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Abstract: The result of continuous efforts in the development of power theory, Budeanu’s power
theory was successfully extended. The mathematical description that has been proposed is based
on another concept, namely the Currents’ Physical Components (CPC) theory. With CPC theory,
it was possible to describe, in the original Budeanu theory, the components of the load current,
including the Budeanu distortion current. The Budeanu distortion current can have a maximum
of five components associated with different physical phenomena and related to the equivalent
parameters of the load. This article discusses passive compensation, which provides compensation
for the Budeanu reactive current and the Budeanu complemented reactive current due to the known
equivalent load parameters associated with the reactance elements. In addition, the article refers to
a very important aspect when determining the parameters of a passive compensator, i.e., choosing
parameters in such a way that the compensator simultaneously compensates for the reactive current
and the unbalanced current. The article presents five methods relating to the determination of
compensator parameters. Two methods are related to the reactive current compensation only for
the first harmonic without affecting the unbalanced current. The next three methods relate to the
compensation of the Budeanu reactive current and the consideration of the unbalanced current.
Calculations and simulations were performed for all five methods, the results of which are presented
and analyzed in this publication. The Matlab/Simulink R2023a environment was used as the
calculation and simulation software.

Keywords: extended Budeanu theory; passive compensation; reactive power; unbalanced power;
three-phase systems; power factor; Budeanu distortion current

1. Introduction

With the growth in the number of non-linear loads and renewable energy sources
equipped with power electronics systems, many approaches to improving power quality
parameters are available. Nowadays, active and hybrid approaches are prominent, but
their main disadvantages compared to passive approaches are the high price and the
difficulties caused by the necessity of programming the control systems [1–3]. Despite
the disadvantages of passive compensators, which are mainly identified as harmonic
amplification, there are de-tuning effects and a lack of modification of the parameter
values in relation to the conditions existing in the power system. Passive systems are
extensively used in practice because of their low price, uncomplicated design, simple oper-
ation and servicing, and very high efficiency in reducing specific harmonics. In addition,
they are integrated very easily into low-voltage (LV), medium-voltage (MV), and high-
voltage (HV) networks. Passive compensators are integrated into the various structures
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described in the literature; these are single-tuned structures [4–7], double-tuned struc-
tures [8–10], triple-tuned structures [11], series passive structures [12], hybrid passive struc-
tures [13], damped structures (first-order filter, second-order filter, third-order filter, and
C-filter) [14–16], grouped filter systems [17–19], etc. In addition to the different types of ap-
proaches related to the design of passive compensators, there is also the approach proposed
by Czarnecki [20,21]. In this approach, a passive compensator compensates for the reactive
current in single-phase systems [22]. In three-phase systems, on the contrary, despite the
reactive current compensation, it also reduces the unbalanced current’s components [23–25].
An identical approach has been used in the developed Budeanu theory for single-phase
circuits [26].

It may seem that an appropriate solution would be to abandon the implementation of
passive compensators. However, for financial reasons, they are still widely implemented
in numerous sectors. Street lighting is a sector where passive compensators have been
consistently installed for decades. Despite the significant increase in the use of LED
lighting around the world, passive systems continue to be installed [27–29]. The only
modification is the compensator configuration as, before, capacitors were required for
compensation, whereas, at this time, because of the capacitive character of the reactive
power produced by electronic circuits, chokes are implemented. Another field of use for
reactive compensators is industry. The industrial business sector adopts passive solutions
because they provide control over the power factor [2,3,30,31]. In this field, passive systems
often differ essentially in the method of switching chokes and capacitors. In factories
where reactive power remains relatively stable over short periods, standard control via
contactors is widely implemented. Where a faster response of the passive filter is required,
power electronic elements, e.g., transistors, and thyristors, are applied for regulation.
Another area where passive compensators find application is in renewable energy sources.
Compensators, also known as LC filters, enhance the supply conditions of heat pumps,
photovoltaic farms, or wind farms [32–36]. A final field where low-cost passive systems
need to be applied to reduce the reactive power and correct the power conditions is the field
of wireless power transmission (WPT) [37–41]. These systems primarily depend on coils for
energy transfer and largely rely on the existing power supply system at the specific area.

The manuscript is divided into 15 sections. Section 1 concerns the introduction,
which describes the selection of the compensator parameters for passive compensation
and whether load unbalance is also considered. The subsequent part of the introduction
focuses on the possibility of using passive compensators in the power systems. Section 2 is
dedicated to a brief description of the developed Budeanu theory for three-phase four-wire
circuits with symmetrical nonsinusoidal supply voltage. Section 3 presents a theoretical
illustration related to the calculation and simulation of a three-phase four-wire load follow-
ing the developed Budeanu theory. Section 4 presents the first method to determine the
parameters of the compensator based on the susceptance corresponding to the existence
of the reactive current of the fundamental harmonic. Section 5 is a theoretical illustration
demonstrating the results obtained after connecting the compensator described in Section 4.
Section 6 presents a compensator whose parameters are associated with the equivalent
susceptance responsible for the Budeanu reactive current of the first harmonic. Section 7 is
focused on the theoretical illustration, demonstrating the results obtained after connect-
ing the compensator discussed in Section 6. Section 8 presents a method for designing a
compensator that compensates for the Budeanu complemented reactive current and the
unbalanced current’s components for all the harmonics considered in the supply voltage.
Section 9 is a theoretical illustration demonstrating the results obtained after connecting the
compensator discussed in Section 8. Section 10 presents a description of the compensator,
which is designed to compensate for the Budeanu reactive current and the unbalanced
current components for all the harmonics considered in the supply voltage. Section 11 is a
theoretical illustration demonstrating the results obtained after connecting the compensator
discussed in Section 10. Section 12 presents a description of the compensator, which is
designed to compensate for the Budeanu reactive current and the Budeanu complemented
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reactive current, and also the unbalanced current components for all the harmonics consid-
ered in the supply voltage. Section 13 is a theoretical illustration demonstrating the results
obtained after connecting the compensator discussed in Section 12. Section 14 is focused
on the analysis and discussion of the results obtained from all five methods related to the
design of the passive compensator parameters. Finally, Section 15 presents the conclusions
that follow from the completed calculations, simulations, and analyses.

2. Extended Budeanu’s Theory for 3-Phase 4-Wire Distorted Symmetrical Waveforms

The developed Budeanu theory for three-phase four-wire systems is described exten-
sively in [42]. The fundamental aspect of the energy description is that the current can be
decomposed into components based on the equivalent load’s parameters and a physical
interpretation provided to them.

According to Figure 1, an unbalanced linear time-invariant load (LTI) can be supplied
with a voltage with nonsinusoidal waveforms.
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Figure 1. Unbalanced LTI load powered from nonsinusoidal symmetrical voltage source.

The voltage vector at the terminals of such a load is defined as follows [23,24,42]:

u(t) =

uR(t)
uS(t)
uT(t)

 =
√

2Re ∑
n∈N

URn
USn
UTn

ejnω1t =
√

2Re ∑
n∈N

Unejnω1t (1)

where Un means vector of CRMS values of the voltage harmonics, and n harmonic order.
Based on this vector of supply voltages and the load parameters, a vector of line

currents is obtained, namely

i(t) =

iR(t)
iS(t)
iT(t)

 =
√

2Re ∑
n∈N

IRn
ISn
ITn

ejnω1t =
√

2Re ∑
n∈N

Inejnω1t (2)

where In means vector of CRMS values of the current harmonics.
As presented in [42], the load current in a three-phase four-wire circuit powered from

a source consisting of symmetrical nonsinusoidal waveforms can be decomposed into 7
components. Each component can be described in form of a time waveform, i.e.:

• active current ia:

ia = Geu =
√

2Re ∑
n∈N

GeUnejnω1t (3)

• scattered current is:
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is =
√

2Re ∑
n∈N

(Gn − Ge)Unejnω1t (4)

• Budeanu reactive current irB:

irB =
√

2Re ∑
n∈N

jBeBUnejnω1t (5)

• Budeanu complemented reactive current icrB:

icrB =
√

2Re ∑
n∈N

[j(Bn − BeB)]Unejnω1t (6)

• positive-sequence unbalanced current ip
u:

ip
u =

√
2Re ∑

n∈N
Ip

unejnω1t =
√

2Re ∑
n∈N

Yp
unUnejnω1t =

√
2Re ∑

n∈N
Yp

un1pURnejnω1t (7)

