
Citation: Hoffman, S.; Jasiński, R.;
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Abstract: Various types of energetic fuel combustion processes emit dangerous pollutants into the air,
including aerosol particles, marked as PM10. Routine air quality monitoring includes determining
the PM10 concentration as one of the basic measurements. At some air monitoring stations, the
PM10 measurement is supplemented by the simultaneous determination of the concentration of
PM2.5 as a finer fraction of suspended particles. Since the PM2.5 fraction has a significant share
in the PM10 fraction, the concentrations of both types of particles should be strongly correlated,
and the concentrations of one of these fractions can be used to model the concentrations of the
other fraction. The aim of the study was to assess the error of predicting PM2.5 concentration using
PM10 concentration as the main predictor. The analyzed daily concentrations were measured at
11 different monitoring stations in Poland and covered the period 2010–2021. MLP (multilayer
perceptron) artificial neural networks were used to approximate the daily PM2.5 concentrations. PM10

concentrations and time variables were tested as predictors in neural networks. Several different
prediction errors were taken as measures of modeling quality. Depending on the monitoring station,
in models with one PM10 predictor, the RMSE error values were in the range of 2.31–6.86 µg/m3.
After taking into account the second predictor D (date), the corresponding RMSE errors were lower
and were in the range of 2.06–5.54 µg/m3. Our research aimed to find models that were as simple
and universal as possible. In our models, the main predictor is the PM10 concentration; therefore, the
only condition to be met is monitoring the measurement of PM10 concentrations. We showed that
models trained at other air monitoring stations, so-called foreign models, can be successfully used to
approximate PM2.5 concentrations at another station.

Keywords: air protection; air monitoring; environmental management; air quality modeling; particu-
lar matter; PM2.5 prediction; regression models; artificial neural networks; multilayer perceptrons

1. Introduction

As knowledge about air pollution deepens, new information about the threats resulting
from the presence of these pollutants reaches public awareness. Threats concern various
aspects of social life. The most obvious and longest historically studied threat is the adverse
impact of pollution on human life and health. Research confirms that air pollution also
affects animals, plants and other living organisms [1–3]. It can cause large losses in animal
husbandry and crop yields, therefore causing losses in agriculture [4–6]. Pollution also has
a direct or indirect adverse impact on other sectors of the economy [7–11].

Basic air pollutants are emitted by natural processes. Anthropogenic emissions, mainly
related to energy production, introduce additional amounts of pollutants into the air and
cause pollutant concentrations to reach unnaturally high levels [12]. In the case of large
anthropogenic emissions and in unfavorable weather, concentrations of toxic pollutants
may be so high that they threaten not only health but also the lives of people, animals and
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other organisms. The first historically documented strong smog episode was recorded on
5–9 December 1952 in London [13]. According to medical statistics, about 4000 people
died and about 150,000 were hospitalized. According to the reports, people suffered from
respiratory failure and hypoxia, i.e., oxygen deficiency. These were the first documented
medical diagnoses of the reasons for death and hospitalization. Until today, it has been
recognized that air pollution can cause bronchial and lung diseases [14–16], cancer [17,18]
and also cardiovascular diseases [19–22]. Smog also affects the brain and can deepen mental
illnesses and neurological ailments [23–26].

After this tragic event, the first legal regulations forcing the improvement of air quality
(including the Clean Air Act) were passed in Great Britain [27]. There was also a need
to monitor the air quality. Intensive research in the field of environmental chemistry
was initiated to identify pollutants, mechanisms of their formation and threats to the
broadly understood natural environment, including humans, animals and plants. The
development of pollution detection techniques enabled the construction of automatic air
monitoring stations [28,29]. Currently, networks of air monitoring stations operate in almost
all developed and emerging countries of the world. This enables continuous monitoring of
air quality and warning against smog episodes.

Typical air monitoring stations are equipped with analyzers enabling continuous
measurement of the concentrations of basic gaseous air pollutants: O3, SO2, NOx and
CO. Sometimes this measurement package is expanded to include other pollutants, e.g.,
from the group of volatile organic compounds (VOCs). Studies of atmospheric toxicity
revealed that particularly dangerous pollutants can be sorbed on the surfaces of aerosols,
which are also ubiquitous in atmospheric air. These pollutants include polycyclic aromatic
hydrocarbons (PAHs), heavy metals and many others. Therefore, an important challenge
for atmospheric monitoring is to measure the concentration of suspended particles and
the pollutants they contain. Initially, attention was focused on the dust fraction with
particle sizes up to 10 µm, designated as PM10. The measurement of this aerosol fraction is
performed at most automatic air monitoring stations, even those that are poorly equipped.

New research is providing more and more information about the relationship between
dust particle size and human exposure risk. It turned out that the worst health effects are
observed when inhaling particles smaller than 2.5 µm (the dust fraction called PM2.5). Due
to their small size, PM2.5 particles can penetrate much deeper into the respiratory system
than PM10 particles. Pollutants collected in particles can reach the bronchi and even the
alveoli of the lungs, enter the bloodstream and then spread throughout the body [30–32].
Currently, it is the concentration of the PM2.5 fraction that is used to calculate mortality
rates, such as the number of premature deaths. It is estimated that in Poland, this number is
approximately 40,000 people, which constitutes approximately 0.1% of the population [33].
Particulate matter is considered the main cause of premature death in many other countries
around the world [34,35].

