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Abstract: To tackle the problem of the brain storm optimization (BSO) algorithm’s suboptimal
capability for avoiding local optima, which contributes to its inadequate optimization precision, we
developed a flock decision mutation approach that substantially enhances the efficacy of the BSO
algorithm. Furthermore, to solve the problem of insufficient BSO algorithm population diversity,
we introduced a strategy that utilizes the good point set to enhance the initial population’s quality.
Simultaneously, we substituted the K-means clustering approach with spectral clustering to improve
the clustering accuracy of the algorithm. This work introduced an enhanced version of the brain
storm optimization algorithm founded on a flock decision mutation strategy (FDIBSO). The improved
algorithm was compared against contemporary leading algorithms through the CEC2018. The
experimental section additionally employs the AUV intelligence evaluation as an application case.
It addresses the combined weight model under various dimensional settings to substantiate the
efficacy of the FDIBSO algorithm further. The findings indicate that FDIBSO surpasses BSO and other
enhanced algorithms for addressing intricate optimization challenges.

Keywords: brain storm optimization; flock decision mutation; good point set; spectral clustering;
combined weight

1. Introduction

Autonomous underwater vehicles are gradually evolving from program-driven modes
to intelligent modes of self-decision, self-learning, and self-adaptation [1,2]. The evaluation
of intelligence can effectively reduce testing costs and provide strong guidance for the
development of intelligence levels [3]. However, current AUV intelligence evaluation
technology urgently needs in-depth exploration and research. Among this technology, the
combined weight method is a key technology that ensures the realization of evaluation.
The combined weight model is evolving with increasingly complex traits including higher
dimensions, nonlinear behavior, and lack of differentiability. This model’s pronounced
nonlinearity and absence of differentiability contribute to the presence of numerous local
optima, resulting in a multi-modal phenomenon. When an optimization problem becomes
complex, it significantly challenges the efficacy of optimization methods.

Inspired by the human brainstorming conference, significant scholarly interest has
focused on the brain storm optimization algorithm due to its remarkable effectiveness at
addressing multi-model problems, as cited in [4]. This algorithm is structured around a
four-phase process, which includes clustering, substitution, selection, and mutation. The
clustering mechanism intrinsic to the BSO algorithm substantially enhances the popula-
tion’s diversity by distributing solutions into several subgroups. The practicality of the BSO
algorithm is well-documented across a variety of applications, including route optimiza-
tion [5], visual data analysis [6], networked sensor systems, and additional domains [7].

While the clustering technique employed in conventional brain storm optimization
algorithms aids with augmenting the diversity of the population, there are still notable
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shortcomings inherent to the traditional BSO approach. Compared to other enhanced
intelligent algorithms, the classic BSO exhibits a slower convergence rate and often falls
short of identifying the optimal solution. A hybrid self-adaptive sine cosine algorithm
with opposition-based learning (MSCA) has been proposed [8]. The opposite population
is created by applying opposite numbers, influenced by the perturbation rate, to escape
the local optimum within MSCA. Experimental data indicate that MSCA is extremely
competitive. Yang proposed a multi-strategy whale optimization algorithm (MSWOA) [9].
This algorithm employs a chaotic logistic map to create an initial population with high
quality and incorporates a Lévy flight mechanism to preserve diversity within the popula-
tion throughout each iteration. The experimental data demonstrate that the MSWOA is
exceptionally effective at tackling complex challenges. A new ensemble algorithm called
e-mPSOBSA has been proposed [10]. The algorithm incorporates BSA’s exploratory capac-
ity to enhance global exploration and local exploitation and to maintain a suitable balance
throughout the search process. Santana proposed a novel version of the binary artificial
bee colony algorithm (NBABC) [11]. Experimental data demonstrate the new algorithm
significantly enhances the optimization precision and maintains superiority compared to
several recently developed algorithms. Ali introduced an enhancement to the QANA algo-
rithm by developing an advanced version of the binary quantum-based avian navigation
optimizer, termed IBQANA [12], which exhibits further advancements to the algorithm’s
performance.