• negative-sequence unbalanced current in
u:

in
u =

√
2Re ∑

n∈N
In

unejnω1t =
√

2Re ∑
n∈N

Yn
unUnejnω1t =

√
2Re ∑

n∈N
Yn

un1
nURnejnω1t (8)

• zero-sequence unbalanced current iz
u:

iz
u =

√
2Re ∑

n∈N
Iz

unejnω1t =
√

2Re ∑
n∈N

Yz
unUnejnω1t =

√
2Re ∑

n∈N
Yz

un1
zURnejnω1t (9)

Each of the 7 current components has its equivalent in a three-phase RMS value,
namely

• active current ∥ia∥:

∥ia∥ = Ge∥u∥ =
P
∥u∥ (10)

• scattered current ∥is∥:

∥is∥ =

√
∑

n∈N

[
(Gn − Ge)

2∥un∥2
]

(11)

• Budeanu reactive current ∥irB∥:

∥irB∥ = |BeB|∥u∥ =
|QB|
∥u∥ (12)

• Budeanu complemented reactive current ∥icrB∥:

∥icrB∥ =

√
∑

n∈N

[
((Bn − BeB)∥un∥)2

]
(13)

• positive-sequence unbalanced current
∥∥∥ip

u

∥∥∥:
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∥∥∥ip
u

∥∥∥ =
√

3 ∑
n∈N

Yp
unURn (14)

• negative-sequence unbalanced current ∥inu∥:

∥in
u∥ =

√
3 ∑

n∈N
Yn

unURn (15)

• zero-sequence unbalanced current ∥iz
u∥:

∥iz
u∥ =

√
3 ∑

n∈N
Yz

unURn (16)

In conjunction with the three-phase RMS value of the supply voltage, each of the load
current components makes up the power components, namely

• power X:

X = ∥u∥∥iY∥ (17)

where X denotes the name of the power from the set {S—apparent power, P—active power,
DS—scattered power, QB—Budeanu reactive power, QcrB—Budeanu complemented reac-
tive power}, Y denotes the name of the current from the set {“blank”—line current, a—active
current, s—scattered current, rB—Budeanu reactive current, crB—Budeanu complemented
reactive current}.

The same definition could be present for the unbalanced current, namely

• unbalanced power Z:

DW
u = ∥u∥

∥∥∥iW
u

∥∥∥ (18)

where W denotes the name of the unbalanced power and current from the set {p—positive
sequence, n—negative sequence, and z—zero sequence).

The power factor λ of a circuit can be expressed as follows:

λ =
P
S
=

P√
P2 + D2

s + Q2
B + Q2

crB + Dp 2
u + Dn 2

u + Dz 2
u

(19)

The method of defining the specific components of the load current is described
in [42]. The publications [23,24,42,43] contain information related to the determination of
the equivalent load’s parameters, which makes it possible to define the parameters of the
reactive compensator reducing the reactive current and the unbalanced current composed
of the 3 current components coming from the mathematical decomposition.

3. Theoretical Illustration 1

The circuit depicted in Figure 2 is powered by a symmetrical voltage source that is
distorted. In addition to the first harmonic, the distorted voltage source also generates
higher orders of harmonics, i.e., n = 3, 5, 7, which result in a symmetrical waveform in
each phase in the form of u(t) =

{
230ejω1t + 15ej3ω1t + 25ej5ω1t + 10ej7ω1t} V. The first

harmonic frequency n1 is 50 Hz. The LTI load is constructed of linear elements, built of
resistance, inductive, and capacitive reactances, which are matched at random but with
load asymmetry.
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Figure 2. Scheme of a load chosen for theoretical illustration 1.

The three-phase RMS value of the waveform illustrated in Figure 3 is

∥u∥ = 401.93 V
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The load from Figure 3 has elements, R, L, and C. The values of resistance, inductive,
and capacitive reactances for the first harmonic frequency are summarized in Table 1.

Table 1. List of the values of resistance, inductance, and capacitance reactance for the first harmonic.

Parameter in [Ω] Line R Line S Line T

Resistance 4.5 6 7

Inductive reactance 3.142 12.566 -

Capacitive reactance - - 1.592
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Based on the information summarized in Table 1 and the information on the supply
voltage, the complex values of the line currents for the specific harmonics were calculated.
Table 2 shows the obtained values, while Figure 4 illustrates the waveforms of line currents.

Table 2. List of complex line currents values for specific harmonics.

Harmonic Order Line R in [A] Line S in [A] Line T in [A]

n = 1 41.91e−j34.9◦ 16.52ej175.5◦ 32.04ej132.8◦

n = 3 1.44e−j64.5◦ 0.39e−j81◦ 2.14ej4.3◦

n = 5 1.53e−j74◦ 0.40ej35.5◦ 3.57e−j117.4◦

n = 7 0.45e−j78.4◦ 0.11ej153.9◦ 1.43ej121.9◦
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Based on the currents listed in Table 3 and the waveforms shown in Figure 4, the
three-phase RMS value of the load current was calculated as follows:

∥i∥ = 55.497 A

Table 3. List of three-phase values of active and reactive powers for specific harmonics and the total
three-phase active and reactive powers of the entire system.

Harmonic Order Active Power P in [W] Reactive Power QB in [var]

n = 1 16,726 7312

n = 3 42.2 22.8

n = 5 100.6 42.6

n = 7 15.2 5.0

SUM 16,884 7382.4
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Based on the information in [21] referring to the powers calculated in the Budeanu
theory [44] and the developed Budeanu theory [42], the active powers P and Budeanu
reactive powers QB are compiled below in Table 3.

The apparent power S, calculated from the product of the three-phase RMS the supply
voltage value and the three-phase RMS load current value, is

S = 22306.1 VA

The Budeanu distortion power DB provided by the mathematical formula [21] is

DB = 12569.5 VA

In [42,45], you can find relationships describing the derivation of equivalent parame-
ters in developed Budeanu theory. These parameters are equivalent conductance, equiva-
lent susceptance, conductances, and susceptances for specific harmonics and 4 admittances,
i.e., equivalent admittance, unbalanced admittance of the positive sequence, unbalanced
admittance of the negative sequence, and unbalanced admittance of the zero sequence.
Based on these equivalent parameters and the relationships (10)–(16), the three-phase RMS
values of the current’s components described by the developed Budeanu theory have
been calculated. The three-phase RMS load currents’ components values for the specific
harmonics, as described by the developed Budeanu theory, are listed in Table 4.

Table 4. List of the RMS values of the specific harmonic components for three-phase currents as
described by the developed Budeanu theory.

Harmonic Order ∥ia∥ ∥is∥ ∥irB∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥

n = 1 41.635 0.351 18.205 0.150 0 30.834 2.285

n = 3 2.715 1.092 1.187 0.308 1.717 0.653 0

n = 5 4.256 2.203 1.979 0.996 1.455 0 2.598

n = 7 1.810 0.930 0.792 0.501 0 0.984 0.651

RMS 42.007 2.652 18.368 1.166 2.251 30.856 3.521

The three-phase RMS load current value according to the developed Budeanu theory
is ∥i∥ = 55.497 A, and this is the same as the three-phase RMS value obtained from
calculations based on Ohm’s law and Kirchhoff’s law.

In 3-phase 4-wire systems powered from a symmetrical nonsinusoidal voltage wave-
forms and a 3-phase asymmetrical load built of resistance, inductance, and capacitance
in each line, the Budeanu distortion power is represented by 5 components: the scattered
power, the Budeanu complemented reactive power, and the 3 unbalanced powers of the
positive, negative, and zero sequence. In the analyzed example, the Budeanu distortion
current has 5 current components, i.e., the same number of components describing the
Budeanu distortion power. The waveform of the Budeanu distortion current, as described
by the developed Budeanu theory, is illustrated in Figure 5.

Table 5 lists the three-phase RMS currents’ components values, with which it is possible
to describe the distortion current and the distortion power as determined by Budeanu theory.
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Table 5. List of three-phase RMS currents’ components values of the distortion current described in
the Budeanu theory.

Harmonic Order ∥is∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥ ∥idB∥

n = 1 0.351 0.150 0 30.834 2.285

n = 3 1.092 0.308 1.717 0.653 0

n = 5 2.203 0.996 1.455 0 2.598

n = 7 0.930 0.501 0 0.984 0.651

RMS 2.652 1.166 2.251 30.856 3.521 31.273

Based on the Expression (17) describing the power factor λ, it equals

λ = 0.757

This means that the load in Figure 2 could be compensated to reach a power factor
value as close to unity as possible.

