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Abstract: Titanium alloys have become an indispensable material for all walks of life because of
their excellent strength and corrosion resistance. However, grinding titanium alloy is exceedingly
challenging due to its pronounced material characteristics. Therefore, it is crucial to create a theoretical
roughness prediction model, serving to modify the machining parameters in real time. To forecast
the surface roughness of titanium alloy grinding, an improved radial basis function neural network
model based on particle swarm optimization combined with the grey wolf optimization method
(GWO-PSO-RBF) was developed in this study. The results demonstrate that the improved neural
network developed in this research outperforms the classical models in terms of all prediction
parameters, with a model-fitting R2 value of 0.919.

Keywords: titanium alloy; abrasive belt grinding; roughness prediction; neural network

1. Introduction

Titanium alloy is a very effective metal that has been utilized extensively in a variety of
industries, including aerospace, vehicle production, medical equipment, and others [1–3].
However, due to their unique strength, hardness, and chemical stability, titanium alloys
have consistently been difficult to machine. Among the various processing techniques,
titanium alloy belt grinding has drawn a lot of attention as a popular and efficient processing
technique [4]. Abrasive belt grinding realizes the flexible processing of titanium alloy
workpieces, which achieves better surface quality and accuracy to meet the requirements
of high-precision machining [5].

However, with the rapid expansion of manufacturing, processing, and other related
industries, the quality standards for products are getting more and more strict, and the
processing industry is increasingly shifting in favor of high efficiency, fine quality, and low
cost [6–8]. To increase their competitiveness in the global market, manufacturers compete to
produce “zero-defect” products, which necessitate parts with exceptional surface quality [9].
The modern processing industry will confront significant hurdles as a result of the difficulty
in controlling surface roughness under various processing circumstances and the lack of
clarity regarding the processing variables that influence surface roughness.

In recent years, with the advancement of intelligence, numerous sophisticated algo-
rithms have been employed to forecast the surface roughness of workpieces and enhance
their predictive power. The causes of high and low surface roughness, as well as roughness
prediction and modeling, have currently been developed as a near-complete theoretical
system [10–12]. Tian et al. [13] developed a prediction model for the association between
different process factors and workpiece surface roughness using a BP neural network based
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on the experimental results. Li et al. [14] constructed a state parameter prediction model
based on the BP neural network by performing grinding tests on samples of nickel-based
superalloys, and the prediction accuracy of the model is 93.58%. Qi et al. [15] took the
maximum cutting depth of the belt, the speed of the belt, and the feed rate of the workpiece
as input parameters to establish the prediction model of polishing surface roughness of the
belt based on the BP neural network. The results show that the predicted value is in good
accordance with the experimental value. Different from the BP neural network, the RBF
neural network [16–18] utilizes the Gaussian activation function, which can address some
of the issues with the BP neural network, such as the lengthy training period, ease of local
optimum, and so on. It can generalize well, make predictions quickly, and adapt better to
various types of data.

However, researchers become dissatisfied with the direct use of classic algorithms
when the study goes deeper and they discover flaws in the traditional algorithms. As a
result, they start to think of ways to improve traditional algorithms. The most popular
strategy is to combine optimization algorithms with conventional prediction models, and
the most utilized particle swarm optimization (PSO) technique is the optimization algo-
rithm. Zhang et al. [19] suggested a data-driven roughness prediction approach for the
GH4169 superalloy and discovered that the PSO-BP-based roughness prediction algorithm
had a positive impact on the prediction of the superalloy. Yang et al. [20] built the PSO-BP
surface roughness prediction model by using the particle swarm optimization algorithm
to optimize the initial weights and thresholds of the BP neural network. Wang et al. [21]
designed a temperature prediction model using an RBF neural network and, then, used
particle swarm optimization and Levenberg-Marquardt computation to create the PSO-
LM-RBF prediction method with a reduced deviation of prediction results and a more
stable model.

Therefore, to accurately predict the belt grinding surface roughness of titanium alloy,
the PSO algorithm was utilized in this study to optimize the RBF network parameters,
obtaining the optimal solution and improving the operation efficiency. In addition to this,
the iterative formula was updated with the application of the GWO algorithm, which is
employed to prevent the algorithm from losing its capacity to converge later on and enter
the local optimum problem. Then, empirical programs and formulas are used to establish
the structural framework of the neural network and to clarify the key parameter values
that must be employed in the algorithm. Finally, the accuracy of the algorithm is verified
by simulation.