In light of the superior performance exhibited by these highly competitive algorithms,
it has become evident that the efficacy of conventional BSO algorithms requires additional
enhancement. Consequently, researchers have focused on refining the fundamental param-
eters, clustering techniques, and mutation approaches of the traditional BSO algorithm.
Chen presented a version of brain storm optimization that incorporates agglomerative
hierarchical clustering analysis [13], which yields favorable outcomes and ensures fast
convergence. The introduction of agglomerative hierarchical clustering into BSO has been
implemented, followed by an analysis of its effect on the efficacy of the creation operator.
Although there is a marginal improvement in optimization accuracy compared to the
original BSO, this modified algorithm still does not adequately address the issue of the BSO
algorithm’s propensity for getting stuck at the local optimum. A brain storm optimization
algorithm enhanced with a reinforcement learning mechanism has been introduced [14].
Four distinct mutation tactics were devised to bolster the algorithm’s searching ability at
various phases. The results show that this algorithm surpasses additional improved BSO
algorithms with regard to efficiency. However, the algorithm’s performance is less com-
petitive than other improved swarm intelligence algorithms. Shen proposed a brain storm
optimization algorithm with an adaptive learning strategy [15]. The BSO-AL, as proposed,
creates new individuals through exploration, imitation, or adaptive learning. However,
the algorithm tested fewer functions and lacked some reference values. An enhanced
BSO algorithm that utilizes a difference-mutation technique and leverages the global-best
individual has been introduced [16]. This approach substitutes the conventional mutation
step in BSO with a difference step, markedly accelerating the convergence process. The al-
gorithm adopts a global-best mutation strategy, which substantially enhances optimization
performance. Nevertheless, the algorithm still struggles with the issue of local optimum
entrapment, which hinders its effectiveness at tackling intricate multi-modal challenges.
Tuba innovatively integrated the principles of chaos theory into the BSO algorithm by
applying chaotic maps [17], resulting in an enhanced version of the BSO algorithm. This
modified algorithm exhibits a marginal performance improvement compared to its prede-
cessor, though the benefits are not particularly significant. Nevertheless, the incorporation
of chaotic maps presents a novel approach to tackle the issue of algorithms that are prone to
premature convergence. A chaotic local search-enhanced memetic brain storm optimization
algorithm has been introduced [18]. This study presents a novel method that combines
the BSO algorithm and chaotic local search, aiming to address the propensity of the BSO
algorithm to become stuck at local maxima. Despite this integration, the algorithm shows
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only marginal gains in optimization precision. An enhanced BSO algorithm incorporating
an advanced discussion mechanism has been proposed [19]. It integrates a difference step
approach while streamlining the BSO’s selection methodology. This innovation aims to
bolster global search capabilities during the initial phase and to refine local search activi-
ties in subsequent stages, thereby elevating the precision of the algorithm’s optimization
results. Additionally, the implementation of the difference step approach improved the
convergence velocity of the algorithm. Despite these advancements, its performance for
optimizing high-dimensional multi-modal problems does not meet anticipated bench-
marks, and the algorithm remains prone to entrapment in local optimum. A proposed
global-best brain storm optimization algorithm incorporates a discussion mechanism and a
difference step [20]. This algorithm melds a suite of enhancement tactics, each with distinct
characteristics, resulting in superior convergence rates and optimization precision relative
to its predecessors. Nonetheless, the algorithm exhibits a propensity to become ensnared in
local optima when dealing with intricate optimization challenges, indicating a necessity for
additional refinements.

In conclusion, the existing improved brain storm optimization algorithms suffer from
several deficiencies, including sluggish rates of convergence, suboptimal optimization accu-
racy, and a significant tendency to become trapped in a local optimum. Slow convergence
hampers the overall efficiency of the algorithm; specifically, achieving a predetermined
level of accuracy requires more time when the convergence rate is lower, which dimin-
ishes the algorithm’s practical utility. Optimization accuracy is a critical indicator of an
algorithm’s efficacy, and a lack of precision indicates substandard performance. Moreover,
there is a risk that the algorithm could get caught in a local optimum, resulting in consider-
able time lost during iterative processes and affecting the ultimate optimization accuracy.
Hence, refining the BSO algorithm in this study aims to enhance the rate of convergence
and the precision of optimization beyond the current improvements and to augment the
algorithm’s capacity to escape local optima in multi-model problems. Furthermore, an
improved clustering technique is required to address the high computational demands and
low clustering accuracy caused by the K-means clustering method in the conventional BSO
algorithm. Ultimately, the objective to enhance the precision of weight calculation in AUV
performance evaluation can be realized.

Overall, this work proposes the flock decision mutation strategy and introduces the
good point set and spectral clustering. The paper’s primary innovations include the
algorithms’ exceptional capability to escape local optima during complex optimization
tasks involving multiple models and high dimensions coupled with their enhanced rate
of convergence and greater precision in optimization. Subsequently, a refined brain storm
optimization algorithm that incorporates the flock decision mutation strategy has been
introduced. This work: (1) designs the flock decision mutation strategy to improve the
optimization accuracy; (2) introduces the good point set designed to establish the initial
population to enhance the diversity of the population at the beginning of the iteration
process; (3) replaces K-means clustering with spectral clustering to improve the clustering
accuracy of the algorithm; (4) extensive experimentation and data analysis are conducted
utilizing a benchmark test suite from the CEC2018 [21]; (5) multiple simulations based on
the combined weight model in AUV intelligence evaluation further confirm the efficacy of
the suggested algorithm.

2. BSO

The BSO algorithm draws its inspiration from human brainstorming conferences,
effectively harnessing human intelligence traits to address problems. It offers more benefits
over conventional swarm intelligence algorithms, particularly addressing issues involving
multiple dimensions. The algorithm is structured around four key phases: clustering,
substitution, selection, and mutation.

Initially, the population of n candidate solutions undergoing iteration is segmented
into m groups using the K-means clustering technique. This approach is intended to mimic
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the collaborative dynamics of human group discussions, thereby enhancing the algorithm’s
search efficiency.

Subsequently, a parameter preplace is designated alongside the generation of a random
number r1 within the interval [0, 1]. Should r1 fall below preplace, a fresh individual is created
to supplant the chosen cluster center. An excessively high value of preplace can impede the
algorithm’s convergence efficacy and diminish the population’s diversity. Conversely, an
unduly low value might precipitate premature convergence of the algorithm.

In the third step, three probability parameters pone, pone_center, and ptwo_center are estab-
lished, with the concurrent generation of random numbers r2, r3, and r4. If r2 falls below
pone, a mutation is performed on a single individual within one cluster. If not, individuals
from two clusters are merged and then mutated. During the mutation of an individual
within a cluster, if r3 is lower than pone_center, then the mutation is applied to the central
individual of the cluster. If r3 is above the threshold, a non-central individual is randomly
picked from the same cluster for mutation. Similarly, when mutating individuals from two
different clusters, if r4 is less than ptwo_center, the central individuals of both clusters are
chosen for mutation. If r4 exceeds ptwo_center, random non-central individuals from each
cluster are selected and merged before applying the mutation.