4. Ideal Susceptance Compensation for Fundamental Harmonic

The primary method of improving the value of the power factor is passive compensa-
tion, mainly connected to the original load in parallel. The compensator allows the supply
current to be controlled in such a way as to reduce its three-phase RMS value.

The simplest passive filter is a capacitor or choke with suitably matched capacitance
or inductance. The method does not consider interior resistance, which exists especially in
the choke and also in the capacitor.

In this approach, only the susceptance for the first harmonic is compensated for; i.e.,
all components of the load current are changed, except for the two currents associated with
the reactance elements, i.e., the active current and the scattered current.
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The selection of susceptance reduction circuit parameters for the first harmonic is
based on the following system: 

BR1 = −jIm{YR1}
BS1 = −jIm{YS1}
BT1 = −jIm{YT1}

(20)

The point that the susceptance reduction circuit for the first harmonic is connected in
a Y-structure means that the system in Equation (20) is parallel to the original load. The
susceptances in all admittances described in the developed Budeanu theory are modified,
namely

Y#
en = Gen + jB#

en =
1
3

(
Y#

Rn + Y#
Sn + Y#

Tn

)
(21)

Unbalanced admittance of the positive sequence after ideal susceptance compensation
for first harmonic:

Yp#
un =

1
3

[(
Y#

Rn + αβY#
Sn + α∗β∗Y#

Tn

)
−Y#

en(1 + αβ + α∗β∗)
]

(22)

Unbalanced admittance of the negative sequence after ideal susceptance reduction for
first harmonic:

Yn#
un =

1
3

[(
Y#

Rn + α∗βY#
Sn + αβ∗Y#

Tn

)
−Y#

en(1 + α∗β + αβ∗)
]

(23)

Unbalanced admittance of the zero sequence after ideal susceptance compensation for
first harmonic:

Yz#
un =

1
3

[(
Y#

Rn + βY#
Sn + β∗Y#

Tn

)
− Y#

en(1 + β + β∗)
]

(24)

where the generalized coefficient β is

β = (α∗)n =


1 for n = 3k
α∗ for n = 3k + 1
α for n = 3k − 1

(25)

As mentioned, all currents except the active and scattered currents are modified.
However, the change in the three-phase currents’ components values cannot be determined
because the compensation method of reducing the susceptance for the first harmonic is
not described in the developed Budeanu theory and therefore does not compensate for a
specific orthogonal component.

5. Theoretical Illustration 2

An ideal compensator is connected to the circuit in Figure 2 to compensate for the sus-
ceptances causing the reactive current of the first harmonic. Table 6 shows the capacitance
and inductance values required for ideal reactive current reduction in the first harmonic.
Figure 6 shows how the compensator is connected (Y-structure).

Table 6. List of values of inductance and capacitance required to compensate for the first harmonic of
reactive current.

Parameter Line R Line S Line T

Inductance [mH] - - 103.07

Capacitance [mF] 33.20 20.63 -
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Figure 6. Primary circuit with the connected ideal compensator compensating for the reactive current
of the first harmonic.

When an ideal compensator is connected to compensate for the reactive current of the
first harmonic, the equivalent parameters of the load as observed from the power source
side are modified. Following the calculations and simulations, the complex values of the
line currents are summarized in Table 7 and illustrated in Figure 7.

Table 7. List of values of the complex line currents for the respective harmonics after reduction in the
reactive current of the first harmonic.

Harmonic Order Line R in [A] Line S in [A] Line T in [A]

n = 1 34.36ej0◦ 7.12e−j120◦ 31.24ej120◦

n = 3 3.45ej79.7◦ 2.53ej88.6◦ 2.13ej0.2◦

n = 5 11.57ej87.9◦ 7.71e−j150.3◦ 3.56e−j119.9◦

n = 7 6.87ej89.3◦ 4.42e−j30.1◦ 1.43ej120.1◦
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On the basis of the currents listed in Table 7 and the waveforms presented in Figure 8,
the three-phase RMS load current value after reactive current reduction in the first harmonic
was calculated as follows:

∥i∥ = 50.052 A
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after reactive current compensation of the first harmonic.

As a result of the connection of the first harmonic reactive current compensator, the
power values associated with the passive components have changed. Table 8 lists the
three-phase active and reactive powers of the respective harmonics and the entire circuit.

Table 8. List of the active and reactive powers for specific harmonics in three phases, along with
the total active and reactive powers of the entire circuit after reactive current reduction for the first
harmonic.

Harmonic Order Active Power P in [W] Reactive Power QB in [var]

n = 1 16,726 0

n = 3 42.2 −89

n = 5 100.6 −482

n = 7 15.2 −112.9

SUM 16,884 −683.9

The apparent power S, when the reactive current compensator for the first harmonic
is connected, is

S = 20117.5 VA

The Budeanu distortion power DB after reactive current reduction in the first harmonic is

DB = 10916.9 VA

Based on Relations (10)–(16), the three-phase RMS currents’ components values were
calculated after the connection of the first harmonic reactive current compensator. The
three-phase RMS currents’ components values of the load for the specific harmonics, as
defined by the developed Budeanu theory, are listed in Table 9.
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Table 9. List of three-phase RMS current’s components values corresponding to specific harmonics,
as provided in the developed Budeanu theory, following reduction in the reactive current of the first
harmonic.

Harmonic Order ∥ia∥ ∥is∥ ∥irB∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥

n = 1 41.635 0.351 1.687 1.687 0 14.912 14.912

n = 3 2.715 1.092 0.110 3.315 1.549 2.469 0

n = 5 4.256 2.203 0.183 10.949 6.924 0 5.368

n = 7 1.810 0.930 0.073 6.445 0 3.244 3.866

RMS 42.007 2.652 1.702 13.238 7.095 15.459 16.313

The three-phase RMS value of the load current after reactive current reduction in the
first harmonic is ∥i∥ = 50.052 A, and this is exactly the same as the three-phase RMS value
obtained from calculations based on Ohm’s law and Kirchhoff’s law.

When the reactive current compensator of the first harmonic is connected, the 5
current’s components are still responsible for the Budeanu distortion current. The Budeanu
distortion current waveform after reactive current compensation of the first harmonic is
illustrated in Figure 8.

Table 10 lists the three-phase RMS currents’ components values following reactive
current compensation of the first harmonic, with which it is possible to describe the
distortion current and power as determined by Budeanu theory.

Table 10. List of three-phase RMS currents’ components values of the distortion current described in
the Budeanu theory.

Harmonic Order ∥is∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥ ∥idB∥

n = 1 0.351 1.687 0 14.912 14.912

n = 3 1.092 3.315 1.549 2.469 0

n = 5 2.203 10.949 6.924 0 5.368

n = 7 0.930 6.445 0 3.244 3.866

RMS 2.652 13.238 7.095 15.459 16.313 27.161

Based on Relation (19), describing the power factor λ of a system causing reactive
current reduction in the first harmonic is

λ = 0.839

This means that the load in Figure 6 did not achieve a value close to unity after connec-
tion of the reactive current compensator for the first harmonic. So, further compensation
should be considered through a different choice in compensator parameters.

6. Compensation of the Equivalent Susceptance for Fundamental Harmonic

When describing a passive compensator, based on the developed Budeanu theory, in
the form of a capacitor or choke, it must be said that it does not influence the equivalent
conductance Ge or the conductance Gn for harmonic orders. This means that it does not
modify the active current or the scattered current. The reactance filters, on the contrary,
change the susceptance as observed from the power source side. Therefore, it modifies the
current associated with the reactance elements (Budeanu reactive current and Budeanu
complemented reactive current).
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If the susceptance of the reactance compensator for the first harmonic frequency has a
value of Bk1, the waveform of the Budeanu reactive current is

irB =
√

2Re ∑
n∈N

j(BeB + Bk1)Unejnω1t (26)

while Bk1 = −BeB is tuned only to the first harmonic frequency.
Simultaneously, the susceptance of the reactance compensator also influences the

magnitude of the complemented reactive current according to the developed Budeanu
theory:

icrB =
√

2Re ∑
n∈N

[j((Bn − BeB) + Bk1)]Unejnω1t (27)

Three-phase RMS Budeanu reactive current value is

∥ic
rB∥ =

√
∑

n∈N
[(BeB + Bk1)∥un∥]2 (28)

Moreover, three-phase RMS Budeanu complemented reactive current value is equal to

∥ic
crB∥ =

√
∑

n∈N

[
((Bn − BeB) + Bk1∥un∥)2

]
(29)

The determination of the optimal capacitance of a capacitor depends on the relationship

Copt =
BeB

ω1
(30)

The optimal choke inductance, on the contrary, is chosen based on the formula

Lopt =
−1

ω1BeB
(31)

The optimal choice of capacitance or inductance fitting the equivalent susceptance
value based on Equations (30) and (31) can, in the worst scenario, lead to a resonant
amplification of the current for the first harmonic (this condition, however, is not taken into
consideration in the planning).