The development of measurement techniques enables automatic measurement of
PM2.5 concentration. However, this measurement is complicated and expensive. It is
performed only at selected air monitoring stations. It should be mentioned that the refer-
ence measurement method in the case of PM10 or PM2.5 is the gravimetric method, which
involves measuring the mass of dust collected on a special filter [36]. This method has its
limitations and is usually used over longer averaging periods than gas concentration mea-
surements. Throughout the European Union, including Poland, a 24 h (daily) measurement
period has been adopted as the standard for this type of measurement [37]. To sum up,
the results of PM2.5 concentration measurements are key to assessing health effects, but
appropriate monitoring is performed in only a few measurement stations. There is a need
to increase the density of the PM2.5 measurement network. In the long term, this need will
probably be met by measurements of PM2.5 concentrations at each air monitoring station.
Until this happens, PM2.5 concentrations can be estimated using modeling techniques.

Modeling air pollution concentrations has a long history. These techniques can be used
to fill in missing data in air monitoring systems. They are also used to predict concentrations
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of selected air pollutants. In the past, classical regression or autoregressive methods were
used [38–40]. Since the 1990s, artificial intelligence techniques have been increasingly used
to model air pollution concentrations [41–50]. The most popular were models that provide
prediction without any data from outside of the monitoring system. They are sometimes
called autonomous models [48,49]. Very complex neural models, including deep learning
methods, are increasingly used to predict air pollution concentrations [51–53]. However,
these networks require a lot of data, including external data, and therefore their practical
applicability is limited.

Neural networks, even networks with a relatively simple structure, turn out to be
useful in regression models if predictors are available that are highly correlated with the
variable being modeled. If the goal is to model PM2.5 concentrations at a selected air
monitoring station, PM10 concentrations measured at the same location are often also
available. In Polish conditions, both types of concentrations are always strongly correlated
because PM2.5 is a finer fraction within PM10, and its percentage usually significantly
exceeds 50% in the mass of PM10 aerosol [54]. Strong statistical dependencies between
PM10 and PM2.5 fractions were also found in reports from other countries [55,56]. PM10
concentration can therefore be considered a universal primary predictor in regression
models approximating PM2.5 concentration. This concept was tested in neural network
models trained to approximate hourly PM2.5 concentrations [54], and promising results
were obtained. It turned out that using simple regression MLP models could yield a
small PM2.5 prediction error. It is enough to use time variables and PM10 concentration as
explanatory variables. Introducing more predictors only slightly improves the accuracy of
MLP regression models. In the studies described below, similar modeling was performed
to predict 24 h PM2.5 concentrations. The analysis was performed on data from various
air monitoring stations in Poland. We took into consideration the stations where the
concentrations of both PM10 and PM2.5 were measured over many years. MLP regression
neural networks were used for modeling.

The purpose of the analysis was not to create the most accurate predictive models of
PM2.5 concentrations. The main goal was to test the concept of possibly simple predictive
models that would use data resources available at most air monitoring stations. It was
decided that the key predictor would be the concentration of PM10. Since the modeling
concerns 24 h (daily) concentrations, the supporting predictor was a time variable providing
information about the time of year. Therefore, the analysis was limited to testing only
the two variables mentioned above as predictors. An additional goal was to test the
universality of the obtained models. For this purpose, simulations were performed to check
whether a neural network trained at one of the stations could be used to predict daily PM2.5
concentrations at other air monitoring stations.

2. Materials and Methods
2.1. Air Monitoring Sites

We took to the examination data from 11 automatic air monitoring stations situated in
Poland in the following sites: Jaslo, Katowice, Koscierzyna, Krakow, Lodz, Lublin, Olsztyn,
Osieczow, Puszcza Borecka, Zielona Gora and Zielonka. Measurement data cover a period
from 2010 to 2021. Monitoring stations were selected to meet two conditions:

1. Their location was diverse enough to cover various regions of Poland;
2. Daily concentrations of both PM10 and PM2.5 fractions were simultaneously measured

at each station for at least several years.

The location of the station is shown in Figure 1, where the borders of the adminis-
trative division of Poland are marked. All the monitoring stations are operated by the
Chief Inspectorate of Environmental Protection in Poland. Table 1 contains background
information about the location of individual stations, including addresses, international
codes, geographical coordinates, station types and types of monitored area.
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Table 1. Background information about the considered air monitoring stations, from [57].

Air Monitoring
Station Address International

Code
Geographical

Coordinates, WGS84 Type of Station Area Type

Jaslo Sikorskiego Str. PL0518A Φ 49.744886, λ 21.454617 background urban
Katowice 6 Kossutha Str. PL0008A Φ 50.264611, λ 18.975028 background urban

Koscierzyna Targowa Str. PL0558A Φ 54.120694, λ 17.975861 background urban
Krakow Bujaka Str. PL0501A Φ 50.010575, λ 19.949189 background urban

Lodz 1 Legionow Str. PL0100A Φ 51.776417, λ 19.452936 background urban
Lublin 5 Sliwińskiego Str. PL0085A Φ 51.273078, λ 22.551675 background urban

Olsztyn 16 Puszkina Str. PL0175A Φ 53.789233, λ 20.486075 background urban
Osieczow (no street) PL0505A Φ 51.317630, λ 15.431719 background rural

Puszcza Borecka Diabla Gora PL0005R Φ 54.124819, λ 22.038056 background rural
Zielona Gora Krotka Str. PL0213A Φ 51.939783, λ 15.518861 background urban

Zielonka Bory Tucholskie PL0077A Φ 53.662136, λ 17.933986 background rural

2.2. Air Monitoring Data

The 24 h PM10 and PM2.5 concentration values recorded in 2010–2021 were used for
the study. The data were provided by the Chief Inspectorate of Environmental Protection
in Poland. The provided air monitoring data were validated and officially approved.

