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Abstract: To solve the problem regarding the large-scale grid-connected consumption of a high
proportion of new energy sources, a concentrating solar power (CSP)-photovoltaic (PV)-wind power
day-ahead and intraday-coordinated optimal dispatching method considering source load uncer-
tainty is proposed. First, the uncertainty of day-ahead wind power output prediction is described by
the multi-scenario stochastic planning method, and the uncertainty of intraday source-load is charac-
terized by the trapezoidal fuzzy number equivalence model. Second, based on the combined scenario
set of day-ahead wind power output prediction, the day-ahead optimal dispatch is performed by
combining thermal and CSP plants, and the day-ahead thermal and CSP plant dispatch output and
intraday source load fuzzy dataset are used as the input quantities for the day-ahead dispatch. Thus,
the scheduling output and rotating backup plan for thermal power and CSP plants were determined;
finally, the validity and feasibility of the model were verified using arithmetic examples.

Keywords: new energy consumption; multiple time scale; uncertainty; two-level optimal

1. Introduction

Due to the volatility and intermittency of new energy sources, large-scale grid con-
nections lead to an increase in peak output power fluctuation. Therefore, considerable
flexibility is required to adjust the power supply for peak regulation. In the new energy
base, the proposed method is an effective way to ensure green and efficient consumption
of new energy by making rational use of regional wind and solar energy resources, thus
improving the supply of new energy such as wind power, photovoltaic (PV) and concen-
trating solar power (CSP) generation, and accelerating the construction of a diversified and
complementary new energy supply system.

In recent years, scholars at home and abroad have made some research achievements
on the uncertainty of both sides of the source load. In reference [1], a robust, fuzzy, multi-
objective dispatching model of a power system was established that takes into account
the source load bilateral uncertainty. In reference [2], a cross regional day-ahead and
intraday scheduling model that considers the uncertainty of new energy forecasts is es-
tablished through the use of a stochastic optimization model and multi-time-scale rolling
optimization. In reference [3], taking into account the characteristics of load uncertainty
and wind power uncertainty on the power system with a high energy load and wind power
coordinated dispatching, a robust unit combination model that minimizes the risk of wind
curtailment and load slit-ting was constructed. Reference [4] characterized the uncertainty
of new energy output using the coupled quantile point regression theory and the reduced
dimensional clustering technique for the generation of a new energy-combined output
scenario set. Reference [5] considered the variations in wind power and load forecasting
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deviation with time scale and the load response deviation under the condition of time-
sharing tariff price. Reference [6] used Monte Carlo simulations to generate scenarios with
different price demand responses and employed opportunity constraint methods to model
expectations. Reference [7] considered the uncertainty of wind power and price-elastic
demand curves and established a multilevel optimal dispatching model considering the
bilateral uncertainty of the source load. In reference [8], the stochastic response character-
istic of price-elastic load was used to smooth out the stochastic fluctuation characteristic
of wind power. In reference [9], an uncertainty load model considering load self-elasticity
coefficients and tariff-based demand response was proposed. Reference [10] established a
stochastic fuzzy uncertainty model of wind farm output based on the uncertainty planning
theory and expressed the uncertainty characteristics of load forecasting in terms of load
interval curves. Reference [11] used fuzzy parameters to describe the uncertainty of new
energy output and load demand in the system. Reference [12] used fuzzy parameters to
represent intermittent power output and load uncertainty. In reference [13], a combination
of goal programming based on fuzzy random chance constraints and priority goal program-
ming was proposed to solve the dual uncertainty of user response behavior under wind
power and time-sharing tariff prices. Reference [14] proposed a system risk assessment
considering multiple uncertainties by integrating stochastic fuzzy characteristics such as
load. To reduce the impact of PV and load output forecast uncertainty on the economy of
interprovincial optimal dispatching operations, Reference [15] proposed a two-level dis-
patching strategy for DC interprovincial interconnected power grids considering PV load
forecast uncertainty. In Reference [16], wind power and load were represented by fuzzy
parameters to change the deterministic system constraints into fuzzy chance constraints
based on the plausibility theory. In summary, references [1–4] improved the accuracy of
the predicted new energy output through different forecasting methods, with the main
purpose of alleviating the uncertainty of the new energy output. References [5–9] intro-
duced demand response resources into system dispatching and investigated the impact of
uncertainty on system load under various types of demand response regulation to learn
more about its inherent uncertainty problem. In references [10–18], the uncertainty of wind
power output and load demand was expressed by deterministic scenarios and fuzzy pa-
rameters, with the uncertain variables transformed into deterministic variables. However,
the following problems still need to be considered: (1) most of the research on optimal
dispatch of high proportion of new energy focuses on the long time scale ahead of the day,
without considering the uncertainty of the short time scale within the day; (2) the use of
the CSP plant with heat storage system to coordinate and optimize the uncertainty of wind
and solar output is seldom considered.