A maximum power factor λ, is not obtainable for several reasons, namely

1. The active current and the scattered current still exist in the circuit as components
associated with the resistive elements.

2. There are also three components of unbalanced current left in the circuit that are not
compensated for via an equivalent susceptance compensator for the first harmonic.

Only the Budeanu reactive current and the Budeanu complemented reactive current
are modified, and only to a certain extent.

7. Theoretical Illustration 3

An equivalent susceptance compensator is connected to the circuit in Figure 2 to
compensate for the equivalent susceptance responsible for the Budeanu reactive current of
the first harmonic. Table 11 shows the equivalent susceptance values required to reduce the
Budeanu reactive current of the first harmonic. Figure 9 illustrates how the compensator is
connected (Y-structure).

Table 11. List of equivalent susceptance values necessary to compensate for the first harmonic of the
Budeanu reactive current.

Parameter Line R Line S Line T

Capacitance [mF] 14.55 14.55 14.55
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Figure 9. The original circuit with the connected ideal compensator used to compensate for the
Budeanu reactive current for the first harmonic.

When an equivalent susceptance compensator is connected to compensate for the
Budeanu reactive current of the first harmonic, the load’s equivalent parameters as observed
from the power source are modified. After the calculations and simulations, the complex
values of the line currents are compiled in Table 12 and presented in Figure 10.

Table 12. List of complex line currents values for respective harmonics after reduction in the Budeanu
reactive current of the first harmonic.

Harmonic Order Line R in [A] Line S in [A] Line T in [A]

n = 1 36.91e−j21.4◦ 8.36e−j151.7◦ 35.87ej149.4◦

n = 3 0.98ej50.9◦ 1.67ej87.9◦ 3.08ej46.1◦

n = 5 4.26ej84.3◦ 5.32e−j150.4◦ 6.87e−j61.2◦

n = 7 2.76ej88.1◦ 3.09e−j30.1◦ 3.55e−j173.7◦
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Based on the currents shown in Table 12 and the waveforms presented in Figure 10,
the three-phase RMS value of the load current after Budeanu reactive current compensation
of the first harmonic was calculated as follows:

∥i∥ = 53.436 A

As a result of the connection of the Budeanu reactive current compensator of the first
harmonic, the power values associated with the passive elements have been modified.
Table 13 lists the three-phase active and reactive powers of the chosen harmonics and the
whole system.

Table 13. List of three-phase active power and reactive power values of chosen harmonics and total
three-phase active power and reactive power of the whole system after reduction in the Budeanu
reactive current of the first harmonic.

Harmonic Order Active Power P in [W] Reactive Power QB in [var]

n = 1 16,726 59.8

n = 3 42.2 −69.7

n = 5 100.6 −385.8

n = 7 15.2 −90.9

SUM 16,884 −486.7

The apparent power S, when the Budeanu reactive current compensator of the first
harmonic is connected, is equal to

S = 21477.6 VA

The Budeanu distortion power DB after the Budeanu reactive current compensation of
the first harmonic is

DB = 13265.8 VA

Based on Relations (10)–(16), the three-phase RMS currents’ components values af-
ter connection of the Budeanu reactive current compensator of the first harmonic were
calculated. The three-phase RMS currents’ components values of the load for the specific
harmonics, as determined by the developed Budeanu theory, are shown in Table 14.

Table 14. List of three-phase RMS currents’ components values for the chosen harmonics defined in
the developed Budeanu theory after reduction in the Budeanu reactive current of the first harmonic.

Harmonic Order ∥ia∥ ∥is∥ ∥irB∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥

n = 1 41.635 0.351 1.200 1.350 0 30.834 2.285

n = 3 2.715 1.092 0.078 2.604 1.717 0.653 0

n = 5 4.256 2.203 0.130 8.780 1.455 0 2.598

n = 7 1.810 0.930 0.052 5.198 0 0.984 0.651

RMS 42.007 2.652 1.211 10.617 2.251 30.856 3.521

The three-phase RMS load current value after reduction for the Budeanu reactive
current of the first harmonic is ∥i∥ = 53.436 A, and this is exactly the same as the three-
phase RMS value achieved by calculations based on Ohm’s law and Kirchhoff’s law.

When the Budeanu reactive current compensator of the first harmonic is connected,
the 5 current components are still responsible for the Budeanu distortion current. The
Budeanu distortion current waveform after Budeanu reactive current reduction in the first
harmonic is illustrated in Figure 11.
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Figure 11. The Budeanu distortion current waveforms following the developed Budeanu theory after
compensation of the Budeanu reactive current of the first harmonic.

Table 15 lists the three-phase RMS values of the currents’ components following
Budeanu reactive current reduction in the first harmonic, with which it is possible to
describe the distortion current and thus the distortion power defined by Budeanu theory.

Table 15. List of three-phase RMS currents’ components values of the distortion current defined in
the Budeanu theory.

Harmonic Order ∥is∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥ ∥idB∥

n = 1 0.351 1.350 0 30.834 2.285

n = 3 1.092 2.604 1.717 0.653 0

n = 5 2.203 8.780 1.455 0 2.598

n = 7 0.930 5.198 0 0.984 0.651

RMS 2.652 10.617 2.251 30.856 3.521 33.005

Equation (19) describes the power factor λ of a circuit compensating for the Budeanu
reactive current of the first harmonic:

λ = 0.786

This means that the load in Figure 10 did not obtain a value close to unity after
connecting the Budeanu reactive current compensator of the first harmonic. Therefore,
further reduction should be considered through a different setting of the compensator
parameters.

8. Ideal Compensation of the Budeanu Complemented Reactive Current and the
Unbalanced Current

Improving the power factor of a three-phase four-wire circuit where the supply voltage
is symmetrical but nonsinusoidal needs to compensate for the reactive current and the
unbalanced current as each harmonic exists in the supply voltage waveform separately.
As can be found in [20,23,24], four-wire circuits supplied with a symmetrical distortion
voltage with harmonics of n = 3k order cannot completely compensate for the unbalanced
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current. This situation is caused by the impossibility of using a ∆-structure compensator for
harmonics of n = 3k order. We are forced to choose between two components of unbalanced
current; i.e., if we are compensating for the reactive current of the 3rd harmonic with a
compensator in a Y-structure, we may choose between a positive-sequence unbalanced
current or a negative-sequence unbalanced current. As a general rule, this is completed
on the following principle: the higher three-phase RMS value of a given unbalanced
component should be compensated together with the reactive current. Thus, the potential
current waveform of the load after compensation should also be noted, and only then, with
similar three-phase RMS values of the unbalanced current components, decide on the one
that causes a higher distortion of the load current waveform.

Four-wire circuits to maximize the power factor require reduction with compensators
built in two configurations, i.e., Y-structure and ∆-structure [20,23,24]. The reactive current
component can be compensated for with both reactance compensator structures. The same
assumption also refers to the unbalanced current’s components of the positive sequence
and the negative sequence. The problem is the unbalanced component of the zero-sequence
current because its compensation can only be accomplished with a Y-structure. The most
popular classification of current’s components in compensator structures is as follows: in
a Y-structure, the reactive current’s component and the component of the zero-sequence
unbalanced current are compensated, in a ∆-structure, depending on the harmonic order,
the component of the positive-sequence unbalanced current or the negative sequence.