The concentration of PM10 and PM2.5 was measured using the gravimetric method [35].
The PM concentrations were calculated on the basis of differences in filter masses before and
after daily exposure, which involved passing a specific volume of dust-contaminated air
through the filters. The filters were replaced automatically every 24 h. PM concentrations
are given in µg/m3.

The following symbols were used to describe the data used:

PM10—daily averaged concentration of particles up to 10 µm in size.
PM2.5—daily averaged concentration of particles up to 2.5 µm in size.
D—date in the numerical form.

2.3. Temporal Variable’s Transformation

The numerical form of the date (D) was prepared in such a way that each date was
replaced with a value from the range 0 ÷ 1. For January 1 (the first day of the year), the
value was set to 1, and for July 2 (the middle day of the year), the value was set to 0. During
the first half of the year, the numerical value of the date decreases linearly from 1 to 0.
During the second half of the year, the numerical value of the date increases linearly from 0
to almost 1.
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The purpose of transforming the date into such a cyclic numerical form was to assign
the same values to similar days in different years. The transformation also made it possible
to maintain continuity when changing the year: 31 December and 1 January of the following
year have almost identical values.

2.4. Data Preparation

Not all the air monitoring stations carried out measurements for the entire 12 years.
Even if measurements were performed, their completeness was sometimes unsatisfactory.
Therefore, only the annual series of measurements whose completenesses exceeded 80%
were taken into account for the analysis. At lower completeness, the entire annual mea-
surement series was removed from the analyzed set. The aim of this procedure was to
ensure that the analyzed cases covered all seasons of a calendar year as evenly as possible.
Cases without PM measurements were also removed from the set of analyzed data. Only
those cases (days) for which both PM10 and PM2.5 concentration values were known were
left to train the network. As for the choice of the station, the principle was adopted that
measurements of PM10 and PM2.5 concentrations should be carried out for a minimum of
5 consecutive years. The processed data, prepared for the analysis in this way, have been
attached as a Supplemental File.

Table 2 shows the completeness of the data series for individual air monitoring sta-
tions, after removing cases with missing data and after removing annual time series with
completeness below 80%. Due to the fact that only complete cases were retained, the
completeness of data for both PM10 and PM2.5 pollutants was the same.

Table 2. Completeness of the annual series of 24 h PM10 and PM2.5 concentrations for the years
covered by the analysis, 2010–2021. Only values above 80% are shown.

Air Monitoring
Station

Total
Number of

Observations (Cases)

Completeness of the Annual Series

2010
%

2011
%

2012
%

2013
%

2014
%

2015
%

2016
%

2017
%

2018
%

2019
%

2020
%

2021
%

Jaslo 2043 - - - - 91.5 91.5 99.5 97.3 81.4 98.4 - -
Katowice 2731 - - - - 89.0 89.3 89.6 95.9 92.1 97.3 99.5 95.1

Koscierzyna 1709 - - - - 90.1 84.4 98.4 95.6 99.5 - - -
Krakow 2102 - - - - 91.0 96.7 97.3 94.2 97.0 99.5 - -

Lodz 2813 - - - - 91.0 99.5 99.5 99.7 95.1 99.7 96.7 89.0
Lublin 3229 - - - 96.7 90.4 100.0 100.0 100.0 97.0 100.0 100.0 100.0

Olsztyn 2438 - - - - - 95.9 95.6 94.0 89.0 97.3 97.3 98.4
Osieczow 3412 - 95.3 95.6 - 88.8 94.8 86.3 91.5 97.0 89.9 97.0 97.8
Puszcza
Borecka 3413 - - 92.9 91.8 87.1 94.8 91.3 95.1 97.5 96.2 93.4 94.2

Zielona Gora 3849 - 89.9 92.9 94.8 92.9 91.8 99.7 97.5 100.0 99.7 96.4 98.1
Zielonka 3767 96.4 100.0 89.1 99.2 89.0 - 89.1 87.1 98.4 96.4 92.9 93.7

Figure 2 presents a statistical description of the set of daily PM10 and PM2.5 concen-
trations, measured at considered air monitoring stations, calculated only for complete
cases. Among the selected stations, the highest average and maximum concentrations of
suspended dust occurred at measuring stations located in large urban agglomerations, i.e.,
in Katowice, Krakow and Lodz. The lowest values were at air monitoring stations mainly
located in rural areas, i.e., Puszcza Borecka, Zielonka, Osieczow and Olsztyn.
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Figure 2. Graphical presentation of basic statistical parameters of PM10 and PM2.5 concentrations from
the considered air monitoring stations in 2010–2021: (a) PM10 concentrations, (b) PM2.5 concentrations.
Values calculated after removing cases with missing data and for the years included in the analysis.

2.5. Regression Models

For modeling, the Statistica version 13.3 program was used, together with the SANN
(Statistica Artificial Neural Networks) extension subprogram, enabling the creation of
neural networks [58]. A separate data set was prepared for each station. The modeling was
performed separately for each of the 11 air monitoring stations. The multilayer perceptron
(MLP) was adopted in the generated models. It was assumed that all models have the same
architecture. All perceptrons have a single hidden layer of 10 neurons. Before training a
neural network, a data set was randomly divided into three subsets: a training subset (50%
of cases), a testing subset (25% of cases) and a validation subset (25% of cases). The number
of all cases in the sets from various air monitoring stations is given in Table 2. The BFGS
(Broyden–Fletcher–Goldfarb–Shanno) algorithm was used in the network training process.
This algorithm is intended for numerical optimization [59]. The mathematical basis of the
algorithm was developed by the above-mentioned mathematicians in 1970 [60–63].