This paper considers the output complementary characteristics between wind power
and PV and CSP plants, as well as the dual uncertainties of high proportional power
sources and loads. In addition, considering that the output prediction of renewable energy
such as wind and solar energy is closely related to the time scale, when the time scale
is shorter and closer to the current time, the prediction accuracy is higher. If different
dispatching plans are formulated under different time scales based on the response time of
various adjustable resources in the power system, the accuracy of dispatching results can
be improved and the system’s ability to absorb renewable energy with large fluctuations
can be effectively improved. Compared with the day-ahead long-time scale, the Intraday
short-time scale can be combined with more accurate intra-day prediction information and
make full use of the fast adjustment ability and power translation characteristics of the
CSP plant to effectively reduce the load fluctuation after the wind–solar grid connection.
In addition, this paper also considers the prediction error of wind power, PV power and
load demand, and establishes different source-load uncertainty models for day-ahead
and intraday scheduling. The day-ahead scheduling is characterized by deterministic
scenario analysis, and the intraday scheduling is based on the fuzzy parameters of wind
power and load demand by introducing fuzzy theory and using trapezoidal functions to
establish a two-level day-ahead and intraday scheduling model that considers the source-
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load uncertainty. The simulation results verify the validity and feasibility of the model and
method in this paper. This paper aims to propose a feasible scheme for the current dilemma
of power system peak regulation, which requires a certain reference value to allow a CSP
plant to participate in power market dispatching.

The remainder of this paper is structured as follows: Section 2 models the uncertainty
of source-load, and Section 3 builds the scheduling model for the day-ahead and day-
in time scales, respectively, to explain the solution methods for the models. Section 4
summarizes our case study data and results, and Section 5 comprises the conclusion.

2. Source Load Uncertainty Model

When establishing a scheduling model, it is very important to consider the system
uncertainty. The uncertainty of day-ahead wind power and PV output is expressed by the
sum of the deterministic forecast value and the changing forecast error, and the normal
distribution is used to analyze the forecast error of new energy output. The uncertainty of
intraday source load is described by introducing trapezoidal fuzzy parameters.

2.1. Uncertainty Expression of the Output of the Day Ahead

Compared with the uncertainty of wind power and PV output, the system load
demand fluctuates less under the 24-h day-ahead time scale and is relatively stable, so
its uncertainty will not be considered for the time being. The uncertainty of wind power
and PV output is the problem to focus on in the day-ahead dispatch, and the wind power
and PV output are expressed as the sum of the determined forecast value and the variable
forecast error, and can be described by the following equation:{

Pw,t = Pw,t,y + Pw,t,c

Pv,t = Pv,t,y + Pv,t,c
(1)

where Pw,t and Pv,t are the output of wind power and PV, respectively; Pw,t,y, Pv,t,y, Pw,t,c
and Pv,t,c are the constant output prediction and the variable output prediction errors of
wind power and PV, respectively.

For large-scale wind farm and PV power plant output prediction problems, the normal
distribution is usually used to analyze the prediction error of new energy sources. Its
prediction error probability density function is as follows:

f (Pw,t,c) =
1√

2πδw,t,c
e
− (Pw,t,c−µw,t,c)

2

2δw,t,c2

f (Pv,t,c) =
1√

2πδv,t,c
e
− (Pv,t,c−µv,t,c)

2

2δv,t,c2

(2)

where δw,t,c, δv,t,c, µw,t,c and µv,t,c are the variance and expectation values of wind power
and PV prediction errors at time t, respectively.

2.2. Intraday Trapezoidal Fuzzy Number Equivalence Model
2.2.1. Trapezoidal Fuzzy Number Expression

Let ã be a fuzzy number if the membership function of ã is:

sã(x) =



ω(x−u1)
u2−u1

u1 ≤ x ≤ u2

ω u2 ≤ x ≤ u3

ω(u4−x)
u4−u3

u3 ≤ x ≤ u4

0 other

(3)

where u1, u2, u3 and u4 are called trapezoidal fuzzy number membership parameters,
u1 ≤ u2 ≤ u3 ≤ u4, and ui ∈ R(i = 1, 2, 3, 4); Call ã the trapezoidal fuzzy number and
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denote it as ã = (u1, u2, u3, u4, ω). Sã(x) is the membership function and Sã(x) ∈ [0, 1].
Call [u1, u4] the support interval of the fuzzy number ã and call [u2, u3] the peak interval of
the fuzzy number ã. 0 ≤ ω ≤ 1 is a constant, and when ω = 1, u = (u1, u2, u3, u4, ω) is the
regular trapezoidal fuzzy number, denoted as u = (u1, u2, u3, u4); then:

sã(x) =


x−u1

u2−u1
u1 ≤ x ≤ u2

1 u2 ≤ x ≤ u3
u4−x
u4−u3

u3 ≤ x ≤ u4

0 other

(4)

The trapezoidal fuzzy parameter P̃ can be represented by the quaternion trapezoidal
fuzzy parameter P̃ and can be represented by four tuples, which can be expressed as:

P̃ = (u1, u2, u3, u4) = (k1, k2, k3, k4)Pf (5)

where k1, k2, k3 and k4 are proportional coefficients; P̃ is the fuzzy representation of P and
Pf is the predicted value of P.