Fourth, the selected individuals undergo fusion or mutation processes, after which
they are evaluated against the original individuals based on their fitness levels. Individuals
who exhibit superior performance will be preserved following these operations. The
process of fusion is described as follows:

X f = v × X1 + (1 − v)× X2, (1)

where X f represents the individual post-fusion, v is a number randomly chosen from the
range 0 to 1, and X1 and X2 are two random individuals selected for merging. The mutation
process proceeds as follows:

Xm = Xs + ξ × n(µ, σ), (2)

where Xm denotes the individual post-mutation, Xs identifies the chosen individual for
mutation, n(µ, σ) represents a Gaussian random number, and ξ serves as the mutation
coefficient. The formula for this coefficient is as follows:

ξ = log sig
(

0.5 × gmax − g
k

)
× rand(), (3)

where k is the adjustment factor, gmax denotes the upper limit of iterations, and g represents
the number of the current iteration.

3. FDIBSO

This section introduces enhancements to the BSO algorithm in three key areas to boost
its performance. The procedures of the FDIBSO algorithm are detailed in Algorithm 1.

3.1. Initialization Based on the Good Point Set

The BSO algorithm’s starting population is randomly created, a method that is simpler
to execute but results in a wider and more erratic spread of initial positions, impacting the
algorithm’s efficiency at converging. Therefore, implementing a strategy to even out the
initial population’s spread and to boost its diversity becomes essential.

The good point set, introduced by the Chinese mathematician Hua Luogeng, is a
method to make the distribution of random solutions more uniform and to improve the
solution’s quality [22]. Therefore, many scholars have used it in the population initializa-
tion step of intelligent algorithms to improve algorithm performance [23,24]. This paper
introduces the method into the BSO algorithm to improve its performance. Initialization
based on the good point set is as follows, where ni denotes the ith individual:
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First, establish the population size n and set the dimensionality to D then, calculate
r = [r1, r2, . . . , rD], where ri is calculated as follows:

ri = mod(2cos(
2πi

7
)ni, 1) (4)

Second, construct the good point set PD(i) = [r1i1, r2i2, . . . , rDiD].
Third, configure the population using the designated good point set as outlined below.

Xi = a + PD(i)(b − a), (5)

where a and b denote the lower and upper bounds, respectivcly, of the individual distribu-
tion space. Figure 1 illustrates the comparative impact of using the good point set with a
population size of 100, depicting the good point set on the left and the randomly generated
population set on the right, thereby confirming the efficacy of the good point set.

Figure 1. The comparison effect of the good point set.

3.2. Spectral Clustering Method

The BSO algorithm employs K-means clustering, which is valued for its straightfor-
wardness and ease of implementation. However, a notable issue arises during the update
of cluster centers, which can be substantially affected by outliers since the mean value
calculation includes every individual. Furthermore, the K-means clustering method is
prone to the problem of insufficient clustering accuracy, leading to a decrease in the algo-
rithm’s optimization accuracy when dealing with complex optimization problems such as
multi-peak problems.

In recent years, spectral clustering has become one of the most popular modern
clustering algorithms [25]. Spectral clustering techniques have surfaced as a structured sim-
plification of the NP-hard normalized cut clustering issue and have been effectively utilized
across various complex clustering contexts [26,27]. Compared to the K-means clustering
approach, the spectral clustering method aligns better with various data distributions and
enhances clustering outcomes. Consequently, this paper pioneers the integration of spectral
clustering with the BSO algorithm, yielding enhanced optimization performance. The
spectral clustering algorithm flow is as follows.

First, consider the population space as a network and then find the adjacency matrix
W of the network graph. The degree matrix D is then computed from W.

Second, compute the Laplacian matrix L with the following expression (6):

L = D − W (6)

Third, normalize the Laplacian matrix and then compute the first k eigenvectors of the
normalized Laplacian matrix to form a new eigenmatrix P.

Fourth, K-means clustering is done on the eigenmatrix P to show the final clustering
results. Figure 2 shows the comparative effectiveness of the two clustering methods for
clustering when dealing with multi-peak functions, with the K-means clustering method
on the left side and spectral clustering on the right side, thus confirming that the spectral
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clustering method has higher clustering accuracy and achieves more accurate classification
to enhance the local searching ability of each class at the later stage of the algorithm.

Figure 2. The comparison effect of the spectral clustering.

3.3. Flock Decision Mutation Strategy

During the initial stages of intelligent algorithm search iterations, it is crucial to
enhance global search to increase population diversity and accelerate convergence. In the
later stages, bolstering the local search becomes essential to refine optimization precision.
To achieve the above objectives, methods such as the difference step strategy [28], global-
best strategy [29,30], and elite mutation strategy [31,32] have been sequentially introduced
to enhance the precision of the BSO algorithm’s optimization.