For all networks, the learning process was stopped after 300 epochs. A logistic
activation function was assumed in the hidden neurons and a linear activation function in
the output neurons. The network was initialized randomly using the Gaussian method. The
initial weights followed a normal distribution with zero mean and unit variance. The sum
of squares (SOS) was used as the error function in the network training process. The SOS is
the sum of the squares of the differences between the predicted and observed concentration
values. For each air monitoring station, the prediction was repeated 5 times, each time with
different random assignment of cases to subsets and with different randomly chosen initial
weights. The most precise of the 5 generated models was selected for each station, and the
results of these most accurate models are presented in the Results section. The accuracy of
the models was assessed by calculating 5 different error measures, MAE, RMSE, MARE, R2
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and d. The mentioned error measures were described in the next subsection. The networks
generated for the same monitoring stations differed slightly in the modeling errors. They
had identical neuronal structures but differed in the weights and degrees of activation of
individual neurons in the hidden layer. Statistica Neural Networks automatically scales
input and output variables using a linear transformation to the interval [0, 1].

For each monitoring station, regression models were created whose output variable
was the daily concentration of PM2.5, while the input variables were introduced in one of
the three variants:

Variant I—D—(MLP 1-10-1, Figure 3a);
Variant II—PM10—(MLP 1-10-1, Figure 3b);
Variant III—D and PM10—(MLP 2-10-1, Figure 3c).
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Figure 3. MLP architecture diagrams with 10 neurons in one hidden layer and 3 variants of predictors:
(a) D; (b) PM10; (c) D, PM10.

Figure 3 shows the MLP architectures for these different variants.
In addition to the perceptron models, simpler models were also created to compare

accuracy. A linear regression model (LIN) and a naive mean model (MEAN) were generated.
In the latter, the average value of PM2.5 concentration was assumed for each station,
calculated separately for each station from historical measurements.

2.6. Assessment of the Prediction Accuracy

To assess the accuracy of the obtained MLP artificial neural network models, the follow-
ing error values were used: MAE (mean absolute error), RMSE (root mean squared error),
MARE (mean absolute relative error), R2 (coefficient of determination) and d (Willmott in-
dex of agreement). Index d is a special formula dedicated to air quality modeling [64]. These
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values were calculated by comparing real 24 h PM2.5 concentration values with predicted
values. The formulas for calculating the listed errors are given below in Equations (1)–(5).

MAE—Mean Absolute Error

MAE =
1
n

n

∑
i=1

|xi − yi| (1)

RMSE—Root Mean Squared Error

RMSE =

√
∑n

i=1(xi − yi)
2

n
(2)

MARE—Mean Absolute Relative Error

MARE =
1
n

n

∑
i=1

∣∣∣∣xi − yi
xi

∣∣∣∣ (3)

R2—Coefficient of Determination

R2 =
∑n

i=1(yi − x)2

∑n
i=1(xi − x)2 (4)

d—Willmott Index of Agreement

d = 1 − ∑n
i=1(yi − xi)

2

∑n
i=1(|yi − x|+ |xi − x|)2 (5)

where:
n—number of cases;
y—predicted concentrations;
x—real concentrations;
x—arithmetic average of real concentrations;
i—the case number.

2.7. Verification of Models

Approach 1
In order to check whether it is possible to predict PM2.5 concentrations in a later

measurement period using neural networks trained on historical data, a trial modeling of
daily PM2.5 concentrations was performed. Each trial prediction was made for a period
of one month, using a neural network model trained on data recorded in the past at the
same station. The test time series were selected at different time periods than those used to
train the network, so the input data packets were completely unknown to the network. By
comparing the course of actual and predicted concentrations for the selected periods, the
usefulness of the obtained MLP neural network models for predicting PM2.5 concentrations
in “new conditions” was tested. The MLP 2-10-1 models with numerical date D and PM10
concentration as predictors were verified. The modeling errors were calculated for each
chosen period.

Approach 2
This approach examined the “universality” of the obtained MLP models. For this

purpose, a neural network trained at one of the stations was used to predict daily PM2.5
concentrations at other air monitoring stations. The models in Variant III (MLP 2-10-1)
created for 3 different air monitoring stations (Kraków) were tested as reference ones. Then,
the prediction quality of these models “fed” with input data from other stations previously
unknown to these models was assessed. The modeling error was then calculated.
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3. Results
3.1. Annual Courses of PM10 and PM2.5 Concentrations

Based on many years of data recorded at the air monitoring stations, annual statistical
patterns of PM2.5 and PM10 concentrations were calculated for each station. The plots of
these patterns are presented in Figure 4. At all the stations, the lowest concentrations of
suspended dust occurred in the spring/summer periods. In typical winter months, the
particulate matter concentrations reached their highest values.
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Figure 4. Annual changes in PM10 and PM2.5 concentrations at the monitoring stations: (a) Jaslo,
(b) Katowice, (c) Koscierzyna, (d) Krakow, (e) Lodz, (f) Lublin, (g) Olsztyn, (h) Osieczow, (i) Puszcza
Borecka, (j) Zielona Gora, (k) Zielonka.
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3.2. Correlations of Variables

A correlation analysis of the input variables, PM2.5, PM10 concentrations and date
(D), was performed at each of the air monitoring stations. This analysis was performed to
compare potential predictors of PM2.5 concentrations. The values of the Pearson correlation
coefficients are presented in Table 3. The Pearson correlation coefficient ranges from −1 to
1; the closer to 1 or −1, the stronger the correlation between the variables. A positive sign
means a positive correlation and a negative sign means a negative correlation. A coefficient
value close to zero means a complete lack of correlation between the variables. At all the
stations, the strongest correlations in relation to the PM2.5 concentration occurred for the
PM10 concentration, much lower for the time variable D. These predictors were used to
generate models I, II and III (see Section 2.5).