The remainder of the paper is structured as follows: the second part describes the
prediction method adopted in this study. The determination of experimental parameters
and the experimental results are discussed and analyzed in the third part. Finally, we
summarize the paper.

2. Methods
2.1. Data Acquisition

The experimental equipment was based on a precision CNC belt grinder (2MGY5580,
SAMHIDA, Chongqing, China), as shown in Figure 1. The TC4 titanium alloy, with
dimensions of 400 mm × 200 mm × 5 mm, and the #80 alumina belt were adopted for the
experimental study. A single grinding length of 35 mm was used for the processing, which
was conducted under constant pressure.

Researchers in this field have found that workpiece surface roughness in belt grinding
is significantly influenced by variables including abrasive belt particle size, belt linear speed,
feed speed, and grinding depth [22–24]. In particular, the belt particle size is significantly
influenced by the test material and essentially stays the same throughout the test. Therefore,
as stated in Table 1, three test factors are identified, including belt linear speed (vs), feed
speed (vp), and grinding depth (ap), and four horizontal orthogonal tests are conducted.
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Figure 1. CNC belt grinding machine.

Table 1. Abrasive belt grinding factor level.

Level vs (m/s) vp (mm/Min) ap (mm)

1 7.8 200 3
2 11.5 300 6
3 15.6 400 9
4 19.5 500 12

The test scheme, as presented in Table 1, is designed, and a total of 64 grinding
experiments are conducted in the pre-experiment. The selection of experimental parameters
is mainly based on the performance of the machine tool and the maximum/minimum
parameters based on engineering experience. In addition to this, the testing scheme takes
into account the characteristics of the orthogonal test table and neural network (the more
training samples, the higher the prediction accuracy). Therefore, we divided the parameters
of vs. between 7.8–19.5 m/s, vp between 200–500 mm/min, and ap between 3–12 mm into
four segments at equal intervals for orthogonal experiments. After grinding, a portable
roughness measurement device was used to determine the surface roughness of the test
titanium alloy. During the process, roughness detection is conducted for five different
points, and the final surface roughness value is calculated by taking the arithmetic average
of the five measurements. As a result, the dataset of grinding parameters and corresponding
roughness was built. Table 2 displays some data from the dataset.

2.2. Data Pre-Processing

Normalization [25] of these collected data is required to eliminate units, balance orders
of magnitude, and avoid sample features with low values from being unduly controlled.
Test data in different units can affect the results. The normalization formula is as follows:

y =
xi − xmin

xmax − xmin
(1)

where xi is the sample data collected, and xmax and xmin are the maximum and minimum
values of the sample data collected.

2.3. Prediction Model Based on GWO-PSO-RBF
2.3.1. RBF Neural Network

The RBF neural network uses a Gaussian excitation function, which can address some
of the issues with classic BP neural networks, including their lengthy network training
procedures and propensity to easily enter local optimums [17]. It has excellent generaliza-
tion capabilities, and, for a given amount of input data, only a few neuron parameters and



Materials 2023, 16, 7224 4 of 14

hidden layer weights are used in the operation, which significantly increases the prediction
speed of RBF neural networks and renders them more flexible to diverse types of data.

Table 2. Experimental results under different processing parameter conditions (partial result).

vs (m/s) vp (mm/Min) ap (mm) Ra (µm)

7.8 200 3 0.916
7.8 200 6 0.977
7.8 200 9 1.543
7.8 200 12 1.379

11.5 300 3 1.14
11.5 300 6 1.259
11.5 300 9 1.112
11.5 300 12 0.945
15.6 400 3 0.989
15.6 400 6 0.99
15.6 400 9 0.948
15.6 400 12 0.833
19.5 500 3 0.724
19.5 500 6 0.827
19.5 500 9 0.936
19.5 500 12 0.956

There are three structural layers in the network used in this study. The first layer is
used to input the machining parameters. In the second layer, the Gaussian function was
used as the activation function to process the input parameters non-linearly. The third
layer is the output layer to output the final roughness prediction results. This is shown in
Figure 2.