The developed Budeanu theory describes two reactive components of the load current,
namely the Budeanu reactive current and the Budeanu complemented reactive current. In
the reduction method in the discussion, the Budeanu complemented reactive current and
the unbalanced current are taken into consideration first. Based on the above assumptions
and the information presented in [20,23], the solution of the two equations related to
the compensation of the Budeanu complemented reactive current and the zero-sequence
unbalanced current, for positive sequence harmonics of n = 3k + 1, is

TRn = −2ImYz
un − (Bn − BeB)

TSn = −
√

3ReYz
un + ImYz

un − (Bn − BeB)

TTn =
√

3ReYz
un + ImYz

un − (Bn − BeB)

(32)

A compensator with a Y-structure modifies the unbalanced admittance of the negative
sequence and therefore also affects the negative-sequence unbalanced current. After recal-
culation of the respective admittances, the solution of the equation for a delta-structure
compensator, for harmonics of the positive sequence n = 3k + 1, is

TRSn = 1
3

(√
3ReYn#

un − ImYn#
un

)
TSTn = 1

3

(
2ImYn#

un

)
TTRn = 1

3

(
−
√

3ReYn#
un − ImYn#

un

) (33)

If harmonics of the negative sequence n = 3k − 1 exist in the supply voltage, then the
solution of Equation (32) has the form

TRn = −2ImYz
un − (Bn − BeB)

TSn =
√

3ReYz
un + ImYz

un − (Bn − BeB)

TTn = −
√

3ReYz
un + ImYz

un − (Bn − BeB)

(34)

The solution of Equation (33) also changes, which, for harmonics of the negative
sequence n = 3k − 1, is

TRSn = 1
3

(
−
√

3ReYp#
un − ImYp#

un

)
TSTn = 1

3

(
2ImYp#

un

)
TTRn = 1

3

(√
3ReYp#

un − ImYp#
un

) (35)
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For voltage harmonics of the zero sequence n = 3k, as already mentioned, the only
structure that can be used to compensate for the component of the Budeanu complemented
reactive current and one of the two unbalanced components is the Y-structure. When
compensation of the positive-sequence unbalanced current is preferred, the solution of the
equation becomes

TRn = −2ImYp
un − (Bn − BeB)

TSn =
√

3ReYp
un + ImYp

un − (Bn − BeB)

TTn = −
√

3ReYp
un + ImYp

un − (Bn − BeB)

(36)

If we decide to choose a negative-sequence unbalanced current for reduction, then the
solution of the equation is as follows:

TRn = −2ImYn
un − (Bn − BeB)

TSn = −
√

3ReYn
un + ImYn

un − (Bn − BeB)

TTn =
√

3ReYn
un + ImYn

un − (Bn − BeB)

(37)

In this article, the positive sequence’s unbalanced current is considered for the har-
monics of n = 3k during the selection of the compensator parameters.

9. Theoretical Illustration 4

To the circuit in Figure 2, the Budeanu complemented reactive current and the un-
balanced current compensator are connected in order to compensate for the susceptances
representing the Budeanu complemented reactive current for all considered harmonics
existing in the supply voltage. In addition, the circuit supports load balancing by compen-
sating for the unbalanced current’s components. Tables 16 and 17 show the capacitance
and inductance values required to compensate for the Budeanu complemented reactive
current and the unbalanced current for specific harmonics. Figure 12 illustrates how the
compensator is connected (Y-structure and ∆-structure).

Table 16. List of capacitance and inductance values necessary to compensate for the Budeanu
complemented reactive current and the unbalanced current for a compensator with a Y-structure.

Line

Harmonic Order

n = 1 n = 3 n = 5 n = 7

C [µF] L [µH] C [µF] L [mH] C [µF] L [mH] C [µF] L [mH]

R - 6.22 127.68 - 60.21 - - 5.41

S 35.88 - - 13.60 - 6.21 19.49 -

T - 26.06 - 13.62 - 10.43 - 9.97

Table 17. List of capacitance and inductance values necessary to compensate for the component of
the unbalanced current for a ∆-structure compensator.

Line

Harmonic Order

n = 1 n = 3 n = 5 n = 7

C [µF] L [µH] C [µF] L [mH] C [µF] L [mH] C [µF] L [mH]

RS 145.14 - - - - 107.76 1.43 -

ST - 128.51 - - 34.64 - - 8.32

TR - 16.63 - - - 13.16 23.41 -
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Figure 12. Original circuit with the connected compensator used to compensate for the Budeanu
complemented reactive current and the unbalanced current.

When a compensator is connected to compensate for the Budeanu complemented
reactive current and the unbalanced current, the load’s equivalent parameters as observed
from the power circuit side are modified. Following the calculations and simulations, the
complex line current values presented in Figure 13 are compiled in Table 18.
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Table 18. List of complex values of line currents for specific harmonics after reduction in the Budeanu
complemented reactive current and the unbalanced current.

Harmonic Order Line R in [A] Line S in [A] Line T in [A]

n = 1 26.42e−j23.4◦ 26.42e−j143.4◦ 26.42ej96.6◦

n = 3 0.80ej39.4◦ 1.56e−j87.7◦ 2.36e−j25.3◦

n = 5 1.76e−j40.4◦ 1.76ej79.6◦ 1.76e−j160.4◦

n = 7 0.68e−j42◦ 0.68e−j162◦ 0.68ej78◦



Energies 2024, 17, 2020 21 of 36

Based on the currents compiled in Table 18 and the waveforms illustrated in Figure 13,
the three-phase RMS value of the load current after reduction in the Budeanu complemented
reactive current and the unbalanced current was calculated as follows:

∥i∥ = 45.974 A

As a result of the connection of the Budeanu complemented reactive current compen-
sator and the unbalanced current, the power values associated with the passive elements
have changed. Table 19 lists the three-phase active and reactive powers of the specific
harmonics and the entire system.

Table 19. List of the active and reactive powers for specific harmonics in three phases, along
with the total active and reactive powers of the entire circuit after compensating for the Budeanu
complemented reactive current and the unbalanced current.

Harmonic Order Active Power P in [W] Reactive Power QB in [var]

n = 1 16,726 7252.2

n = 3 42.2 30.8

n = 5 100.6 85.7

n = 7 15.2 13.7

SUM 16,884 7382.4

The apparent power S, after connecting the Budeanu complemented reactive current
compensator and the unbalanced current, is

S = 18478.3 VA

The Budeanu distortion power DB after reduction in the Budeanu complemented
reactive current and the unbalanced current is

DB = 1370 VA

Based on Equations (10)–(16), the three-phase RMS currents’ components values after
the Budeanu complemented reactive current compensator and the unbalanced current
were calculated. The three-phase RMS load currents’ components values for the respective
harmonics, as determined by the developed Budeanu theory, are compiled in Table 20.

Table 20. List of three-phase RMS currents’ components values for the chosen harmonics defined in
the developed Budeanu theory after reduction in the Budeanu complemented reactive current and
the unbalanced current.

Harmonic Order ∥ia∥ ∥is∥ ∥irB∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥

n = 1 41.635 0.351 18.205 0 0 0 0

n = 3 2.715 1.092 1.187 0 0 2.141 0

n = 5 4.256 2.203 1.979 0 0 0 0

n = 7 1.810 0.930 0.792 0 0 0 0

RMS 42.007 2.652 18.368 0 0 2.141 0

The three-phase RMS value of the load current after reduction for the Budeanu com-
plemented reactive current and the unbalanced current is ∥i∥ = 45.974 A, and this is exactly
the same as the three-phase RMS value achieved by calculations based on Ohm’s law and
Kirchhoff’s law.
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When the Budeanu complemented reactive current and the unbalanced current com-
pensator are connected, the 2 current components are responsible for the Budeanu distortion
current. The Budeanu distortion current waveform after Budeanu complemented reactive
current and the unbalanced current compensation is illustrated in Figure 14.
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reduction in the Budeanu complemented reactive current and the unbalanced current.

Table 21 lists the three-phase RMS currents’ components values resulting from the
reduction in the Budeanu complemented reactive current and the unbalanced current, due
to which it is possible to describe the distortion current and power defined by Budeanu
theory.

Table 21. List of the three-phase RMS values of the currents’ components of the distortion current
defined in the Budeanu theory.

Harmonic Order ∥is∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥ ∥idB∥

n = 1 0.351 0 0 0 0

n = 3 1.092 0 0 2.141 0

n = 5 2.203 0 0 0 0

n = 7 0.930 0 0 0 0

RMS 2.652 0 0 2.141 0 3.409

Equation (19) describes the power factor λ of a circuit compensating for the Budeanu
complemented reactive current and the unbalanced current:

λ = 0.914

This means that the load in Figure 12 did not obtain a value close to unity after
connecting the Budeanu complemented reactive current and the unbalanced current com-
pensator. Therefore, further reduction should be considered through a different setting of
the compensator parameters.
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10. Ideal Compensation of the Budeanu Reactive Current and the Unbalanced Current

The second approach in the developed Budeanu theory is the possibility of compensating
for the Budeanu reactive current determined on equivalent susceptance. In the discussed com-
pensation method, the Budeanu reactive current and the unbalanced current were considered.
Due to the above assumptions and the information included in [20], the solution of the two
equations relating to the reduction in the Budeanu reactive current and the zero-sequence
unbalanced current, for harmonics of the positive sequence n = 3k + 1, we have to modify
the susceptance describing the Budeanu complemented reactive current (Bn − BeB) to an
equivalent susceptance representing the Budeanu reactive current BeB in each equation in-
volved in the design of the compensator. The parameters associated with the zero-sequence
unbalanced susceptance Yz

un, the negative-sequence unbalanced susceptance Yn
un, and

the positive-sequence unbalanced susceptance Yp
un are unchanged, with harmonic order

being considered.
The Y-structure compensator changes the unbalanced admittance of the negative

sequence and therefore also affects the negative-sequence unbalanced current. After re-
calculating the appropriate admittances, the solution of the equation for a delta-structure
compensator, for harmonics of the positive sequence n = 3k + 1, is identical to that in
Equation (33).