Table 3. Pearson’s correlation coefficient for the input variables at individual air monitoring stations,
24 h average values, 2010–2021.

Air Monitoring Station Variable D PM10 PM2.5

Jaslo
D 1.0000

PM10 0.4201 1.0000
PM2.5 0.4768 0.9735 1.0000

Katowice
D 1.0000

PM10 0.3842 1.0000
PM2.5 0.4450 0.9639 1.0000

Koscierzyna
D 1.0000

PM10 0.4441 1.0000
PM2.5 0.5069 0.9487 1.0000

Krakow
D 1.0000

PM10 0.4689 1.0000
PM2.5 0.5048 0.9792 1.0000

Lodz
D 1.0000

PM10 0.4755 1.0000
PM2.5 0.5661 0.9339 1.0000

Lublin
D 1.0000

PM10 0.3319 1.0000
PM2.5 0.4553 0.9646 1.0000

Olsztyn
D 1.0000

PM10 0.3432 1.0000
PM2.5 0.4519 0.9493 1.0000

Osieczow
D 1.0000

PM10 0.3219 1.0000
PM2.5 0.3443 0.9852 1.0000

Puszcza Borecka
D 1.0000

PM10 0.3478 1.0000
PM2.5 0.4329 0.9611 1.0000

Zielona Gora
D 1.0000

PM10 0.3725 1.0000
PM2.5 0.4434 0.9487 1.0000

Zielonka
D 1.0000

PM10 0.2662 1.0000
PM2.5 0.3176 0.9387 1.0000

3.3. Results of Predicting PM2.5 Concentrations

Modeling errors were calculated by comparing the predicted concentrations to the
actual PM2.5 concentrations. Statistical prediction errors were calculated for each model
variant separately for each air monitoring station. To evaluate the modeling accuracy,
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the five error measures defined by Formulas (1)–(5) were calculated. A summary of the
prediction error values is presented in Table 4. The MAE and RMSE values are also
presented graphically in Figure 5.

Table 4. Values of modeling errors of PM2.5 concentrations in MEAN model, LINEAR model with
PM10 as a predictor and MLP models with D and PM10 as predictors.

Air Monitoring
Station

Regression
Model

Explanatory Variable
(Predictors)

MAE
µg/m3

RMSE
µg/m3 MARE R2 d

Jaslo

MEAN - 11.43 16.55 0.6893 0.0000 0.0000
LIN PM10 2.43 3.79 0.1400 0.9477 0.9864

MLP 1-10-1 D 9.85 15.74 0.5515 0.2373 0.6155
MLP 1-10-1 PM10 2.36 3.80 0.1321 0.9491 0.9867
MLP 2-10-1 D, PM10 2.04 3.47 0.1148 0.9576 0.9890

Katowice

MEAN - 12.90 23.28 0.4161 0.0000 0.3162
LIN PM10 3.87 5.73 0.1691 0.9292 0.9814

MLP 1-10-1 D 11.50 18.95 0.5165 0.2236 0.5760
MLP 1-10-1 PM10 3.84 5.81 0.1683 0.9274 0.9805
MLP 2-10-1 D, PM10 3.35 5.18 0.1509 0.9422 0.9848

Koscierzyna

MEAN - 13.18 18.04 0.9755 0.0000 0.0000
LIN PM10 3.74 5.70 0.2668 0.9000 0.9732

MLP 1-10-1 D 10.01 14.97 0.6693 0.3050 0.6807
MLP 1-10-1 PM10 3.67 5.67 0.2675 0.9014 0.9735
MLP 2-10-1 D, PM10 3.15 4.89 0.2339 0.9266 0.9805

Krakow

MEAN - 17.96 28.20 0.7839 0.0000 0.1307
LIN PM10 3.91 5.69 0.1576 0.9588 0.9894

MLP 1-10-1 D 14.56 23.83 0.6539 0.2780 0.6492
MLP 1-10-1 PM10 3.80 5.63 0.1497 0.9598 0.9897
MLP 2-10-1 D, PM10 3.38 5.26 0.1340 0.9648 0.9910

Lodz

MEAN - 13.11 21.32 0.4614 0.0000 0.3499
LIN PM10 4.86 6.94 0.2269 0.8722 0.9648

MLP 1-10-1 D 10.05 15.63 0.4580 0.3522 0.7073
MLP 1-10-1 PM10 4.74 6.86 0.2183 0.8754 0.9659
MLP 2-10-1 D, PM10 3.76 5.54 0.1821 0.9188 0.9783

Lublin

MEAN - 9.50 15.38 0.4408 0.0000 0.3713
LIN PM10 2.65 3.58 0.1692 0.9304 0.9817

MLP 1-10-1 D 7.91 11.84 0.5503 0.2369 0.6047
MLP 1-10-1 PM10 2.62 3.56 0.1640 0.9310 0.9820
MLP 2-10-1 D, PM10 1.79 2.59 0.1161 0.9635 0.9905

Olsztyn

MEAN - 7.77 12.02 0.5267 0.0000 0.3059
LIN PM10 2.51 3.58 0.1793 0.9012 0.9734

MLP 1-10-1 D 7.02 9.98 0.6197 0.2315 0.6118
MLP 1-10-1 PM10 2.42 3.52 0.1683 0.9049 0.9742
MLP 2-10-1 D, PM10 1.72 2.52 0.1301 0.9511 0.9872