The trapezoidal fuzzy parameter diagram is shown in Figure 1.
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2.2.2. Uncertainty Expression of Wind, PV and Load

In intraday optimal scheduling, regular trapezoidal fuzzy numbers are used to char-
acterize the uncertainty problem of wind PV and load. The wind power, PV and load are
represented by quadratic sets of trapezoidal fuzzy parameters P̃w,t, P̃v,t and P̃l,t as follows:

P̃w,t = (Pw1,t, Pw2,t, Pw3,t, Pw4,t)

P̃v,t = (Pv1,t, Pv2,t, Pv3,t, Pv4,t)

P̃l,t = (Pl1,t, Pl2,t, Pl3,t, Pl4,t)

(6)

where Pwi,t, Pvi,t and Pli,t are the corresponding trapezoidal membership parameters.
Pwi,t = kwi ∗ Pf

w_t

Pvi,t = kvi ∗ Pf
v_t

Pli,t = kli ∗ Pf
l_t

(7)

Then, the specific formulas for describing wind power, PV, and load through fuzzy
parameters are as follows:

P̃w,t = (kw1Pf
w_t, kw2Pf

w_t, kw3Pf
w_t, kw4Pf

w_t)

P̃v,t = (kv1Pf
v_t, kv2Pf

v_t, kv3Pf
v_t, kv4Pf

v_t)

P̃l,t = (kl1Pf
l_t, kl2Pf

l_t, kl3Pf
l_t, kl4Pf

l_t)

(8)
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where Pf
w_t, Pf

v_t and Pf
l_t are the predicted values of wind power and PV output and load,

respectively; kwi, kvi and kli are proportional coefficients, and i = 1, 2, 3, 4.

3. Scheduling Model of Each Time Scale

The upper layer of the scheduling model takes the minimum expected value of the
system residual load variance as the optimization goal, and the lower layer takes the lowest
total operating cost of the thermal power units and CSP plant as the optimization goal,
while also considering the power balance constraints, unit output constraints, unit rotating
reserve constraints, ramp rate constraints, thermal storage system constraints to establish
a scheduling model for each time scale. The commercial optimization software CPLEX is
called through YALMIP to solve the problem.

3.1. Day-Ahead Scheduling Plan Model

(1) Objective function

The 24-h day-ahead dispatching of the day is divided into two layers. The upper
model takes the minimum expected value of the system residual load variance as the
objective function as follows: f1 = min

S
∑

s=1
Ps[

1
T

T
∑

t=1
(Pl,t,s− 1

T

T
∑

t=1
Pl,t,s)

2]

Pl,t,s = Pl,t − Pw,t,s − Pv,t,s

(9)

where S is the total number of typical wind power and PV scenarios; T is the dispatching
period; Ps is the probability of occurrence of combined scenario S, %; Pl,t is the system load
in period t, MW; and Pl,t,s, Pw,t,s and Pv,t,s are the system residual load, wind power and
PV output in period t of combined scenario s, MW.

The lower model reasonably arranges the output of the conventional thermal power
units and CSP plants according to the system residual load curve and formulates the
dispatching plan with the lowest total operation cost of the thermal power units and CSP
plants. The objective function is as follows:

f2 = min(F1 + F2 + F3)

F1 =
T
∑

t=1

N
∑

i=1
[(aiP2

it,s + biPit,s + ci) + uit(1− ui(t−1))Si]

F2 = kjP
SF,d
t,s + ksPTS,df

t,s

F3 = ki(Uit,s + Dit,s) + kc(PUp
csp,t,s + PDown

csp,t,s )

(10)

where N is the number of thermal power units, N = 4; F1 and F2 are the operating costs of
thermal power units and the CSP plant, respectively; F3 is the system rotating reserve cost;
ai, bi and ci are fuel cost coefficients of thermal power units; Pit,s is the generating power
of thermal power unit i at time t, MW; uit is the operation state of thermal power unit i at
time t, uit = 1 indicates unit operation, uit = 0 indicates unit shutdown; PSF,d

t,s and PTS,df
t,s

are the power generation of CSP power by heat collection device and heat storage device to
provide thermal energy, which can be expressed by Equations (11) and (12), respectively,
MW; Si is the startup and shutdown cost of thermal power unit i; kj and ks are the operation
and maintenance cost coefficients of the CSP plant by the heat collection device and by the
heat storage device to provide thermal energy to generate electricity, respectively, ki and kc
are the standby cost coefficients of thermal power units and CSP plant, respectively.

PSF,d
t,s = ηdPSF,r

t,s (11)

PTS,df
t,s = (1− η f )ηdPTS,f

t,s (12)



Energies 2023, 16, 1696 6 of 20

where ηd is the thermoelectric conversion efficiency, %; PSF,r
t,s is the power directly generated

by the collector at time t, MW; ηd is the is the heat release loss rate of thermal storage
system, %; PTS,f

t,s is the heat release power of the thermal storage system.