For harmonics of the negative sequence n = 3k − 1, the solution to the equation follows
the form identical to that in Relation (35).

In this article, the positive sequence’s unbalanced current is considered for the har-
monics of n = 3k during the selection of the compensator parameters.

11. Theoretical Illustration 5

To the circuit in Figure 2, the Budeanu reactive current and the unbalanced current
compensator are connected in order to compensate for the equivalent susceptance repre-
senting the Budeanu reactive current. In addition, the system supports load balancing by
compensating for the unbalanced current’s components. Tables 22 and 23 show the capaci-
tance and inductance values required to compensate for the Budeanu reactive current and
the unbalanced current for specific harmonics. Figure 15 illustrates how the compensator is
connected (Y-structure and ∆-structure).

Table 22. List of capacitance and inductance values necessary to compensate for the Budeanu reactive
current and the unbalanced current for a compensator with a Y-structure.

Line

Harmonic Order

n = 1 n = 3 n = 5 n = 7

C [µF] L [µH] C [µF] L [mH] C [µF] L [mH] C [µF] L [mH]

R 138.04 - 188.75 - 103.94 - - 48.49

S 180.14 - - 51.87 - 18.83 53.42 -

T 118.20 - - 52.15 4.87 - 13.19 -

Table 23. List of capacitance and inductance values necessary to compensate for the component of
the unbalanced current for a ∆-structure compensator.

Line

Harmonic Order

n = 1 n = 3 n = 5 n = 7

C [µF] L [µH] C [µF] L [mH] C [µF] L [mH] C [µF] L [mH]

RS 145.14 - - - - 107.76 1.43 -

ST - 78.84 - - 34.56 - - 8.32

TR - 609.47 - - - 13.16 23.41 -
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Figure 15. Original circuit with the connected compensator used to compensate for the Budeanu
reactive current and the unbalanced current.

When a compensator is connected to compensate for the Budeanu reactive current and
the unbalanced current, the equivalent parameters of the load as observed from the power
source are modified. Following the calculations and simulations, the complex values of the
line currents presented in Figure 16 are listed in Table 24.
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Table 24. List of complex values of line currents for respective harmonics after reduction in the
Budeanu reactive current and the unbalanced current.

Harmonic Order Line R in [A] Line S in [A] Line T in [A]

n = 1 24.24e−j0.2◦ 24.24e−j120.2◦ 24.24ej119.8◦

n = 3 1.51ej65.7◦ 0.70e−j84.9◦ 2.14e−j3.9◦

n = 5 1.46ej23.2◦ 1.46ej143.2◦ 1.46e−j96.8◦

n = 7 0.58ej29.7◦ 0.58e−j90.3◦ 0.58ej149.7◦
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Based on the currents compiled in Table 24 and the waveforms illustrated in Figure 16,
the three-phase RMS value of the load current after reduction in the Budeanu reactive
current and the unbalanced current was calculated as follows:

∥i∥ = 42.161 A

As a result of the connection of the Budeanu reactive current compensator and the
unbalanced current, the power values associated with the passive elements have changed.
Table 25 lists the three-phase active and reactive powers of the chosen harmonics and the
whole system.

Table 25. List detailing the three-phase active and reactive powers of specific harmonics, as well as
the total three-phase active and reactive powers of the entire circuit following compensation for both
the Budeanu reactive current and the unbalanced current.

Harmonic Order Active Power P in [W] Reactive Power QB in [var]

n = 1 16,726 59.8

n = 3 42.2 −8

n = 5 100.6 −43.1

n = 7 15.2 −8.7

SUM 16,884 0

The apparent power S, after connecting the Budeanu reactive current compensator
and the unbalanced current is

S = 16945.9 VA

The Budeanu distortion power DB after reduction in the Budeanu reactive current and
the unbalanced current is

DB = 1447.9 VA

Based on Equations (10)–(16), the three-phase RMS values of the currents’ components
after the Budeanu reactive current compensator and the unbalanced current have been
calculated. The three-phase RMS of the load currents’ components values for the specific
harmonics, as determined by the developed Budeanu theory, are compiled in Table 26.

Table 26. List of three-phase RMS currents’ components values for the respective harmonics defined
in the developed Budeanu theory after reduction in the Budeanu reactive current and the unbalanced
current.

Harmonic Order ∥ia∥ ∥is∥ ∥irB∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥

n = 1 41.635 0.351 0 0.150 0 0 0

n = 3 2.715 1.092 0 0.308 0 2.141 0

n = 5 4.256 2.203 0 0.996 0 0 0

n = 7 1.810 0.930 0 0.501 0 0 0

RMS 42.007 2.652 0 1.166 0 2.141 0

The three-phase RMS value of the load current after reduction for the Budeanu reactive
current and the unbalanced current is ∥i∥ = 42.161 A, and this is exactly the same as the
three-phase RMS value achieved by calculations based on Ohm’s law and Kirchhoff’s law.

When the Budeanu reactive current and the unbalanced current compensator are
connected, the 3 current components are responsible for the Budeanu distortion current. The
Budeanu distortion current waveform after Budeanu reactive current and the unbalanced
current compensation is illustrated in Figure 17.
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Table 27 lists the three-phase RMS currents’ components values resulting from the
reduction in the Budeanu reactive current and the unbalanced current, due to which it
is possible to describe the distortion current and thus the distortion power defined by
Budeanu theory.

Table 27. List of the three-phase RMS currents’ components values of the distortion current described
in the Budeanu theory.

Harmonic Order ∥is∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥ ∥idB∥

n = 1 0.351 0.150 0 0 0

n = 3 1.092 0.308 0 2.141 0

n = 5 2.203 0.996 0 0 0

n = 7 0.930 0.501 0 0 0

RMS 2.652 1.166 0 2.141 0 3.602

Equation (19) describes the power factor λ of a circuit compensating for the Budeanu
reactive current and the unbalanced current:

λ = 0.996

This means that the load from Figure 16 obtained a value close to unity after connecting
the Budeanu reactive current compensator and the unbalanced current. However, there is
another method to achieve a higher power factor value.

12. Ideal Compensation of the Combined Budeanu Reactive Currents’ and the
Unbalanced Current

The third approach in the developed Budeanu theory is the possibility of compen-
sating for the Budeanu reactive current determined based on equivalent susceptance and
the Budeanu complemented reactive current determined based on susceptance of spe-
cific harmonics. In the discussed compensation method, the Budeanu reactive current,
Budeanu complemented reactive current, and the unbalanced current were considered.
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Due to the above assumptions and the information included in [20], the solution of the
two equations relating to the reduction in the Budeanu reactive current, Budeanu com-
plemented reactive current, and the zero-sequence unbalanced current, for harmonics of
the positive sequence n = 3k + 1, we have to include both susceptances describing the
Budeanu complemented reactive current (Bn − BeB) and the Budeanu reactive current BeB
in each equation considered in the design of the compensator. The parameters associated
with the zero-sequence unbalanced susceptance Yz

un, the negative-sequence unbalanced
susceptance Yn

un, and positive-sequence unbalanced susceptance Yp
un remain unchanged,

with the harmonic order being considered.
In solution mentioned above, the equivalent susceptances are reduced (Bn − BeB + BeB)

= Bn.
The Y-structure compensator modifies the unbalanced admittance of the negative

sequence and therefore also affects the negative-sequence unbalanced current. After re-
calculating the appropriate admittances, the solution of the equation for a delta-structure
compensator, for harmonics of the positive sequence n = 3k + 1, is identical to that in
Equation (33).

For harmonics of the negative sequence n = 3k − 1, the solution to the equation follows
the form identical to that in Relation (35).

In this article, the positive sequence’s unbalanced current is considered for the har-
monics of n = 3k during the selection of the compensator parameters.