Materials 2023, 16, x FOR PEER REVIEW 4 of 15 
 

 

15.6 400 3 0.989 
15.6 400 6 0.99 
15.6 400 9 0.948 
15.6 400 12 0.833 
19.5 500 3 0.724 
19.5 500 6 0.827 
19.5 500 9 0.936 
19.5 500 12 0.956 

2.2. Data Pre-Processing 
Normalization [25] of these collected data is required to eliminate units, balance or-

ders of magnitude, and avoid sample features with low values from being unduly con-
trolled. Test data in different units can affect the results. The normalization formula is as 
follows: 

min

max min

ix xy
x x

−=
−

 (1) 

where xi is the sample data collected, and xmax and xmin are the maximum and minimum 
values of the sample data collected. 

2.3. Prediction Model Based on GWO-PSO-RBF 
2.3.1. RBF Neural Network 

The RBF neural network uses a Gaussian excitation function, which can address some 
of the issues with classic BP neural networks, including their lengthy network training 
procedures and propensity to easily enter local optimums [17]. It has excellent generali-
zation capabilities, and, for a given amount of input data, only a few neuron parameters 
and hidden layer weights are used in the operation, which significantly increases the pre-
diction speed of RBF neural networks and renders them more flexible to diverse types of 
data. 

There are three structural layers in the network used in this study. The first layer is 
used to input the machining parameters. In the second layer, the Gaussian function was 
used as the activation function to process the input parameters non-linearly. The third 
layer is the output layer to output the final roughness prediction results. This is shown in 
Figure 2. 

 
Figure 2. The structure of the RBF neural network [17]. 

The input vector is x(t) = (x1, x2, …, xN)T and there are three different types of pro-
cessing parameters in this work, which is equal to the number of input vectors. The terms 
x1, x2, and x3 represent vs, vp, and ap, respectively. After the sample data pass through the 
intermediate layer, the output is a nonlinear activation function hj(t): 

Figure 2. The structure of the RBF neural network [17].

The input vector is x(t) = (x1, x2,. . ., xN)T and there are three different types of process-
ing parameters in this work, which is equal to the number of input vectors. The terms x1,
x2, and x3 represent vs, vp, and ap, respectively. After the sample data pass through the
intermediate layer, the output is a nonlinear activation function hj(t):

hj(t) = exp(−
∣∣∣∣x(t)− cj(t)

∣∣∣∣2
2σ2

j
), j = 1, 2 · · ·m (2)

where cj is the center of the jth node, σj is the width of the jth node, ||x(t) − cj(t)|| is the
Euclidean distance between the sample and the node center, and m is the number of nodes
in the middle layer. By weighting the output data of the intermediate layer, the roughness
prediction result can be obtained, as shown in Equation (3):

yi(t) =
m

∑
j=i

ωjihj(t), i = 1, 2 · · · , n (3)
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where w is the weight and n is the number of network outputs.
The parameters of the RBF neural network, such as cj, σj, and w, need to be determined

by iteration. To better optimize the above parameters, this study suggested a GWO-PSO
hybrid optimization method to better optimize the parameters.

2.3.2. Particle Swarm Optimization Algorithm

Three parameters in the RBF neural network need to be set artificially: weight, node
center, and radial basis width. The traditional RBF neural network often uses gradient
descent iterative optimization, but this method not only has a poor training effect, taking a
long time, but, also, it easily falls into local optimum so that the global effect cannot reach
the best position. The parameter selection of the RBF neural network is, essentially, an
optimization process, so the PSO optimization algorithm is used to optimize the parameters
that need to be set manually in the RBF neural network and select the optimal values.

The particle swarm optimization algorithm [26] is an optimization method, which
optimizes parameters by limiting the process of birds foraging in nature, and, finally, real-
izes the “survival of the fittest”. The particle will continuously evolve during each update
process, and the parameters it carries will adjust in line with this evolution. The particle
will evolve into a new particle if the prediction error corresponding to the parameters of
the evolved particle is lower than that of the non-evolved particle. On the other hand, the
undeveloped particles are kept.

In this study, the position of the particle corresponds to the value of the parameters
that the neural network needs to train. Particle fitness corresponds to the error size of the
roughness prediction model. In the iterative process, each particle modifies its speed and
direction to move closer to the parameter value that reduces the prediction error through
guidance. The first is called individual extremum guidance and it refers to the parameter
value that each particle in an iterative process determines to reduce its own mistake. The
global extremum guidance is the parameter value that was attained by every particle
during the iteration procedure with the minimum overall error.