(2) Constraints

1. Power balance constraints:

N

∑
i=1

Pit,s + Pw,t,s + Pv,t,s + Pcsp,t,s = Pl,t (13)

where Pcsp,t,s is the output of the CSP power station in scenario S at time t.
2. Unit output constraints

 Pcsp_min ≤ Pcsp,t,s ≤ Pcsp_max, uct = 1

Pcsp,t,s = 0, uct = 0 Pi_min ≤ Pit,s ≤ Pi_max, uit = 1

Pit,s = 0, uit = 0

0 ≤ Pw,t,s ≤ Pwind_max

0 ≤ Pv,t,s ≤ Pv_max

(14)

where Pcsp_min, Pcsp_max are the upper and lower limits of the output of the
CSP power station; uct is the operation state of CSP plant at time t, uct = 1
indicates unit operation, uct = 0 indicates unit shutdown; Pi_min, Pi_max are the
upper and lower limits of the output of the thermal power unit, respectively;
Pwind_max, Pv_max are the upper and lower limits of the output of the wind and
solar power plant.

3. Unit rotating reserve constraints:

Ui,t,s =
N
∑

i=1
(Pi_max − Pit,s, rui) ≥ Pc,t,s

Di,t,s =
N
∑

i=1
(Pit,s − Pi_min, rdi) ≥ Pc,t,s

PUp
csp,t,s ≤ Pcsp_max − Pcsp,t,s

PDown
csp,t,s ≤ Pcsp,t,s − Pcsp_min

(15)

where Uit,s, Dit,s, PUp
csp,t,s and PDown

csp,t,s are the positive and negative rotating reserve
capacities of the thermal power units and CSP plant, respectively; Pc,t,s is the
prediction error of the system load; and Pc,t,s = Pl,t,sL, L is the error rate of
load forecasting.

4. Ramp rate constraints:{
−rdi ≤ Pit,s − Pi(t−1),s ≤ rui

−rd_csp ≤ Pcsp,t,s − Pcsp,(t−1),s ≤ ru_csp
(16)

where rdi and rui are the maximum up and down ramp rates of thermal power
unit i, respectively, and rd_csp and ru_csp are the maximum up and down ramp
rates of the CSP power plant, respectively.
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5. Thermal storage system constraints:

Eh,t,s = (1− τ)Eh,t−1,s −
PTS,f

t,s

η f
+ ηcPTS,c

t,s (17)



Eh_min ≤ Eh,t,s ≤ Eh_max

PTS,c
min ≤ PTS,c

t,s ≤ PTS,c
max

PTS,f
min ≤ PTS,f

t,s ≤ PTS,f
max

PTS,c
t,s PTS,f

t,s = 0

(18)

where Eh,t,s is the heat storage capacity of the thermal storage system at time t,
MW·h; Eh_min and Eh_max are the minimum and maximum heat storage capacity
of the thermal storage system of the CSP plant; PTS,c

min and PTS,f
min are the minimum

heat charging and discharging power of the thermal storage system at time t,
respectively; PTS,c

max and PTS,f
max are the maximum heat charging and discharging

power of the thermal storage system at time t, respectively; τ is the heat loss
coefficient of the thermal storage system.

3.2. Intraday Scheduling Plan Model

(1) Objective function

The intraday rolling model is divided into two layers. The upper model takes the
minimum expected value of the system residual load variance as the objective function,
and the lower model takes the minimum total operation cost of thermal power units and
CSP plants as the objective function: f3 = min[ 1

T

T
∑

t=1
(Pl,t− 1

T

T
∑

t=1
Pl,t)

2]

Pl,t = P̃l,t − P̃w,t − P̃v,t

(19)

where P̃l,t is the intraday load demand fuzzy number; P̃w,t is the intraday wind power
output fuzzy number; and P̃v,t is the intraday PV output fuzzy number.

f4 = min(F5 + F6 + F7)

F5 =
T
∑

t=1

N
∑

i=1
[(aiP2

it + biPit + ci)]

F6 = kjP
SF,d
t + kTsPTS,df

t

F7 = ki(Uit + Dit) + kc(PUp
csp_t + PDown

csp_t )

(20)

where F5 is the operating cost of the thermal units. Since the start/stop status of the
thermal units is determined in the day-ahead dispatch, only fuel cost is considered in the
intraday dispatch.

(2) Constraints

1. Power balance constraints:

Cr

{
T

∑
t=1

N

∑
i=1

Pit + P̃w,t + P̃v,t + Pcsp_t = P̃l,t

}
≥ α (21)

where α is the confidence level.
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2. Units spinning reserve constraints:
Cr
{

T
∑

t=1

N
∑

i=1
Ui,t +

T
∑

t=1
PUp

csp,t ≥ LP̃l,t

}
≥ α

Cr
{

T
∑

t=1

N
∑

i=1
Di,t +

T
∑

t=1
PDown

csp,t ≤ LP̃l,t

}
≥ α

(22)

In this paper, the constraints of CSP plant heat storage capacity, thermal energy storage
(TES) heat storage and release power, and that heat storage and release cannot be carried
out at the same time in the same period, are referred to in [19].