Osieczow

MEAN - 8.64 15.89 0.4456 0.0000 0.3434
LIN PM10 1.70 2.43 0.1457 0.9705 0.9925

MLP 1-10-1 D 8.18 12.95 0.7748 0.1621 0.5094
MLP 1-10-1 PM10 1.58 2.31 0.1302 0.9733 0.9932
MLP 2-10-1 D, PM10 1.48 2.22 0.1239 0.9754 0.9937

Puszcza Borecka

MEAN - 6.35 9.96 0.4845 0.0000 0.3940
LIN PM10 1.62 2.36 0.1692 0.9237 0.9798

MLP 1-10-1 D 5.52 7.79 0.6995 0.2188 0.5910
MLP 1-10-1 PM10 1.61 2.34 0.1702 0.9255 0.9801
MLP 2-10-1 D, PM10 1.38 2.06 0.1458 0.9420 0.9849

Zielona Gora

MEAN - 9.33 15.50 0.4389 0.0000 0.3829
LIN PM10 2.84 4.21 0.2107 0.9001 0.9732

MLP 1-10-1 D 7.95 11.76 0.5897 0.2252 0.5708
MLP 1-10-1 PM10 2.78 4.17 0.2058 0.9023 0.9734
MLP 2-10-1 D, PM10 2.45 3.76 0.1812 0.9207 0.9787

Zielonka

MEAN - 7.87 12.75 0.5603 0.0000 0.3856
LIN PM10 2.51 3.77 0.2376 0.8811 0.9675

MLP 1-10-1 D 7.11 10.12 0.9410 0.1295 0.4835
MLP 1-10-1 PM10 2.50 3.77 0.2445 0.8815 0.9676
MLP 2-10-1 D, PM10 2.38 3.63 0.2385 0.8901 0.9701
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Figure 5. MAE and RMSE values for approximating PM2.5 concentrations in MEAN model, LINEAR
model with PM10 as predictor and MLP models with D and PM10 predictors: (a) Jaslo, (b) Katowice,
(c) Koscierzyna, (d) Krakow, (e) Lodz, (f) Lublin, (g) Olsztyn, (h) Osieczow, (i) Puszcza Borecka,
(j) Zielona Gora, (k) Zielonka.

For all the stations, the largest modeling errors were achieved for the simplest neural
models (Variant I), in which the only predictor was the time variable D (day). A very
significant increase in the quality of modeling was noted for models in Variant II, in which
the second predictor was the PM10 variable, strongly correlated with the explained variable
PM2.5. These results are not surprising because PM10 is potentially the most important
explanatory variable for PM2.5.

All naive MEAN models showed significantly lower accuracy than the MLP models.
In turn, the LIN models were only slightly less accurate than the corresponding MLP mod-
els. To compare the predicted and observed PM2.5 concentration values at different air
monitoring stations, the corresponding scatterplots are shown in Figure 6. The results are
presented for models with two predictors (Variant III: MLP 2-10-1). The perfect fit lines
(red lines: y = x) and regression lines (black lines) are also shown in the scatterplots, as well
as linear regression equations and determination coefficients.
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Figure 6. Scatterplots of predicted and observed PM2.5 concentrations for the MLP 2-10-1 models
with D and PM10 predictors: (a) Jaslo, (b) Katowice, (c) Koscierzyna, (d) Krakow, (e) Lodz, (f) Lublin,
(g) Olsztyn, (h) Osieczow, (i) Puszcza Borecka, (j) Zielona Gora, (k) Zielonka.
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3.4. Verification of the Models

Approach 1
The usefulness of the considered ANN models was verified by computing trial fore-

casts for a period of one month, using models trained on data recorded in the past at the
same station. Figure 7 shows predicted PM2.5 concentration courses for eight different loca-
tions and for different months in 2022. In each case, the network dedicated to a given station
was used, i.e., the network trained on data from the same station. The graphs show actual
courses and predicted PM2.5 concentration courses obtained using MLP 2-10-1 models with
numeric date D and PM10 concentration as predictors (the most accurate model). For each
selected period, the R2 value was calculated as a measure of the modeling accuracy.

Approach 2
In order to test the “universality” of the obtained MLP models, neural networks

trained on data from one station were used to predict daily PM2.5 concentrations at other
air monitoring stations. The models created for three air monitoring stations, Krakow,
Osieczow and Olsztyn, were tested in this way, and the corresponding networks for Variant
III (MLP 2-10-1) were used. For each monitoring station, the prediction capability of each
of these three “foreign” models was assessed. The modeling errors were calculated for all
the implementation cases, and the results are presented in Tables 5–7.

Table 5. Prediction errors of 24 h PM2.5 concentrations at individual stations. Applied model: MLP
2-10-1 trained on data from Krakow, 2010–2021.

Air Monitoring
Station

Regression
Model

Explanatory Variable
(Predictors)

MAE
µg/m3

RMSE
µg/m3 MARE R2 d

Jaslo MLP 2-10-1 D, PM10 3.01 4.53 0.1463 0.9533 0.9796
Katowice MLP 2-10-1 D, PM10 3.40 5.38 0.1481 0.9401 0.9845

Koscierzyna MLP 2-10-1 D, PM10 3.30 5.10 0.2514 0.9204 0.9785
Krakow MLP 2-10-1 D, PM10 3.38 5.26 0.1340 0.9648 0.9910

Lodz MLP 2-10-1 D, PM10 4.13 6.21 0.2072 0.9046 0.9730
Lublin MLP 2-10-1 D, PM10 2.11 2.88 0.1369 0.9597 0.9877

Olsztyn MLP 2-10-1 D, PM10 2.04 2.84 0.1676 0.9408 0.9829
Osieczow MLP 2-10-1 D, PM10 2.17 3.18 0.1786 0.9707 0.9852

Puszcza Borecka MLP 2-10-1 D, PM10 1.76 2.35 0.2461 0.9307 0.9784
Zielona Gora MLP 2-10-1 D, PM10 2.63 3.95 0.1913 0.9203 0.9746

Zielonka MLP 2-10-1 D, PM10 2.66 3.81 0.3325 0.8800 0.9663

Table 6. Prediction errors of 24 h PM2.5 concentrations at individual stations. Applied model: MLP
2-10-1 trained on data from Osieczow, 2010–2021.