These two extreme values are used by the particle swarm to determine how to update
each particle’s parameter, and the update formula is as follows:

vk+1
ij = ωvk

ij + c1r1(pbestk
ij − xk

ij) + c2r2(gbestk
ij − xk

ij) (4)

xk+1
ij = xk

ij + 0.5× vk
ij (5)

where xk
i = (xk

i1, xk
i2, · · · , xk

ij), i = 1, 2, · · · , m is the parameter that the particle i contains,

vk
i = (vk

i1, vk
i2, · · · , vk

ij) is the velocity of the particle i, w is the weight of the middle layer,
k is the current iteration number, c1 and c2 are learning factors to balance the relative
importance of two extreme values, and r1 and r2 are randomly assigned values between 0
and 1.

ω = ωmax − (ωmax −ωmin)×
k

kmax
(6)

where k represents the number of iterations so far and kmax represents the maximum
number of iterations. The terms wmax and wmin represent the maximum and minimum
weights, respectively, which are generally set to 0.9 and 0.4, respectively.

2.3.3. Grey Wolf Encirclement Optimization Strategy

The particle swarm is easy to aggregate in the final iteration, which reduces its searcha-
bility and causes the roughness prediction result to fall into the local optimum. Additionally,
depending solely on the global optimum to direct parameter iteration will cause the subse-
quent iterations to move more slowly and reduce the capacity for convergence. The grey
wolf method [27] will be incorporated into this study to enhance the parameter iteration
formula and address the issues.
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The grey wolf algorithm will decide which three people in the group have the smallest
prediction error during the iterative update. The problem of diminishing convergence
performance in the later stages of the algorithm is improved since other particles will
surround the three elite individuals rather than the single optimal individual. The bounding
search strategy, which is the most significant search strategy in the grey wolf algorithm,
has the following mathematical representation:

X(k + 1) = Xp(k)− A× D (7)

D =
∣∣C× Xp(k)− X(k)

∣∣ (8)

where t is the number of iterations, Xp(t) is the position vector of the prey, and X(t) is the
position vector of the grey wolf. The schematic diagram of its surroundings is shown in
Figure 3.
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As shown in Figure 3, assuming that the grey wolf is located in (X, Y) and the prey
is located in (X′, Y′), the grey wolf will move to (X′ − X, Y′) by Equations (7) and (8)

when
→
A = (1, 0) and

→
C = (1, 1). Different values of the coefficients

→
A and

→
C will produce

different bounding effects, as shown in Figure 3, where
→
A and

→
C are coefficient vectors,

which can be expressed by Equations (9) and (10), as follows:

→
C = 2r1 (9)

→
A = 2ar2 − a (10)

where r1 and r2 are random numbers of [0, 1], a is the control parameter linearly decreasing
with the number of iterations in [0, 2], and the decreasing formula is as follows:

a = 2(1− k
kmax

) (11)

The introduction above states that the grey wolf algorithm employs the elite group ad-
vice, choosing the best three elite individuals as follows: the best solution α, the second best
solution β, and the third best solution δ to guide the particle parameters. The three elite indi-
viduals will guide the particles in the form of bounding according to Equations (9) and (10).
The guiding strategy formula is as follows:

Dα =|C1 × Xα(k)− X(k)| (12)
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Dβ =
∣∣C1 × Xβ(k)− X(k)

∣∣ (13)

Dδ =|C1 × Xδ(k)− X(k)| (14)

where Equations (12)–(14) represent the distances between each particle and three elite
individuals α, β, and δ, respectively; Equations (15)–(17) are the moving directions of
particles to three elite individuals; and Equation (18) is used as the moving direction of
particle swarm after combining the guidance of three elite individuals:

X1(k) = Xα(k)− A1 × Dα (15)

X2(k) = Xβ(k)− A2 × Dβ (16)

X3(k) = Xδ(k)− A3 × Dδ (17)

X(k + 1) =
X1(k) + X2(k) + X3(k)

3
(18)

The performance of the particle swarm optimization algorithm can be enhanced by
using the grey wolf algorithm bounding strategy in the update formula. Its updated
formula will become Equation (20):

vk
ij = ω(Xk

ij − xk
ij) + c1r1(pbestk

ij − xk
ij) + c2r2(gbestk

ij − xk
ij) (19)