3.3. Scenario Generation and Reduction

The mean and variance of the wind and PV prediction errors are obtained using
data processing of the actual and predicted output of the original wind and PV of the
system. Figures 2 and 3 show the 30-day forecast errors of wind power and PV, respectively.
For the forecast errors of wind and PV at 24 time points in each day, assuming that the
probability of occurrence at each time point is the same, the data exceeding the upper and
lower limits of the forecast error will be discarded, and the expectation and variance of the
forecast errors of wind and PV can be obtained by using the 30-day data: µw,t,c = 0.012,
µv,t,c = 0.008, δw,t,c= 1.003, δv,t,c = 1.001. Therefore, the wind power output prediction
error approximately obeys the standard normal distribution.
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3.4. Day-Ahead Multiscene Stochastic Programming Model

In day-ahead scheduling, the determined scenario set is used to characterize the
uncertainty of the day-ahead new energy output.
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(1) Scenario generation

By analyzing the prediction errors of wind power and PV, Latin hypercube sampling
(LHS) is used to sample its probability distribution, and 120 wind power and PV scene
sets are randomly generated. Through preliminary analysis and comparison, 100 scenes
with large prediction errors are retained after deletion. LHS belongs to stratified sampling,
which reflects the overall distribution of random variables by using the sampling values.
Its essence is to forcibly extract the points in each layer by layering the input probability
distribution to ensure that the sampling points can cover all the sampling areas. The
sampling diagram is shown in Figure 4.

Energies 2023, 16, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 3. PV power prediction error. 

3.4. Day-Ahead Multiscene Stochastic Programming Model 
In day-ahead scheduling, the determined scenario set is used to characterize the un-

certainty of the day-ahead new energy output. 
(1) Scenario generation 

By analyzing the prediction errors of wind power and PV, Latin hypercube sampling 
(LHS) is used to sample its probability distribution, and 120 wind power and PV scene 
sets are randomly generated. Through preliminary analysis and comparison, 100 scenes 
with large prediction errors are retained after deletion. LHS belongs to stratified sampling, 
which reflects the overall distribution of random variables by using the sampling values. 
Its essence is to forcibly extract the points in each layer by layering the input probability 
distribution to ensure that the sampling points can cover all the sampling areas. The sam-
pling diagram is shown in Figure 4. 

0 knX kX

( )k k kY F X=

kY

/n N
( 0.5) /n N−

( 1) /n N−
1/ N

 
Figure 4. Latin hypercube sampling (LHS) schematic. 

Assuming that = … )1, 3( 2,k k kX  is k  a random variable of K problems to be 
solved, its cumulative probability distribution function can be expressed as: 

= ( )k k kY F X  (23)

Assuming that the total number of samples is N , on the interval [0,1], the longitu-
dinal axis of = ( )k k kY F X  is divided into N  intervals by LHS. The intervals are equal, 
the width of the intervals is 1 / N , and each interval is independent of each of the others. 

kY  is the sampling value at the midpoint of each interval, kX  is its corresponding ab-
scissa, and the calculation formula of the n  sampling value of kX  is as follows: 

−0.5
30

20

0

0

Time/d

510

Time/h

101520

0.5

0 25

Figure 4. Latin hypercube sampling (LHS) schematic.

Assuming that Xk(k = 1, 2, 3 . . . k) is k a random variable of K problems to be solved,
its cumulative probability distribution function can be expressed as:

Yk = Fk(Xk) (23)

Assuming that the total number of samples is N, on the interval [0,1], the longitudinal
axis of Yk = Fk(Xk) is divided into N intervals by LHS. The intervals are equal, the width
of the intervals is 1/N, and each interval is independent of each of the others. Yk is the
sampling value at the midpoint of each interval, Xk is its corresponding abscissa, and the
calculation formula of the n sampling value of Xk is as follows:

Xkn = Fk
−1(

n− 0.5
N

) (24)

When all the random variables are sampled, an initial sampling matrix of N × N order
is obtained. Figures 5 and 6 show the obtained set of initial sampling scenarios for wind
and PV.
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(2) Scenario reduction

Large-scale scenes will increase the amount of computation, and the purpose of
scene reduction is to replace numerous generated scenes with a small number of typical
scenes. Therefore, a set of “clustered” and representative typical scenes can be obtained by
clustering technology. In this paper, the synchronous back substitution elimination method
is used to reduce a large number of scenes. The specific reduction steps are as follows:

Step 1: For scene λi (i = 1, 2, · · · L), calculate scene λj with the shortest distance.

Di,min = min
j

δjd(λi, λj) (25)

where δj is the probability of occurrence of scenario λj and d(λi, λj) is the Euclidean distance
between two scenarios.

Step 2: Determine the scene to be deleted.

