 891.35 (1787.62) 0.16/9419.55 728 26,392.56

(14,941.43) 26.89/59,908.94 280 1647.82
(3576.21) 5.01/20,436.55

MS 1206 2.15 (2.40) 0.01/15.95 288 0.97 (1.16) 0.11/7.87 666 3.23 (2.66) 0.16/15.95 252 0.64 (0.75) 0.01/3.86

AL 1328 38.96 (19.94) 0.49/79.17 320 33.23 (18.47) 0.45/67.85 728 44.08 (19.63) 6.80/79.17 280 32.22 (18.57) 2.21/75.63

AFF 1298 19.84 (12.78) 0.89/79.04 320 10.21 (6.21) 2.19/34.00 700 24.04 (11.27) 0.89/79.04 278 20.14 (5.99) 7.24/57.14

FA 1328 41.07 (24.88) 0.24/98.34 320 52.47 (21.09) 12.71/98.34 728 34.59 (25.49) 0.24/93.25 280 44.89 (21.69) 4.89/80.11

GDP 1328 2396.90
(2835.04) 114.40/19,849.70 320 4576.80

(3112.49) 547.70/15,826.10 728 1566.8
(2398.92) 114.4/19,849.70 280 2064.1 (2190.13) 131.5/11,132.0

NRR 1324 9.24088
(9.855795) 0.02/88.60 320 4.86 (5.43) 0.02/31.93 724 12.44 (11.27) 0.28/88.59 280 5.83 (5.99) 0.36/31.20

ODA 1328 6.05 (7.764) −0.64/92.14 320 2.22 (3.26) −0.63/24.32 728 8.99 (9.07) −0.18/92.14 280 2.80 (3.22) −0.64/14.07

UHC 402 44.84 (16.11) 15.00/83.00 96 62.67 (11.78) 23.00/80.00 22 36.18 (10.46) 15.00/62.00 84 47.37 (15.14) 19.00/83.00

KBA 1328 43.97 (23.12) 0.00/100.00 320 37.58 (20.58) 0.00/76.92 728 51.92 (23.12) 0.00/100.00 280 30.63 (16.58) 1.43/68.03

DAB 1165 39.13 (73.00) 0.00/704.15 280 43.18 (78.08) 0.01/593.31 633 26.91 (38.27) 0.00/280.27 252 65.32 (114.75) 0.03/704.15

TCL 1273 139,916.00
(425,804.00) 0.00/5,378,844.00 304 263,266

(741,793) 1070/5,378,844 703 62,799
(151,237.20) 0.00/1,467,957.00 266 202,756

(78,597.30) 0.00/2,422,072.00

Table A3. Linear mixed effect model with malaria incidence as the dependent variable and country
as the random effect. The table reports the standardized coefficient (β). Bolded p-values indicate
significance at p ≤ 0.05. Missing values indicate that the variable was not significant during the
LASSO variable selection. RMSE and NRMSE values were generated from 10 k-fold cross validation.
FA = forest area (% of land area); KBA = average proportion of terrestrial key biodiversity areas
covered by protected areas (%); UHC = universal health coverage service index; AL = agricultural
land (% of land area); AFF = agricultural, forestry, and fishing (% of GDP); GDP = GDP per capita;
NRR = total natural resources rent (% of GDP); ODA = net ODA received (% of GNI); DAB = total
official development assistance for biodiversity, by recipient countries (millions of constant 2020
USD); MS = malaria spending per person; TCL = country tree cover loss.

GLOBAL TROPICAL AMERICA AFRICA ASIA

β CI p β CI p β CI p β CI p

(Intercept) 14,959.18 10,795.53–19,122.83 <0.001 2774.67 1611.62–3937.72 <0.001 23,045.00 18,493.89–27,596.10 <0.001 2589.65 −111.46–5290.75 0.060
Year −2372.18 −3029.52–−1714.84 <0.001 −136.27 −379.34–106.08 0.271 −1312.84 −2614.57–−11.12 0.048 −1082.43 −1423.80–−741.05 <0.001
FA 392.99 −2639.66–3425.63 0.799 256.73 −1234.27–720.81 0.606 5373.18 1185.68–9560.68 0.012 −231.18 −1509.29–1046.93 0.722

KBA 67.21 −746.45–880.87 0.871 496.71 223.11–770.32 <0.001 −509.55 −1717.29–698.20 0.408 1679.20 986.16–2372.23 <0.001
UHC −367.81 −1603.77–868.15 0.559 −561.60 −1001.56–−121.64 0.013 −6196.58 −8926.72–−3466.44 <0.001 1266.02 746.53–1785.50 <0.001
AL −1488.69 −3763.70–786.32 0.199 −693.03 −14008.23–22.17 0.057 1348.74 −2178.13–4875.61 0.453 1419.11 −80.64–2918.85 0.064

AFF 108.81 −628.44–846.06 0.772 971.14 290.77–1651.52 0.005 692.10 −335.45–1719.66 0.186 834.67 428.74–1240.59 <0.001
GDP 1585.97 1057.01–2114.93 <0.001 −276.92 −461.56–−92.28 0.003 536.99 −378.93–1452.91 0.250 - - -
NRR −246.25 −719.85–227.34 0.308 −321.78 −624.19–−19.36 0.037 −309.63 −930.66–311.39 0.328 516.37 63.07–969.67 0.026
ODA −19.80 −380.65–341.04 0.914 625.44 281.27–969.61 <0.001 - - - 2106.21 1479.22–2733.21 <0.001
DAB −200.32 −487.30–86.67 0.171 - - - - - - −12.30 −101.99–77.39 0.787
MS −1607.94 −2100.06–−115.82 <0.001 170.95 −274.07–615.97 0.450 490.77 −213.39–1194.94 0.172 −2155.62 −2855.17–−1456.06 <0.001
TCL 220.32 −875.01–434.37 0.509 - - - −4037.73 −6015.10–−2060.36 <0.001 141.44 −187.34–470.23 0.398
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