13. Theoretical Illustration 6

To the circuit in Figure 2, the Budeanu reactive current, Budeanu complemented
reactive current, and the unbalanced current compensator are connected for the function of
compensating for the equivalent susceptance representing the Budeanu reactive current and
the susceptances representing the Budeanu complemented reactive current. In addition, the
system supports load balancing by compensating for the unbalanced current’s components.
Tables 28 and 29 show the capacitance and inductance values required to compensate for
the Budeanu reactive current, Budeanu complemented reactive current, and the unbalanced
current for specific harmonics. Figure 18 illustrates how the compensator is connected
(Y-structure and ∆-structure).
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Table 28. List of capacitance and inductance values necessary to compensate for the Budeanu reactive
current, Budeanu complemented reactive current, and the unbalanced current for a compensator
with a Y-structure.

Line

Harmonic Order

n = 1 n = 3 n = 5 n = 7

C [µF] L [µH] C [µF] L [mH] C [µF] L [mH] C [µF] L [mH]

R 139.24 - 176.17 - 89.30 - - 11.87

S 181.34 - - 15.38 - 11.21 40.27 -

T 119.40 - 4.76 - - 41.49 0.034 -

Table 29. List of capacitance and inductance values necessary to compensate for the component of
the unbalanced current for a ∆-structure compensator.

Line

Harmonic Order

n = 1 n = 3 n = 5 n = 7

C [µF] L [µH] C [µF] L [mH] C [µF] L [mH] C [µF] L [mH]

RS 145.14 - - - - 107.76 1.43 -

ST - 78.84 - - 34.56 - - 8.32

TR - 609.47 - - - 13.16 23.41 -

When a compensator is connected to compensate for the Budeanu reactive current,
Budeanu complemented reactive current, and the unbalanced current, the equivalent
parameters of the load as observed from the power source are modified. Following the
calculations and simulations, the complex values of the line currents presented in Figure 19
are listed in Table 30.
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Table 30. List of complex line currents values for chosen harmonics after reduction in the Budeanu
reactive current, Budeanu complemented reactive current, and the unbalanced current.

Harmonic Order Line R in [A] Line S in [A] Line T in [A]

n = 1 24.24ej0◦ 24.24e−j120◦ 24.24ej120◦

n = 3 1.34ej62.6◦ 0.88e−j86◦ 2.15e−j8.6◦

n = 5 1.34ej0◦ 1.34ej120◦ 1.34e−j120◦

n = 7 0.51ej0◦ 0.51e−j120◦ 0.51ej120◦

Based on the currents compiled in Table 30 and the waveforms illustrated in Figure 19,
the three-phase RMS value of the load current after reduction in the Budeanu reactive cur-
rent, Budeanu complemented reactive current, and the unbalanced current was calculated
as follows:

∥i∥ = 42.145 A

As a result of the connection of the Budeanu reactive current, Budeanu complemented
reactive current, and the unbalanced current compensator, the power values associated
with the passive elements have changed. Table 31 lists the three-phase active and reactive
powers of the respective harmonics and the whole system.

Table 31. List of three-phase RMS currents’ components values for the chosen harmonics defined in
the developed Budeanu theory after reduction in the Budeanu reactive current, Budeanu comple-
mented reactive current, and the unbalanced current.

Harmonic Order Active Power P in [W] Reactive Power QB in [var]

n = 1 16,726 0

n = 3 42.2 0

n = 5 100.6 0

n = 7 15.2 0

SUM 16,884 0

The apparent power S, after connecting the Budeanu reactive current, Budeanu com-
plemented reactive current, and the unbalanced current compensator, is

S = 16939.5 VA

The Budeanu distortion power DB after reduction in the Budeanu reactive current,
Budeanu complemented reactive current, and the unbalanced current is

DB = 1370 VA

Based on Equations (10)–(16), the three-phase RMS values of the currents’ components
after the Budeanu reactive current, Budeanu complemented reactive current, and the
unbalanced current compensator were calculated. The three-phase RMS load currents’
components values for the chosen harmonics, as described by the developed Budeanu
theory, are compiled in Table 32.
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Table 32. List of three-phase RMS currents’ components values for the respective harmonics de-
fined in the developed Budeanu theory after reduction in the Budeanu reactive current, Budeanu
complemented reactive current, and the unbalanced current.

Harmonic Order ∥ia∥ ∥is∥ ∥irB∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥

n = 1 41.635 0.351 0 0 0 0 0

n = 3 2.715 1.092 0 0 0 2.141 0

n = 5 4.256 2.203 0 0 0 0 0

n = 7 1.810 0.930 0 0 0 0 0

RMS 42.007 2.652 0 0 0 2.141 0

The three-phase RMS value of the load current after reduction for the Budeanu re-
active current, Budeanu complemented reactive current, and the unbalanced current is
∥i∥ = 42.145 A, and this is exactly identical to the three-phase RMS value achieved by
calculations based on Ohm’s law and Kirchhoff’s law.

When the Budeanu reactive current, Budeanu complemented reactive current, and
the unbalanced current compensator are connected, the 2 current components are respon-
sible for the Budeanu distortion current. The Budeanu distortion current waveform after
Budeanu reactive current and the unbalanced current reduction are illustrated in Figure 20.
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Table 33 lists the three-phase RMS values of the currents’ components resulting from
the reduction in the Budeanu reactive current, Budeanu complemented reactive current,
and the unbalanced current, due to which it is possible to describe the distortion current
and power defined by Budeanu theory.
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Table 33. List of the three-phase RMS currents’ components values of the distortion current deter-
mined in the Budeanu theory.

Harmonic Order ∥is∥ ∥icrB∥ ∥ip
u∥ ∥in

u∥ ∥iz
u∥ ∥idB∥

n = 1 0.351 0 0 0 0

n = 3 1.092 0 0 2.141 0

n = 5 2.203 0 0 0 0

n = 7 0.930 0 0 0 0

RMS 2.652 0 0 2.141 0 3.409

Equation (19) describes that the power factor λ of a circuit compensating for the
Budeanu reactive current, Budeanu complemented reactive current, and the unbalanced
current is

λ = 0.997

This means that the load from Figure 18, after connecting the Budeanu reactive cur-
rent, Budeanu complemented reactive current, and the unbalanced current compensator,
accomplished the highest possible value close to unity.

14. Analysis and Discussion of the Achieved Results

The article presents five methods related to reactive current reduction, namely
Method I—ideal susceptance compensation for the fundamental harmonic.
Method II—equivalent susceptance compensation for the fundamental harmonic.
Method III—ideal compensation of the Budeanu complemented reactive current and

the unbalanced current.
Method IV—ideal compensation of the Budeanu reactive current and the unbalanced

current.
Method V—ideal compensation of the Budeanu reactive current, Budeanu comple-

mented reactive current, and the unbalanced current.
As can be noted, each of the described methods of selecting passive compensator

parameters provides different results as to the three-phase RMS value of the currents or the
three-phase value of the powers’ components.

Table 34 compiles the three-phase RMS values of the load currents’ components
presented in Figure 2 and the three-phase RMS values of the currents’ components after the
compensator is connected for each of the five methods considered in this publication.

Table 34. List of three-phase RMS currents’ components values for the original circuit and the systems
after the connection of the compensator.

Component Original System Method

I II III IV V

∥ia∥ 42.007 42.007 42.007 42.007 42.007 42.007

∥is∥ 2.652 2.652 2.652 2.652 2.652 2.652

∥irB∥ 18.368 1.702 1.211 18.368 0 0

∥icrB∥ 1.166 13.238 10.617 0 1.166 0∥∥∥ip
u

∥∥∥ 2.251 7.095 2.251 0 0 0

∥in
u∥ 30.856 15.459 30.856 2.141 2.141 2.141

∥iz
u∥ 3.521 16.313 3.521 0 0 0

∥idB∥ 31.273 27.161 33.005 3.409 3.602 3.409

∥i∥ 55.497 50.052 53.436 45.974 42.161 42.145
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As can be noticed from Table 34, compensation should not only focus on reducing
the reactive current associated with the first harmonic (Methods I and II). In the first
two methods concerning only the reactive current compensation of the first harmonic,
no balancing of the load is considered. This causes only a negligible reduction in the
three-phase RMS value of the load current.

Method I reduces the Budeanu reactive current to 1.702 A while increasing the
Budeanu complemented reactive current to 13.328 A. This method also modifies the value
of the three unbalanced currents. Method II, similarly to Method I, reduces the Budeanu
reactive current to 1.211 A and boosts the Budeanu complemented reactive current to
10.617 A. In contradiction to the previous approach, it does not cause a modification in
the unbalanced current. This is because Method II is based on an equivalent parameter in
the form of an equivalent susceptance defined in the developed Budeanu theory, in which
the currents’ components are mutually orthogonal. This reduces the specific current’s
components without influencing the values of the other components.