Dmin = min
i=1,2,···L

δjDi,min (26)

Step 3: modify the number of remaining scenes L = L − 1, add the probability of
deleted scenes to the nearest scene and ensure that the sum of the probabilities of all scenes
is 1.

Step 4: Repeat Steps 1–3 until the number of remaining scenes reaches the desired set
value m.

Figure 7 shows the typical wind and PV output scenarios after scenario reduction,
with three wind and PV output scenarios reserved.
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(3) Scenario combination

Based on the assumption that all kinds of new energy output are independent of
each other, the typical scenes of wind power and PV output after reduction are combined
by a Cartesian product. The total number of combined scenes and the probability of
corresponding scenes are: {

Ns = Nw ∗ Nv

Pi,j = Pi ∗ Pj
(27)

In the formula, Ns is the total number of composite scenarios; Nw and Nv are the num-
ber of typical scenarios of wind power and PV output, respectively; Pi,j is the probability of
occurrence of combined scenarios; and Pi and Pj are the probability of typical scenarios of
wind power and PV output, respectively.

3.5. Model Solving

In this paper, the upper-level optimal dispatching model uses the renewable energy
output forecast data for rolling optimization, with the minimum expected value of the
residual load variance as the objective function. The lower-level economic optimal dispatch
model contains two types of decision variables: 0–1 variables and integer variables, so
the solved model is a typical mixed-integer programming model, which can be solved by
using mixed-integer programming or commercial software. The calculation flow chart of
the bilevel optimization model is shown in Figure 8.
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The calculation example in this paper uses a computer platform with Intel Core I5-
5200U and 16 GB of running memory, which calls the commercial optimization software
CPLEX through YALMIP to solve it, and solves it through the solution process shown
in Figure 8. The algorithm architecture adopted by CPLEX solver to solve mixed-integer
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programming (MIP) problems is Branch-and-Cut, and heuristic algorithms are applied at
the root node and other nodes to improve the efficiency of solution. The calculation time of
each instance of the model is between 20 s and 240 s.

4. Example Analysis

According to the day-ahead scheduling results, the output plans of each unit in nine
typical scenarios are obtained. The consumption rates of wind power and PV in each
scenario are 93.75% and 92.62%, respectively, and the total expected operating cost of the
system in each scenario is CNY 70.011 million. Intraday scheduling analyzes the output
plans of each unit, wind power PV consumption rate and comprehensive operating cost
under different confidence levels, and compares it with the day-ahead scheduling plan.
The results show that for new power systems with uncertain source loads, intraday short
time scale scheduling is more economical than day-ahead long time scale scheduling.
Compared with the scheduling model in literature [20], the multi-timescale scheduling
model proposed in this paper has a higher wind power and PV power consumption rate
under the same optimization objective.

4.1. Model Solving

This example includes four thermal power units with an installed capacity of 255 MW,
a 100 MW CSP plant, a wind power installed capacity of 280 MW participating in system
dispatching, and a PV installed capacity of 100 MW. The specific operating parameters of
the thermal power units and CSP plant are shown in Appendix A Tables A1 and A2. The
operation and maintenance cost coefficients of the CSP plant are k j = 20 yuan/MW and ks
= 30 yuan/MW, respectively. The rotating reserve cost coefficients of the thermal power
units and CSP power plants are 120 yuan/MW and 50 yuan/MW, respectively.

4.2. Analysis of Example Results
4.2.1. Analysis of Day-Ahead Results

Figure 9 shows the dispatching output of thermal power units in different scenar-
ios. Figure 10 shows the dispatching output of the CSP plant, and Figure 11 shows the
dispatching output of wind power and PV.

Combined with the analysis in Figures 9–11, it can be determined that the PV output is
almost zero at 1–6 h and 18–24 h. Due to the limitation of the system heat storage capacity,
the output of the CSP plant is also relatively reduced. In this period, the output of thermal
power units is significantly increased, especially at 18–22 h, in the peak load period, and
the thermal power units are almost allowed to operate at the maximum output level. From
7 to 17 h, the overall output of new energy sources increases significantly, which reduces
the system operation cost while relieving the pressure on thermal units. At the same time,
during 1–6 h and 18–24 h, which is also the time of wind power generation, the output
of the CSP plant can be reduced appropriately to make room to allow wind power to be
connected to the grid by taking advantage of its flexible and controllable characteristics.
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Figure 10. Scheduling output of the CSP plant.
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Figure 12 shows the heat storage state of the CSP plant in the combined scenario. At
1–7 h and 18–24 h, due to the absence of solar illumination, the CSP plant has almost no
output. The heat storage system releases the stored heat to promote the power generation
of the turbine unit and increase the output of the CSP plant, thereby reducing the output
of the thermal power units. At 8–17 h, the solar illumination is strong, and the CSP plant
cooperates with the thermal power units to participate in the peak shaving of the system.
At the same time, part of the heat is stored in the heat storage device to prepare for the
continuous output of the CSP plant without solar illumination at night.
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Figure 12. Status of the thermal storage system of the solar thermal power plant.