However, the improved BSO algorithms using these strategies are still ineffective
for addressing multi-model problems in multiple dimensions, which is mainly due to
insufficient exploration of the search domain, i.e., the issue of insufficient population
diversity, which causes the algorithms to quickly converge to a local optimum during the
final phases of the iteration process, ultimately impacting the optimization precision of the
algorithm. Therefore, this paper designed a flock decision mutation strategy, drawing on
the concept of flock evolution, which sufficiently improves the population diversity during
initial iterations and introduces a globally optimal individual to strengthen the local search
towards the end of the iterations, significantly improving the performance of the algorithm.
The basic principle of the flock decision mutation strategy is shown as follows:

First, the scope of an individual and the flock to which it belongs can be defined using
Equation (7):

Disi(t) = ∥Xi(t − 1)− Xi(t)∥, (7)

where Disi(t) is the Euclidean distance between the current generation of individuals and
the preceding cohort of individuals, Xi(t − 1) is the previous generation of individuals,
and Xi(t) is the current generation of individuals to be mutated.

Second, an individual is considered to belong to the flock of Xi(t) if that individual
satisfies the following conditions. Then, the flock of Xi(t) is shown in Equation (8).

PFi(t) =
{

Xj(t) | Di
(
Xi(t), Xj(t)

)
≤ Disi(t)

}
, (8)

where PFi(t) is the flock of Xi(t), Xj(t) is the individual from the whole population, and
Di
(
Xi(t), Xj(t)

)
represents the Euclidean separation between Xi(t) and Xj(t).

Third, mutation on Xi(t) is realized through the flock of individual Xi(t), any member
within the population, along with the globally optimal individual, as demonstrated in (9).{

XiF(t) = Xi(t) + rand × (XF1,i(t)− X1(t)) + rand × (XF2,i(t)− X2(t)), t < 0.7gmax
XiF(t) = Xi(t) + rand × (Xbest − X1(t)), t ≥ 0.7gmax,

(9)

where XiF(t) is the new individual after the flock decision mutation strategy, X1(t) and
X2(t) are two randomly selected members from the entire population, XF1,i(t) and XF2,i(t)
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are two random individuals from the flock of individual Xi(t), Xbest represents the optimal
member of the preceding population, and gmax denotes the upper limit of iterations.

The core idea of the flock decision mutation strategy is to make each individual in
the population carry out a better mutation centered on itself during the initial phase of the
algorithm’s iteration, enhancing the caliber of the individuals and ensuring the population’s
diversity. During the advanced phases of the algorithm’s iteration, its capacity to conduct local
searches is enhanced by guiding the individuals to emulate the behavior of the the globally
optimal individual. The pseudocode for this algorithm is presented in Algorithm 1 below.

Algorithm 1: The FDIBSO algorithm

1: Require: n, population size; m, total clusters; gmax, maximum iterations
2: for i=1 to n do
3: initialize the population using the good point set and generate solution Xi
4: assess the fitness of Xi
5: end for
6: while g <gmax do
7: partition n into m groups using spectral clustering techniques
8: for i =1 to m do
9: establish the solution possessing optimal fitness as the central point
10: end for
11: if rand <preplace then
12: randomly create a member to substitute for the designated cluster center
13: end if
14: if rand <pone then
15: select the individual from one cluster
16: if rand <pone_center then
17: select the cluster center to mutate
18: else
19: arbitrarily choose a member from this cluster for mutation
20: end if
21: else
22: choose the individual from two clusters
23: if rand <ptwo_center then
24: the pair of cluster centers is merged and subsequently altered
25: else
26: two members from every chosen cluster
27: are arbitrarily chosen for merging and subsequent mutation
28: end if
29: end if
30: if g <gmax ∗ 0.7 then
31: XiF(g) = Xi(g) + rand × (XF1,i(g)− X1(g)) + rand × (XF2,i(g)− X2(g))
32: else
33: XiF(g) = Xi(g) + rand × (Xbest − X1(g)
34: end if
35: evaluate the fitness of XiF by friend decision mutation
36: retain excellent individual
37: g = g + 1
38:end while

4. Results

Trials were conducted under 30- and 50-dimensional settings using the CEC2018. Com-
parative simulation experiments were conducted on nine algorithms: BSO [4], ADMBSO [19],
GDBSO [16], DDGBSO [20], MSWOA [9], HOA [33], WMFO [34], MFO-SFR [35], and
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FDIBSO. Performance analyses of each algorithm were carried out, with each simulation set
being independently run 30 times. In addition, based on the combined weight model in the
AUV intelligence evaluation, we compared various algorithms and verified the advantages
of the FDIBSO algorithm in engineering applications. The simulations were executed on
the MATLAB 2018A platform.

4.1. Parameter Settings

The fundamental parameters for the BSO algorithm along with its enhanced version
discussed in this document are cited from [4]. Settings for these parameters are specified as
follows: population size n = 100, cluster count m = 5, adjustment factor k = 20, evaluation
tally Fmax = 5 ∗ 104, probability parameter Preplace = 0.1, Pone = 0.5, Pone_center = 0.3, and
Ptwo_center = 0.2. In addition, the FDIBSO algorithm presented in this paper is compared
with four intelligent algorithms of different types, which are set up according to their
parameters in their respective literature.

4.2. Simulation Results and Analysis

Tables 1–4 display the optimization performance of each algorithm when the dimen-
sion D is set to 30 and 50. For every benchmark function, 30 trials are conducted, yielding
two statistical measures: the mean and the best value. The optimal average for each
function is emphasized in boldface.

By examining the optimization accuracy of the CEC2018, various insights emerge.
First, in assessing 30-dimensional challenges against other enhanced BSO variants, the
FDIBSO algorithm significantly outperforms the basic BSO algorithm. Furthermore, the
performance improvements are still notably substantial compared to the modestly enhanced
versions. For the CEC2018 benchmark test suite, which comprises 29 functions, FDIBSO
achieves optimization with greater accuracy on 16 of those functions.