Air Monitoring
Station

Regression
Model

Explanatory Variable
(Predictors)

MAE
µg/m3

RMSE
µg/m3 MARE R2 d

Jaslo MLP 2-10-1 D, PM10 2.19 3.81 0.1215 0.9503 0.9872
Katowice MLP 2-10-1 D, PM10 4.24 7.76 0.1823 0.8886 0.9675

Koscierzyna MLP 2-10-1 D, PM10 3.84 6.25 0.2864 0.9158 0.9720
Krakow MLP 2-10-1 D, PM10 4.84 9.34 0.1790 0.9006 0.9712

Lodz MLP 2-10-1 D, PM10 5.69 8.43 0.2825 0.8826 0.9551
Lublin MLP 2-10-1 D, PM10 2.27 3.36 0.1514 0.9532 0.9853

Olsztyn MLP 2-10-1 D, PM10 2.26 3.47 0.1720 0.9315 0.9779
Osieczow MLP 2-10-1 D, PM10 1.48 2.22 0.1239 0.9754 0.9937

Puszcza Borecka MLP 2-10-1 D, PM10 1.48 2.32 0.1611 0.9366 0.9823
Zielona Gora MLP 2-10-1 D, PM10 2.61 4.03 0.1999 0.9150 0.9768

Zielonka MLP 2-10-1 D, PM10 2.53 4.09 0.2490 0.8842 0.9667
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Figure 7. Example graphs of observed and modeled daily PM2.5 concentrations in selected months
of 2022 using models of neural networks in Variant III (MLP 2-10-1), trained at the same station on
the data from 2010 to 2021: (a) Lublin, March 2022; (b) Koscierzyna, December 2022; (c) Zielonka,
January 2022; (d) Osieczow, May 2022; (e) Katowice, March 2022; (f) Lodz, January 2022; (g) Zielona
Gora, January 2022; (h) Olsztyn, July 2022.
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Table 7. Prediction errors of 24 h PM2.5 concentrations at individual stations. Applied model: MLP
2-10-1 trained on data from Olsztyn, 2010–2021.

Air Monitoring
Station

Regression
Model

Explanatory Variable
(Predictors)

MAE
µg/m3

RMSE
µg/m3 MARE R2 d

Jaslo MLP 2-10-1 D, PM10 3.31 5.76 0.1572 0.9134 0.9661
Katowice MLP 2-10-1 D, PM10 4.61 11.34 0.1630 0.7371 0.9061

Koscierzyna MLP 2-10-1 D, PM10 3.48 5.97 0.2360 0.8925 0.9692
Krakow MLP 2-10-1 D, PM10 6.03 15.86 0.1598 0.7119 0.8815

Lodz MLP 2-10-1 D, PM10 4.35 8.22 0.1910 0.8226 0.9472
Lublin MLP 2-10-1 D, PM10 2.14 3.76 0.1247 0.9281 0.9788

Olsztyn MLP 2-10-1 D, PM10 1.72 2.52 0.1301 0.9511 0.9872
Osieczow MLP 2-10-1 D, PM10 2.06 3.63 0.1433 0.9500 0.9811

Puszcza Borecka MLP 2-10-1 D, PM10 1.48 2.17 0.1594 0.9360 0.9832
Zielona Gora MLP 2-10-1 D, PM10 2.54 4.07 0.1761 0.9097 0.9741

Zielonka MLP 2-10-1 D, PM10 2.46 3.87 0.2405 0.8788 0.9678

4. Summary and Discussion

The RMSE modeling errors compared to some PM2.5 and PM10 concentration statistics
are presented in Table 8.

Table 8. The RMSE modeling errors and some statistics on PM2.5 and PM10 concentrations for
considered air monitoring stations.

Air Monitoring
Station

PM10,
µg/m3

PM2.5,
µg/m3 PM2.5/PM10

Ratio,
%

r-Pearson
PM2.5/PM10

RMSE,
µg/m3

Mean SD Mean SD Variant I
(MLP 1-10-1)

Variant III
(MLP 2-10-1)

Jaslo 27.2 18.3 21.9 16.6 0.79 0.9735 15.74 3.47
Katowice 36.6 26.5 26.7 21.5 0.71 0.9639 18.95 5.18

Koscierzyna 31.4 21.1 22.8 18.0 0.70 0.9487 14.97 4.89
Krakow 41.7 33.2 30.6 28.0 0.70 0.9792 23.83 5.26

Lodz 38.8 22.5 26.5 19.4 0.66 0.9339 15.63 5.54
Lublin 26.0 15.8 19.2 13.6 0.72 0.9646 11.84 2.59

Olsztyn 22.0 13.6 15.7 11.4 0.70 0.9493 9.98 2.52
Osieczow 19.9 15.3 15.5 14.1 0.74 0.9852 12.95 2.22