According to Formula (19), the update strategy of GWO is incorporated into the
position update formula of PSO based on maintaining individual experience and the group
optimal guiding strategy of PSO, which can somewhat alleviate the issues with the update
formula of PSO, the prediction process is shown in Figure 4.
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3. Experimental Results and Discussion
3.1. Experiment Details
3.1.1. Parameter Setting of RBF Neural Network

The nonlinear mapping issue in feedforward networks can be resolved by an inter-
mediary layer, according to research and analysis [28–30]. As a result, there was just one
intermediary layer in the RBF neural network used in this study. The number of nodes in
the middle layer will influence the prediction effect of the network for different process
parameters and prediction aims. This effect is, typically, calculated by the empirical formula
below:

h =
√

n + m + α (20)

where n, h, and m are the number of nodes in the first, second, and third layer, respectively,
and α is a random number of [1,10].

According to Equation (20), the range of the number of nodes in the middle layer can
be roughly determined as [3,12]. Therefore, the influence of the number of nodes in the
interval 3–16 on training error (MSE) was explored. Figure 5 shows the correspondence
between the training error size and the number of hidden layer nodes. It can be seen that
the training error tends to decrease with the increase in the number of nodes in this range,
and the minimum error is obtained when the number of nodes is set to 12. When the
number of nodes is greater than 12, the error increases slowly. Therefore, the number of
nodes is determined to be 12.
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Three parameters, including initial weight, neuron center, and width, determine
whether the network can converge to the minimum error and the training speed of the
network during the training process. These three parameters will be constantly corrected in
the subsequent iterative optimization process and approximate to the values that minimize
the global error. The weights, neuron centers, and radial basis widths are initialized to
random values between (0, 1).

Based on the above analysis, the RBF neural network structure in this paper is deter-
mined to be 3-12-1. In addition, the Gaussian function is used as the excitation function [31].
The initial weight, node center, and radial basis width are initially set as random numbers
between (0, 1).
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3.1.2. Parameter Setting of PSO Algorithm

Each particle in the PSO algorithm holds the values for its parameters. The position
data used in this method are the RBF neural network parameters that need to be tuned. The
number of particles C = 100 was selected. The dimension of the particle is the dimension of
the solution space, which refers to the necessary information contained in the position of
the particle, namely, the weight, the neuron center, and the radial basis width, and takes
D = 60. The maximum number of iterations is Tmax = 200; maximum speed Vmax = 1;
learning factor c1 = c2 = 1.5; and the inertia weight is updated iteratively according to
Equation (6). The termination condition was that the global optimal fitness met the global
accuracy requirements, and the MSE index was used as the particle fitness function, that is,
the iteration was stopped when there were particles in the particle iteration process that
made the global accuracy meet the requirements. In the particle position iteration formula,
and are uniformly distributed random numbers between [0, 1].

3.2. Comparison of Model Fitting Results

Three prediction models of BP, RBF, and PSO-RBF neural networks are developed
for comparison study to demonstrate the superiority of the upgraded GWO-PSO-RBF
neural network prediction model established in this study. Figure 6 shows the prediction
of the full data set using these four models on the roughness test data, respectively. The
unoptimized RBF neural network performs better than the BP neural network fitting results
when comparing the benefits and drawbacks of the four different types of neural network
prediction effects. The optimized PSO-RBF neural network and GWO-PSO-RBF neural
network are better than the ordinary RBF neural network, and the predicted value fits the
true value more closely.
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The scatter plots and regression lines for the four approaches are shown in Figure 7,
where the ordinate represents the predicted values and the abscissa represents the true
values. It can be seen that the GWO-PSO-RBF neural network scatter plot is near the fitting
line and evenly scattered on both sides. The GWO-PSO-RBF neural network has the best
prediction impact thanks to its determination coefficient of 0.919, which is higher than that
of the other three models.