Second, when juxtaposed with other enhanced BSO variants, the efficacy of the FDIBSO
algorithm exhibits a decline in specific benchmark functions tailored for 50-dimensional issues.
Table 2 illustrates that the FDIBSO algorithm outperforms in optimization accuracy for just
14 functions, with a slight decline in its lead.

Third, in the context of 30-dimensional challenges relative to other competitive intelli-
gent algorithms, the performance of the FDIBSO algorithm is still superior. The FDIBSO
and MFO-SFR algorithms exhibit comparable performance, optimizing 12 functions with
greater accuracy. Their overall effectiveness significantly surpasses that of the three other
algorithms compared, underscoring the principle that no single intelligent algorithm can
perfectly solve every optimization challenge.

Fourth, under the 50-dimensional scenario, FDIBSO’s performance diminishes relative
to other intelligent algorithms, yet it still secures the lead in optimizing ten functions. Its
overall performance is only outmatched by the MFO-SFR algorithm, but it remains superior
to the three other algorithms it was compared with. In a word, these experimental outcomes
collectively affirm the superior optimization performance of the FDIBSO algorithm.

To more effectively show the FDIBSO algorithm’s ability in convergence speed,
Figures 3 and 4 depict the convergence trajectories for various enhanced BSO algorithms
across four benchmark functions from the CEC2018.

The blue curve in the figure represents the FDIBSO algorithm. Although the conver-
gence speed of this algorithm is significantly improved compared to the traditional BSO
algorithm, it is not much improved compared to the BSO variant algorithm. This problem is
because the FDIBSO algorithm employs the good point set and the flock decision mutation
strategy, significantly improving population diversity. As a result, in the early stages, the
search is more comprehensive, and convergence is relatively slow. However, with iterations,
the FDIBSO algorithm can escape local optima and achieve higher optimization accuracy.
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Table 1. Comparison of BSO variants for 30-dimensional challenges.