Methods III, IV, and V, in addition to extending the reduction in the components
associated with the reactive current to all the harmonics considered in the supply voltage,
also include balancing the load by optimally reducing the components involving the
unbalanced current. The optimal reduction reduces the unbalanced currents of the positive
and zero sequence to 0 and minimizes the negative-sequence unbalanced current to 2.141 A.
In the analyzed circuit, it is not possible to reduce the negative-sequence unbalanced current
to 0 because, in systems with a symmetrical supply and the existence of an n = 3k harmonics
order, it is not possible to use the compensator built in the ∆-structure for compensation.

In Method III, the Budeanu complemented reactive current and the unbalanced current
were compensated. This resulted in a value of 0 for the Budeanu complemented reactive
current and an optimal reduction in the unbalanced current’s components. As expected, the
value of the Budeanu reactive current did not change because the equivalent susceptance
parameter was not used to design the compensator.

Method IV considered the reduction in the Budeanu reactive current and the unbal-
anced current. The Budeanu reactive current was compensated to 0 and the unbalanced
current was optimally reduced. The component of the Budeanu complemented reactive
current was not modified (orthogonality condition).

In Method V, both reactive components in the form of the Budeanu reactive current
and the Budeanu complemented reactive current are included, as well as the unbalanced
current. This method resulted in a minimum three-phase RMS current value of 42.145 A.

Attention should also be focused on the Budeanu distortion current values. In Method
I, there was a minor reduction in the three-phase RMS value of the Budeanu distortion
current (a decrease of 4.112 A). In contrast, an increase in the Budeanu distortion current of
1732 A is observed in Method II. In Methods III, IV, and V, the Budeanu distortion current
was reduced significantly to a value of 3602 A for Method IV and to a value of 3409 A
in Methods III and V. The Budeanu distortion current of 3.409 A is the minimum value
that cannot be compensated by a passive circuit. This is caused by the existence of the
negative-sequence unbalanced current associated with the third harmonic of the voltage
and the three-phase RMS value of the scattered current. To compensate for the Budeanu
distortion component, a system with a frequency converter—an active power filter—would
have to be considered.

To better demonstrate the changes caused by connecting compensators to the original
load, the parameters of which were selected based on the five methods, Table 35 presents
the differences in the absolute percentage values between the three-phase RMS values of
the specific components from the original circuit and their analogues after connecting a
compensator in each of the five methods under discussion.



Energies 2024, 17, 2020 33 of 36

Table 35. List of percentages of absolute values of currents’ components for the original circuit and
the systems after the connection of the compensator.

Component Original System Method

I II III IV V

∥ia∥ - - - - - -

∥is∥ - - - - - -

∥irB∥ - −979% −1417% 0% z z

∥icrB∥ - 91% 89% z 0% z∥∥∥ip
u

∥∥∥ - 68% 0% z z z

∥in
u∥ - −100% 0% −1341% −1341% −1341%

∥iz
u∥ - 78% 0% z z z

∥idB∥ - −15% 5% −817% −768% −817%

∥i∥ - −11% −4% −21% −32% −32%

Table 35 in green shows the currents that have been reduced from the values obtained
in the original circuit. The red color, on the contrary, highlights the currents that have
increased in value as a result of the connection of the compensator. A value of 0% means that
the three-phase RMS value of the current’s component has not changed as a consequence
of the compensation. The values described by the letter ‘z’ denote the full reduction in a
given component from the load current. The letter ‘z’ appears four times in Method V and
means that the four components of the current have been reduced to 0. There are three ‘z’
letters in Methods III and IV, with the difference that Method IV caused a 32% reduction in
the load current versus only a 21% reduction in Method III. Methods I and II proved to be
the most inefficient methods for compensation as they do not include the higher harmonics
responsible for the reactive component and do not compensate for unbalanced current.
Method II reduced the load current by only 4% and increased the Budeanu distortion
current by 5%.

A similar analysis can be conducted for the three-phase values of the specific powers
determined by the Budeanu theory. Table 36 lists the three-phase values of apparent power,
active power, reactive power, and distortion power for the load in Figure 2 and the systems
after reduction.

Table 36. List of three-phase powers’ components values calculated based on the Budeanu theory for
the original circuit and the systems after the connection of the compensator.

Power Original System Method

I II III IV V

S [VA] 22,306.1 20,117.5 21,477.6 18,478.3 16,945.9 16,939.5

P [W] 16,884 16,884 16,884 16,884 16,884 16,884

QB [var] 7382.4 −683.9 −486.7 7382.4 0 0

DB [VA] 12,569.5 10,916.9 13,265.8 1370 1447.9 1370

The compiled power values in Table 36 show that the minimum value regarding the
Budeanu distortion power can be reduced is 1370 VA. This value is caused by the existence
of the scattered power and the unbalanced power of the negative sequence, whereby the
scattered power is related to all the harmonics existing in the supply voltage, while the
unbalanced power of the negative sequence is related only to the third-order harmonic.
Based on the fact that the Budeanu reactive power is calculated from the sum of the reactive
powers of the specific harmonics, overcompensation of the circuit can be observed in
Method I and Method II, which is correlated with the capacitive nature of the systems
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after compensation. Method III caused no modification in the Budeanu reactive power QB
because the reduction was in the Budeanu complemented reactive power and therefore
the value following from the difference between the susceptance for a given harmonic and
the equivalent susceptance. Methods IV and V reduce the Budeanu reactive power QB to
0. However, the Budeanu distortion power DB in Method IV is 77.9 VA higher than the
Budeanu distortion power DB achieved in Method V. The apparent power S was minimized
in Method V and is different from the active power P by 55.5 VA, providing a power factor
of 0.997.

As in the analysis of the three-phase RMS values of the currents’ components, in
order to better demonstrate the changes caused by connecting compensators to the original
load, whose parameters were determined based on the five methods, Table 37 presents
the differences in absolute percentage values between the three-phase power values from
the original circuit and their analogues after connecting a compensator for any of the five
methods discussed.

Table 37. List of percentages of the absolute values of the powers’ components calculated based on
the Budeanu theory for the original circuit and the systems after the connection of the compensator.

Power Original System
Method

I II III IV V

S [VA] - −11% −4% −21% −32% −32%

P [W] - - - - - -

QB [var] - 1179% 1617% 0% z z

DB [VA] - −15% 5% −817% −768% −817%

The three-phase values of the specific powers correlate in a similar way to the three-
phase values of the currents’ components, with the difference that some powers are com-
posed of several components. The entire reduction potential is best represented by the
reduction in the apparent power S, the absolute percentage value compared with the re-
duction in the load current. In the two methods (IV and V), the letter ‘z’ appears, which,
like the currents, represents the overall reduction in the Budeanu reactive power QB in
the circuit.

To finalize the discussion, it should be mentioned that an increase in the power factor
to a value near unity is possible when

Condition 1. The scattered current ∥is∥ has a three-phase RMS value multiple smaller
than the active current ∥ia∥. This condition is practically always satisfied.

Condition 2. The negative-sequence unbalanced current ∥in
u∥ or positive sequence∥∥∥ip

u

∥∥∥ for harmonics of n = 3k also has multiple smaller three-phase RMS values versus the
active current ∥ia∥. This condition is not necessarily satisfied (especially with a significant
distortion of the third-order harmonic).

Condition 2 may be very easily simulated by choosing the parameters of the three-
phase four-wire load in such a way that the value of resistance relative to reactance is at
least three times lower in each line.

15. Conclusions

As demonstrated in the publication, it is possible to compensate for the Budeanu
reactive current and the Budeanu complemented reactive current to a value equal to 0 using
a mathematical description in the developed Budeanu theory for three-phase four-wire
systems supplied with symmetrical distorted waveforms.

As presented in the paper, in addition to compensating for the Budeanu reactive
current, the load unbalance must also be considered because it causes a reduction in the
value of the power factor. In balancing the load in three-phase four-wire systems with third-
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order harmonics, it is not possible to provide full reactance compensation and eliminate all
the current components associated with the unbalance.

The mathematical description, where the ideal Budeanu reactive current and the
unbalanced current compensator parameters for the specific harmonics are obtained, makes
it possible to determine the parameters of the compensator, minimizing the reactive current
and the unbalanced current.
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