Table 1 shows that among the nine scenarios, the PV consumption rate in scenario 2
reaches the maximum, while the maximum consumption rate of wind power appears in
scenario 8. Therefore, separate scheduling for each scenario cannot achieve the most ideal
results. The PV consumption rate of each scenario is multiplied by the scenario combination
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probability to obtain a wind power consumption rate of 93.75% and a PV consumption rate
of 92.62%. Although the comprehensive utilization rate of wind and PV has not reached
the maximum, Table 2 shows that the comprehensive operating cost of the scene system
with high wind and PV absorption rates is also high.

Table 1. Wind and PV absorption rates in different scenes.

Scenarios
Combined Scene

Probability
%

Wind Power
Consumption Rate

%

PV Power Consumption
Rate

%

S1 11.25 94.0 91.2
S2 7.5 94.6 97.6
S3 6.25 93.8 94.3
S4 15.75 94.1 92.3
S5 10.5 93.9 92.8
S6 8.75 94.5 93.1
S7 18 92.6 92.3
S8 12 95.3 91.8
S9 10 93.9 90.9

In each scenario, the wind power consumption rate is 93.75%, and the PV consumption rate is 92.62%.

Table 2. Expected operating costs of the system in different scenarios.

Scenarios Comprehensive
Cost/Million Yuan

Combined Scene
Probability

%

Comprehensive Cost after
Multiplying Probability

Million Yuan

S1 70.561 11.25 7.938
S2 70.916 7.5 5.318
S3 71.618 6.25 4.476
S4 69.402 15.75 10.93
S5 69.807 10.5 7.329
S6 69.618 8.75 6.091
S7 69.887 18 12.579
S8 69.572 12 8.348
S9 69.971 10 6.997

The total expected operating cost of the system in each scenario is CNY 70.011/million.

4.2.2. Analysis of Intraday Results

Figure 13 shows the dispatching output of four thermal power units at different
confidence levels.

Combined with the analysis in Figure 13, we can conclude that during the 70–90 period
of load peak, the four thermal power units, G1, G2, G3 and G4, maintain full-load operation.
In the period of 15–30 with low load, the wind power generation is large in this period.
The output of the G3 and G4 thermal power units is lower than the minimum level of their
economic operation, so they are shut down in this period. During the shutdowns of G3
and G4, the output of G1 and G2 increased slightly but not much, both in the economical
operating range.

Figure 14 shows the dispatched output of the CSP plant, the dispatched output of
wind power and PV, and the upper rotating reserve capacity of the thermal units and CSP
plant at different confidence levels.
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Figure 13. Scheduling output of four thermal power units at different confidence levels. (a) G1 output
at different confidence levels; (b) G2 output at different confidence levels; (c) G3 output at different
confidence levels; (d) G4 output at different confidence levels.

Figure 14a shows that while the output of the CSP plant is fully consumed, the output
adjustment of the CSP plant increases with the increasing confidence level. When the
confidence level is 0.5, the output of the CSP plant accounts for 36.52% of the total output
in the 35–50 and 70–90 periods, while the confidence level is 0.9, accounting for 41.19%.
Similarly, according to Figure 14b, the consumption of wind power and PV also increases
with the increasing confidence level. According to Figure 14c, the reserve capacity of the
system also increases with the increasing confidence level. Compared with the reserve
capacity of the CSP plant and thermal power units when the confidence level is 0.5 and 0.9,
the reserve capacity increases by 6.03% and 5.95%, respectively.

Figures 15 and 16 show the comparison of the wind power and PV consumption rate
and total system operation cost at different confidence levels in the intraday dispatch and
the wind power and PV consumption rate and total system operation cost at the combined
field in the day-ahead dispatch.

Figure 15 shows that in the intraday scheduling model, the consumption rates of
wind power and PV power gradually increase with the increasing confidence level. Under
different confidence levels, the PV consumption rate of intraday scheduling is always higher
than the PV consumption rate of day-ahead scheduling. The wind power consumption
rate of intraday scheduling is higher than the wind power consumption rate of day-ahead
scheduling only when the confidence level is greater than 0.8. However, combined with
Figure 16, with the increase in confidence level, the total operating cost of the system
also increases while the new energy consumption increases. Figure 15 shows that when
the confidence level is 0.5, 0.6 and 0.7, the total cost of the intraday scheduling system is
4.86%, 4.551% and 0.428% lower than that of day-ahead scheduling, respectively. Once the
confidence level exceeds 0.7, the total cost of the intraday scheduling must be greater than
that of the day-ahead scheduling.
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Figure 14. Output of each power and rotating reserve capacity at different confidence levels. (a) Out-
put of CSP plant at different confidence levels. (b) Output of wind power and PV at different
confidence levels. (c) Upper rotating reserve capacity of the thermal units and CSP plant at different
confidence levels.
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Figure 15. Consumption rate of wind power and PV power at different confidence levels.
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Figure 16. Total system operation cost at different confidence levels.