BFs BSO ADMBSO GDBSO DDGBSO FDIBSO

C1
Mean 1.18 × 108 3.10 × 103 1.41 × 103 1.74 × 103 1.36 × 103

Min 1.31 × 102 1.68 × 102 1.31 × 102 2.31 × 102 1.30 × 102

C3
Mean 8.92 × 104 3.94 × 104 7.98 × 104 9.85 × 103 1.70 × 103

Min 5.63 × 104 3.04 × 104 5.68 × 104 6.94 × 103 7.02 × 102

C4
Mean 5.88 × 102 4.98 × 102 4.90 × 102 5.02 × 102 4.88 × 102

Min 4.82 × 102 4.85 × 102 4.65 × 102 4.10 × 102 4.69 × 102

C5
Mean 6.82 × 102 5.60 × 102 7.03 × 102 5.19 × 102 6.98 × 102

Min 6.42 × 102 5.39 × 102 6.77 × 102 5.07 × 102 6.54 × 102

C6
Mean 6.53 × 102 6.00 × 102 6.01 × 102 6.01 × 102 6.46 × 102

Min 6.41 × 102 6.00 × 102 6.00 × 102 6.01 × 102 6.34 × 102

C7
Mean 1.12 × 103 7.95 × 102 9.45 × 102 7.29 × 102 1.01 × 103

Min 1.03 × 103 7.74 × 102 9.23 × 102 7.15 × 102 9.19 × 102

C8 Mean 9.34 × 102 8.62 × 102 1.01 × 103 1.07 × 103 9.36 × 102

Min 8.86 × 102 8.29 × 102 9.89 × 102 1.04 × 103 9.09 × 102

C9 Mean 3.73 × 103 9.00 × 102 9.29 × 102 2.35 × 103 3.21 × 103

Min 2.77 × 103 9.00 × 102 9.00 × 102 2.20 × 103 2.39 × 103

C10
Mean 4.91 × 103 5.09 × 103 8.59 × 103 8.34 × 103 5.54 × 103

Min 3.86 × 103 4.20 × 103 2.52 × 102 7.60 × 103 4.83 × 103

C11
Mean 1.83 × 103 1.17 × 103 1.24 × 103 1.92 × 103 1.26 × 103

Min 1.23 × 103 1.12 × 103 1.20 × 103 1.18 × 103 1.13 × 103

C12
Mean 1.92 × 107 9.14 × 104 8.91 × 104 5.96 × 104 2.75 × 104

Min 4.72 × 106 2.24 × 104 2.58 × 104 2.30 × 104 1.12 × 104

C13
Mean 3.79 × 104 1.53 × 104 1.17 × 104 1.07 × 104 3.72 × 103

Min 2.57 × 104 4.26 × 103 2.67 × 103 3.27 × 103 2.53 × 103

C14
Mean 1.81 × 105 1.34 × 104 1.41 × 104 1.52 × 104 1.46 × 103

Min 2.15 × 103 2.07 × 103 6.00 × 103 1.63 × 103 1.45 × 103

C15
Mean 3.17 × 104 5.10 × 103 5.84 × 103 2.97 × 103 1.17 × 103

Min 1.83 × 104 2.56 × 103 1.57 × 103 1.93 × 103 1.61 × 103

C16
Mean 3.18 × 103 2.76 × 103 3.25 × 103 4.14 × 103 2.61 × 103

Min 2.84 × 103 2.19 × 103 2.95 × 103 3.56 × 103 2.09 × 103

C17
Mean 2.36 × 103 2.05 × 103 2.26 × 103 2.81 × 103 2.25 × 103

Min 1.91 × 103 1.81 × 103 1.82 × 103 2.54 × 103 1.82 × 103

C18
Mean 4.01 × 105 2.10 × 105 1.33 × 106 1.53 × 105 1.95 × 103

Min 9.90 × 104 7.40 × 104 4.19 × 105 2.26 × 104 1.87 × 103

C19
Mean 6.96 × 105 9.53 × 103 8.77 × 103 3.38 × 103 1.98 × 103

Min 5.42 × 104 2.48 × 103 2.03 × 103 2.51 × 103 1.95 × 103

C20
Mean 2.70 × 103 2.43 × 103 2.63 × 103 2.37 × 103 2.48 × 103

Min 2.42 × 103 2.26 × 103 2.35 × 103 2.20 × 103 2.36 × 103

C21
Mean 2.51 × 103 2.36 × 103 2.50 × 103 2.62 × 103 2.47 × 103

Min 2.45 × 103 2.34 × 103 2.46 × 103 2.56 × 103 2.41 × 103

C22
Mean 6.72 × 103 2.86 × 103 3.06 × 103 3.41 × 103 2.56 × 103

Min 4.02 × 103 2.30 × 103 2.30 × 103 2.53 × 103 2.30 × 103

C23
Mean 3.36 × 103 2.72 × 103 2.86 × 103 3.38 × 103 2.59 × 103

Min 3.04 × 103 2.69 × 103 2.81 × 103 3.10 × 103 2.49 × 103

C24
Mean 3.54 × 103 2.89 × 103 3.02 × 103 2.81 × 103 2.68 × 103

Min 3.41 × 103 2.87 × 103 2.98 × 103 2.79 × 103 2.62 × 103

C25
Mean 2.96 × 103 2.89 × 103 2.89 × 103 2.89 × 103 2.89 × 103

Min 2.90 × 103 2.89 × 103 2.88 × 103 2.89 × 103 2.88 × 103

C26
Mean 8.25 × 103 4.50 × 103 5.54 × 103 9.81 × 103 4.49 × 103

Min 6.78 × 103 4.19 × 103 4.73 × 103 9.11 × 103 3.77 × 103

C27
Mean 3.95 × 103 3.21 × 103 3.22 × 103 3.16 × 103 3.28 × 103

Min 3.69 × 103 3.20 × 103 3.20 × 103 3.14 × 103 3.23 × 103

C28
Mean 3.45 × 103 3.20 × 103 3.21 × 103 3.28 × 103 3.20 × 103

Min 3.35 × 103 3.14 × 103 3.12 × 103 3.18 × 103 3.12 × 103

C29
Mean 4.45 × 103 4.12 × 103 4.02 × 103 5.68 × 103 4.04 × 103

Min 4.07 × 103 3.80 × 103 3.47 × 103 4.81 × 103 3.68 × 103

C30
Mean 3.32 × 106 1.25 × 104 1.26 × 104 3.39 × 104 1.40 × 104

Min 4.54 × 105 5.95 × 103 6.39 × 103 3.51 × 103 5.96 × 103
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Table 2. Comparison of BSO variants for 50-dimensional challenges.