With the grinding parameters and the control variable technique, we exhibit the actual
as well as the expected roughness in Figure 8. It can be found that when the belt linear
speed is low under the condition of high feed speed and grinding depth reduction, large
scratches appear on the grinding surface due to uneven grinding, machine vibration, and
other factors (Figure 9b). When the belt linear speed and feed speed are high, the lower
grinding depth occurs, and the uneven surface pits are produced by grinding due to
the existence of factors such as grinding shedding and adhesion (Figure 9a). Due to the
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existence of these uncertainties, the predicted value learned by the model has a large error
from the true value. It is worth noting that the proposed model has a better prediction
effect on the whole.
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3.3. Comparison of Model Evaluation Results

In order to better illustrate the effect of the model, the mean square error (MSE), the
root mean square error (RMSE), and the mean absolute percentage error (MAPE) of the
prediction results are collected. Each model is simulated four times with the same random
data, and the average of the results of the four times is taken as the reference value. The
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results for each model are summarized in Tables 3–5 along with the average values for
each index.
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Table 3. Comparison of results for MSE of each model under the test set.

Number GWO-PSO-RBF PSO-RBF RBF BP

1 0.004 0.007 0.047 0.242
2 0.011 0.008 0.084 0.283
3 0.005 0.024 0.061 0.291
4 0.008 0.013 0.052 0.192

Average value 0.007 0.013 0.061 0.252

Table 4. Comparison of results for RMSE of each model under the test set.

Number GWO-PSO-RBF PSO-RBF RBF BP

1 0.064 0.081 0.216 0.492
2 0.105 0.089 0.290 0.532
3 0.071 0.155 0.247 0.539
4 0.089 0.114 0.228 0.438

Average value 0.082 0.109 0.245 0.500

Table 5. Comparison of results for MAPE of each model under the test set.

Number GWO-PSO-RBF PSO-RBF RBF BP

1 0.046 0.070 0.208 0.498
2 0.067 0.072 0.214 0.512
3 0.102 0.107 0.321 0.472
4 0.071 0.068 0.198 0.384

Average value 0.071 0.079 0.235 0.466

According to the comparison of RMSE in Table 4, it can be seen that the evaluation
result of the BP neural network model is 0.500, and that of the RBF neural network is
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0.245. The result of PSO-RBF is 0.109. The result of GWO-PSO-RBF is 0.082. MSE is
the mean square error, and its value is the square of RMSE. The average values of the
above four models are 0.252, 0.061, 0.013, and 0.007, respectively. In general, the above
three evaluation indexes of the GWO-PSO-RBF hybrid model are the smallest among the
four algorithms, which can prove that it improves the accuracy and performance of the
grinding roughness prediction to a certain extent, and can effectively predict the grinding
roughness. In addition, the RBF neural network based on GWO-PSO optimization is
superior to the PSO-RBF neural network in terms of optimization speed and optimization
accuracy. Similarly, from Table 5, this index is 46.6% and 23.5%, respectively, after the
roughness prediction by a single BP and RBF neural network. The prediction results of the
hybrid model optimized by PSO and GWO-PSO decreased to 7.1% and 7.9%, respectively,
indicating that the accuracy of the hybrid model combined with the optimization algorithm
is higher than that of the single neural network prediction model.

By observing Figure 10, we can see that the single BP model has the worst three
accuracy parameters and the lowest prediction accuracy. The prediction accuracy of the
RBF neural network model is better than that of the BP neural network model, but the
accuracy is still low. In general, whether it is PSO-RBF or GWO-PSO-RBF neural network,
the prediction error index of the hybrid model is better than that of the single neural network
model, indicating that the accuracy of the hybrid model combined with the optimization
algorithm is higher than that of the single neural network prediction model. In addition,
the proposed GWO-PSO-RBF neural network is slightly better than the PSO-RBF neural
network, maintaining a smaller prediction error.
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4. Conclusions

In this chapter, a GWO-PSO hybrid optimized RBF neural network is established to
establish the mapping relationship between grinding process parameters and the roughness
of the titanium alloy abrasive belt to predict surface roughness. The PSO algorithm is used
to optimize the parameters of the RBF network to obtain the optimal solution and improve
the operation efficiency, and, then, the PSO algorithm is improved by the GWO algorithm
to update the iterative formula, which effectively avoids the problem of falling into local
optimum due to the decline of convergence ability in the later stage of the algorithm. Then,
the structural framework of 3-12-1 is determined by an empirical formula and program
debugging, and the main parameter values that need to be used in the algorithm are
clarified. Finally, the simulation verifies the accuracy of the algorithm. The simulation
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results show that the GWO-PSO-RBF improved RBF neural network constructed in this
paper can significantly improve the prediction accuracy of the algorithm, and has certain
application values.
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