Table 3 shows that if the confidence level is 0.5 is the base value, with the increase in
confidence level, the comprehensive operating cost of the system increases by 3.1%, 4.39%,
6.13%, and 7.54%, respectively. The reserve cost of thermal power units increases by 2.34%,
3.04%, 4.34% and 5.62%, respectively. The reserve cost of the CSP plant increases by 2.33%,
4.16%, 5.43% and 5.63%, respectively. It can be found that when the confidence degree
of the intraday scheduling plan is less than or equal to 0.8, the comprehensive operating
cost of the system is always lower than the expected operating cost of the system in each
scenario before the day. Therefore, for the system with source load uncertainty, the intraday
short time scale scheduling plan is more economical than the long-timescale ahead of the
day. With the lowest comprehensive operation cost as the optimization objective, the wind
power and PV power consumption rates of the model proposed in this paper are lower
than the operation results of the scheduling model proposed in the literature [20] at all
confidence levels: 92.19%.

Table 3. System operation cost at different confidence levels.

Confidence Level
Comprehensive
Operation Cost
Million Yuan

Wind Power
Consumption Rate

%

PV Power
Consumption Rate

%

a = 0.5 66.646 92.83 93.14
a = 0.6 68.825 92.92 93.86
a = 0.7 69.711 93.01 94.14
a = 0.8 70.732 93.61 94.53
a = 0.9 71.676 94.66 94.86

5. Conclusions

Aiming to solve the problem regarding the efficient accommodation of a large-scale
wind–solar grid-connected system, a day-ahead and intraday coordinated optimal schedul-
ing strategy considering the uncertainty of the source and load is proposed in this paper.
The objective is to minimize the expected value of the residual load variance and the
operating cost of the system. The following conclusions are obtained by numerical exam-
ple analysis:

(1) A multi-scenario analysis method is used to convert the uncertainty of the day-ahead
forecast output of wind and solar energy into a deterministic scenario, and then the
fuzzy theory is introduced. The trapezoidal fuzzy number equivalent model is used
to characterize the uncertainty of the day-ahead wind and solar energy and load.
The example shows that the model can effectively alleviate the problem of a high
proportion of new energy-efficient consumption caused by prediction error and wind
and solar output fluctuation.
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(2) Multiperiod coordinated scheduling can combine more accurate intraday prediction
information and make full use of the fast adjustment ability and power shift charac-
teristics of the CSP plants, which can effectively reduce the fluctuation of load after
the wind–solar grid connection, thereby reducing the comprehensive operation cost
of the system.

This paper aims to propose a feasible scheme for the current dilemma of power
system peak regulation, which has a certain reference value for the CSP plant to participate
in power market dispatching. The multi-scenario stochastic planning method, through
the historical data of wind and solar output, is appropriate to generate the wind power
probability distribution model, which is based on the probability distribution model for
sampling, to generate different scenarios. Since a large number of scenarios will increase
the complexity of the optimization target solution, the scenario reduction is required. At
the same time, the scenario reduction cannot cover all the possible scenarios that decision
makers need to consider. The CSP plant is limited by light resources and heat storage
capacity, resulting in limited peak regulation capacity. The size of the backup capacity on
the source side of the flexible adjustment directly affects the curtailment rate of new energy
and the operating cost of the system. However, due to the scheduling constraints such as
the adjustment period and the uncertainty of new energy output, the uncertainty of only
one side will gradually weaken the improvement effect. Therefore, the uncertainty on both
sides of the source and load can be fully considered to maximize the economic capacity of
the system.
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Appendix A

Table A1. Operation parameters of thermal power units.

Unit
Upper Limit

of Output
(MW)

Lower Limit
of Output

(MW)

Ramp Rate
(MW/h)

Fuel Cost Start-Up and
Shut-Down Costs

a b c H
Yuan/MW Yuan/MW Yuan/MW Yuan/MW

1 80 40 40 0.02 179 295 1456
2 80 40 40 0.031 175 350 1729
3 50 20 20 0.023 100 125 1982
4 50 20 20 0.015 125 167 2464
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Table A2. Operation parameters of the CSP plant.

Operation Parameters of CSP Plant Value

Rated output power of CSP plant/MW 100
Minimum output power during operation of CSP plant/MW 10

Maximum ramp rate of CSP plant/MW/h 40
Heat loss rate of heat storage system/% 3

Thermoelectric conversion efficiency of CSP plant/% 45
Photothermal conversion efficiency of CSP plant/% 57

Cost coefficient of heating and power generation for collectors/(yuan/MW·h) 20
Cost coefficient of power generation for heat storage devices/(yuan/MW·h) 40

Maximum daily heat storage capacity of heat storage system/MW·h 1000
Initial value of heat storage capacity of heat storage system/MW·h 600

The lower limit of heat storage system/MW·h 100
Mirror field area/m 1.33 × 106

Dissipation coefficient of heat storage system/% 3.1
Heat storage efficiency of heat storage system/% 98.5
Heat release efficiency of heat storage system/% 98.5
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