BFs BSO ADMBSO GDBSO DDGBSO FDIBSO

C1
Mean 7.48 × 109 3.22 × 103 8.49 × 103 2.75 × 103 1.06 × 103

Min 4.83 × 109 3.78 × 102 2.65 × 103 2.68 × 103 2.83 × 102

C3
Mean 1.97 × 105 1.23 × 105 2.16 × 105 1.58 × 105 3.73 × 104

Min 1.58 × 105 9.89 × 104 1.73 × 105 1.02 × 105 1.74 × 104

C4
Mean 1.75 × 103 5.26 × 102 5.31 × 102 2.45 × 102 6.18 × 102

Min 1.13 × 103 4.33 × 102 4.63 × 102 1.71 × 102 5.61 × 102

C5
Mean 8.16 × 102 6.09 × 102 9.33 × 102 1.10 × 103 8.41 × 102

Min 7.78 × 102 5.83 × 102 9.16 × 102 1.06 × 103 8.22 × 102

C6
Mean 6.60 × 102 6.01 × 102 6.05 × 102 6.83 × 102 6.55 × 102

Min 6.55 × 102 6.01 × 102 6.03 × 102 6.73 × 102 6.51 × 102

C7
Mean 1.68 × 103 9.08 × 102 1.23 × 103 1.95 × 103 1.54 × 103

Min 1.53 × 103 8.85 × 102 1.19 × 103 1.84 × 103 1.33 × 103

C8
Mean 1.12 × 103 9.27 × 102 1.23 × 103 1.43 × 103 1.10 × 103

Min 1.04 × 103 8.91 × 102 1.19 × 103 1.37 × 103 1.07 × 103

C9
Mean 1.15 × 104 1.18 × 103 1.99 × 103 3.00 × 104 9.31 × 103

Min 8.24 × 103 9.13 × 102 1.10 × 103 2.31 × 104 6.43 × 103

C10
Mean 8.28 × 103 7.94 × 103 1.48 × 104 1.43 × 104 8.23 × 103

Min 7.01 × 103 6.48 × 103 1.37 × 104 1.26 × 104 6.83 × 103

C11
Mean 4.98 × 103 1.32 × 103 1.49 × 103 2.29 × 104 1.44 × 103

Min 2.40 × 103 1.21 × 103 1.42 × 103 1.23 × 104 1.29 × 103

C12
Mean 3.51 × 108 2.19 × 106 1.62 × 106 4.74 × 106 2.28 × 105

Min 2.01 × 107 2.57 × 105 4.93 × 105 2.55 × 105 1.03 × 105

C13
Mean 7.28 × 104 5.69 × 103 6.07 × 103 1.79 × 104 9.74 × 104

Min 2.67 × 104 2.23 × 103 1.73 × 103 7.89 × 103 2.47 × 104

C14
Mean 7.82 × 105 1.39 × 105 2.15 × 105 2.12 × 107 1.62 × 103

Min 3.69 × 104 4.34 × 104 4.42 × 104 5.88 × 106 1.56 × 103

C15
Mean 2.57 × 104 7.29 × 103 9.65 × 103 4.03 × 109 2.46 × 103

Min 1.80 × 104 1.73 × 103 2.00 × 103 1.59 × 109 1.73 × 103

C16
Mean 3.86 × 103 3.63 × 103 4.96 × 103 6.87 × 103 3.58 × 103

Min 3.24 × 103 3.32 × 103 4.38 × 103 5.93 × 103 3.04 × 103

C17
Mean 3.47 × 103 3.13 × 103 3.81 × 103 4.82 × 103 3.21 × 103

Min 2.74 × 103 2.72 × 103 3.43 × 103 3.65 × 103 2.92 × 103

C18
Mean 2.36 × 106 1.70 × 106 3.35 × 106 4.50 × 107 7.29 × 103

Min 8.73 × 105 3.75 × 105 1.36 × 106 1.97 × 107 2.51 × 103

C19
Mean 1.60 × 106 1.47 × 104 1.32 × 104 1.23 × 109 2.63 × 103

Min 9.59 × 104 2.13 × 103 2.18 × 103 3.74 × 108 2.17 × 103

C20
Mean 3.47 × 103 3.31 × 103 4.02 × 103 3.82 × 103 3.22 × 103

Min 2.90 × 103 2.89 × 103 3.66 × 103 3.32 × 103 2.69 × 103

C21
Mean 2.73 × 103 2.43 × 103 2.72 × 103 3.01 × 103 2.43 × 103

Min 2.61 × 103 2.38 × 103 2.70 × 103 2.91 × 103 2.32 × 103

C22
Mean 1.05 × 104 9.55 × 103 1.65 × 104 1.61 × 104 1.02 × 104

Min 9.52 × 103 7.86 × 103 1.58 × 104 1.46 × 104 9.43 × 103

C23
Mean 4.04 × 103 2.88 × 103 3.17 × 103 4.19 × 103 2.47 × 103

Min 3.74 × 103 2.82 × 103 3.11 × 103 3.89 × 103 2.44 × 103

C24
Mean 4.27 × 103 3.05 × 103 3.33 × 103 4.61 × 103 2.91 × 103

Min 4.05 × 103 2.99 × 103 3.30 × 103 4.27 × 103 2.85 × 103

C25
Mean 3.94 × 103 3.03 × 103 3.03 × 103 1.30 × 104 3.03 × 103

Min 3.43 × 103 2.96 × 103 2.99 × 103 8.02 × 103 2.83 × 103

C26
Mean 1.35 × 104 5.50 × 103 7.88 × 103 1.67 × 104 5.08 × 103

Min 1.23 × 104 4.85 × 103 7.28 × 103 1.50 × 104 4.24 × 103

C27
Mean 5.98 × 103 3.35 × 103 3.37 × 103 6.37 × 103 3.81 × 103

Min 5.29 × 103 3.22 × 103 3.23 × 103 5.58 × 103 3.45 × 103

C28
Mean 5.01 × 103 3.29 × 103 3.31 × 103 3.08 × 103 3.30 × 103

Min 4.26 × 103 3.26 × 103 3.27 × 103 3.22 × 103 3.22 × 103

C29
Mean 6.64 × 103 4.84 × 103 5.18 × 103 1.73 × 104 4.05 × 103

Min 6.03 × 103 4.01 × 103 4.56 × 103 1.18 × 104 3.84 × 103

C30
Mean 1.26 × 108 1.12 × 106 9.56 × 105 2.22 × 109 7.54 × 106

Min 8.35 × 107 6.79 × 105 6.91 × 105 8.61 × 108 4.94 × 106
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Table 3. Comparison of FDIBSO with latest competitive algorithms on 30-D problems.