Puszcza Borecka 16.0 10.3 11.7 8.6 0.71 0.9611 7.79 2.06
Zielona Gora 23.0 14.7 17.2 13.3 0.72 0.9487 11.76 3.76

Zielonka 18.4 13.3 13.3 10.9 0.71 0.9387 10.12 3.63

The modeling of PM2.5 concentrations using only the time variable D (Variant I) is bur-
dened with significant prediction errors. However, such models have certain advantages
over completely simple naive models such as mean models. In the naive mean model, all
modeling results are the same and equal to the mean. The RMSE error of such modeling is
equal to the standard deviation (SD) in the set of actual concentrations (the same formula).
For models of Variant I (MLP 1-10-1), the RMSE values at individual stations were in the
range of 7.79–23.8 µg/m3, while the standard deviations in the sets of actual PM2.5 concen-
trations were in the range of 8.6–28.0 µg/m3, depending on the station. SD always achieved
values definitely higher than RMSE. The prediction day is always known and available, so
a model in Variant I can be easily created. The time variable D brings information about the
time of year to the models, and this is sufficient to improve the modeling quality compared
to the mean model.

The implementation of PM10 concentration as an input significantly improved the
quality of modeling at all stations (Variants II and III). RMSE values for models in Variant II
were in the range of 2.31–6.86 µg/m3 and in Variant III in the range of 2.06–5.54 µg/m3. It
should be emphasized that in the conditions occurring in Poland, the PM10 concentrations
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are usually strongly correlated with the PM2.5 concentrations (correlation coefficients
ranged from 0.934 (Lodz) to 0.985 (Osieczow)). The values of other error measures also
confirm that the Variant III models are the most accurate. Therefore, models MLP 2-10-1
can be recommended for use in practice.

Practical modeling needs may result from various reasons. There may be a need to
supplement missing PM2.5 concentrations in data collected at air monitoring stations. The
completeness of the PM2.5 concentration time series is required to assess air quality and
is also the basis for assessing mortality rates, such as the number of premature deaths.
Completing missing data on the concentrations of pollutants such as PM2.5 may be helpful
in air quality management and environmental policy at local and regional levels.

Verification of the models in approach 1 showed the usefulness of the models in situa-
tions where historical data are available at the monitoring station. The results prove that
models trained on historical data can be used to predict concentrations in periods other than
those covered by measurements. In the episodes shown, which were randomly selected,
the determination coefficients usually exceed 0.9 (Figure 7), which can be considered a
good prediction quality. The prediction accuracy is only slightly inferior to the prediction
accuracy determined for the tested measurement period.

Verification of the models in approach 2 was performed in order to test the “univer-
sality” of the obtained MLP models. Neural networks trained on data from one station
were used to predict daily PM2.5 concentrations at other air monitoring stations. Three
different models were tested. In each case, the relatively good quality of modeling at
“foreign” monitoring stations was confirmed. The determination coefficients range from
0.880 to 0.971 for the Krakow model (Table 5), from 0.883 to 0.975 for the Osieczow model
(Table 6) and from 0.712 to 0.951 for the Olsztyn model (Table 7). Each of the tested models
retained the ability to make reasonable predictions, although the accuracies of some models
were clearly worse than others. However, it was found that the models have a certain
universality. This means that “foreign” models can be used for modeling, but the lower
accuracy of such models should be taken into account.

The presented research addresses the possibility of modeling the 24 h PM2.5 concen-
trations, the so-called daily concentrations. Similar studies were previously carried out to
check the possibility of modeling PM2.5 concentrations averaged over 1 h measurement
periods, i.e., for the so-called hourly concentrations [54]. In the previously studied 1 h
models, an additional time variable—hour—had to be taken into account. Hourly con-
centrations are characterized by much greater variability than daily concentrations, which
is why they are more difficult to model. However, the addition of the H (hour) variable
enabled reasonably accurate modeling of hourly PM2.5 concentrations. It was stated that
neural regression models trained on the data from past years can be successfully used
to model the current PM2.5 concentrations. The results presented in this study confirm
this conclusion.

The main trend of research is the search for new, more and more accurate methods of
modeling air pollution concentrations. Our research went in the opposite direction towards
finding models that were as simple and universal as possible and could be used at most
air monitoring stations. The only condition is to monitor PM10 concentrations. In our
models, PM10 concentration is the primary predictor. We have shown that models trained
at other air monitoring stations, the so-called foreign models, can be successfully used to
approximate PM2.5 concentrations at a selected station. This is a novelty in modeling PM2.5
concentrations. This modeling method provides new possibilities in air quality assessment.
Approximate concentrations of the PM2.5 fraction may be used to calculate mortality rates
and other public health effects.

We are conscious of the limitations of the proposed methodology. The resulting models
are accurate. The precision of these models can be improved, for example, by including
additional predictors, such as concentrations of other pollutants, meteorological parameters
and others. However, our goal was not to create the most accurate model possible. We
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were looking for models that were as simple as possible and highly accessible. We also
wanted to test the possibility of building universal models.

Future research may aim to look for models that fit specific data.. Such research may
lead to the use of more complex modeling tools, which have been described in many
publications [51–53,65]. Research can also be conducted on segment modeling. Since
differences in modeling accuracy were found in different concentration subranges [66,67],
the improvement of modeling quality was tested by replacing a single model with a group
of models dedicated to specific subranges of pollutant concentrations [68]. Promising
results were obtained for segmented modeling.

The accuracy of the models can be increased by including other predictors that may
influence PM concentration levels. These may be meteorological parameters affecting the
emission of pollutants or the spread of pollutants in the air. Future research may also aim
to find a more universal model that combines historical knowledge from measurements at
various air monitoring stations.
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