BFs MSWOA HOA WMFO MFO-SFR FDIBSO

C1
Mean 9.50 × 103 3.03 × 109 3.82 × 103 1.79 × 103 1.36 × 103

Min 3.90 × 103 2.20 × 109 2.10 × 104 1.01 × 102 1.02 × 102

C3
Mean 9.10 × 103 3.08 × 104 3.91 × 102 1.31 × 104 1.70 × 103

Min 6.65 × 103 2.03 × 104 3.01 × 102 7.51 × 103 7.02 × 103

C4
Mean 4.84 × 102 1.05 × 103 4.81 × 102 4.91 × 102 4.88 × 102

Min 4.81 × 102 7.60 × 102 4.25 × 102 4.70 × 102 4.69 × 102

C5
Mean 6.08 × 102 7.94 × 102 6.74 × 102 5.23 × 102 6.98 × 102

Min 5.93 × 102 7.61 × 102 6.23 × 102 5.11 × 102 6.54 × 102

C6
Mean 6.01 × 102 6.61 × 102 6.37 × 102 6.00 × 102 6.46 × 102

Min 6.01 × 102 6.50 × 102 6.14 × 102 6.00 × 102 6.34 × 102

C7
Mean 8.08 × 102 1.03 × 102 1.06 × 103 7.67 × 102 1.01 × 103

Min 7.82 × 102 9.98 × 102 6.25 × 102 7.46 × 102 9.19 × 102

C8 Mean 1.10 × 103 1.06 × 103 9.54 × 102 8.21 × 102 9.36 × 102

Min 9.59 × 102 1.04 × 103 8.55 × 102 8.09 × 102 9.09 × 102

C9 Mean 9.93 × 102 4.29 × 103 4.54 × 103 9.04 × 102 3.21 × 103

Min 8.38 × 102 2.67 × 103 1.68 × 103 9.01 × 102 2.39 × 103

C10
Mean 7.76 × 103 8.34 × 103 5.19 × 103 4.06 × 103 5.44 × 103

Min 5.03 × 103 7.55 × 103 3.76 × 103 2.46 × 103 4.83 × 103

C11
Mean 1.08 × 103 1.80 × 103 1.25 × 103 1.14 × 103 1.26 × 103

Min 1.05 × 103 1.70 × 103 1.17 × 103 1.11 × 103 1.13 × 103

C12
Mean 5.15 × 104 3.76 × 108 1.01 × 105 1.51 × 105 2.75 × 104

Min 3.32 × 104 2.82 × 108 6.93 × 103 2.04 × 104 1.12 × 104

C13
Mean 1.98 × 104 1.05 × 108 6.66 × 103 6.41 × 103 3.72 × 103

Min 1.52 × 104 3.30 × 107 1.40 × 103 1.69 × 103 2.53 × 103

C14
Mean 2.39 × 104 1.34 × 105 1.41 × 104 8.20 × 103 1.46 × 103

Min 9.40 × 103 5.22 × 104 3.03 × 103 2.02 × 103 1.45 × 103

C15
Mean 5.18 × 103 3.14 × 107 1.16 × 104 5.61 × 103 1.71 × 103

Min 4.54 × 103 8.14 × 106 1.61 × 103 1.52 × 103 1.61 × 103

C16
Mean 3.78 × 103 3.79 × 103 2.62 × 103 1.86 × 103 2.61 × 103

Min 2.82 × 103 3.42 × 103 2.07 × 103 1.62 × 103 2.09 × 103

C17
Mean 2.89 × 103 2.36 × 103 2.73 × 103 1.75 × 103 2.25 × 103

Min 2.42 × 103 2.10 × 103 1.96 × 103 1.73 × 103 1.82 × 103

C18 Mean 1.66 × 105 1.21 × 106 8.19 × 104 1.49 × 105 1.95 × 103

Min 1.52 × 105 4.28 × 105 6.88 × 103 4.31 × 104 1.87 × 103

C19 Mean 4.92 × 103 4.43 × 107 1.56 × 104 6.53 × 103 1.98 × 103

Min 3.86 × 103 1.77 × 107 2.31 × 103 1.91 × 103 1.95 × 103

C20
Mean 2.92 × 103 2.68 × 103 2.69 × 103 2.09 × 103 2.48 × 103

Min 2.47 × 103 2.49 × 103 2.29 × 103 2.00 × 103 2.36 × 103

C21
Mean 2.62 × 103 2.58 × 103 2.46 × 103 2.32 × 103 2.47 × 103

Min 2.34 × 103 2.54 × 103 2.39 × 103 2.31 × 103 2.41 × 103

C22
Mean 2.30 × 103 4.15 × 103 5.29 × 103 2.30 × 103 2.56 × 103

Min 2.30 × 103 2.71 × 103 2.30 × 103 2.30 × 103 2.30 × 103

C23
Mean 2.62 × 103 3.13 × 103 2.86 × 103 2.67 × 103 2.59 × 103

Min 2.36 × 103 3.06 × 103 2.76 × 103 2.65 × 103 2.49 × 103

C24
Mean 2.89 × 103 3.19 × 103 3.00 × 103 2.84 × 103 2.68 × 103

Min 2.65 × 103 3.12 × 103 2.91 × 103 2.83 × 103 2.62 × 103

C25
Mean 2.89 × 103 3.14 × 103 2.90 × 103 2.89 × 103 2.89 × 103

Min 2.88 × 103 3.07 × 103 2.88 × 103 2.89 × 103 2.88 × 103

C26
Mean 4.23 × 103 4.74 × 103 5.84 × 103 3.90 × 103 4.49 × 103

Min 3.77 × 103 3.74 × 103 4.74 × 103 3.74 × 103 3.77 × 103

C27
Mean 3.20 × 103 3.72 × 103 3.28 × 103 3.22 × 103 3.28 × 103

Min 3.15 × 103 3.62 × 103 3.22 × 103 3.21 × 103 3.23 × 103

C28
Mean 3.22 × 103 3.52 × 103 3.20 × 103 3.22 × 103 3.20 × 103

Min 3.05 × 103 3.47 × 103 3.12 × 103 3.20 × 103 3.12 × 103

C29
Mean 3.50 × 103 4.73 × 103 4.07 × 103 3.41 × 103 4.04 × 103

Min 3.35 × 103 4.45 × 103 3.55 × 103 3.32 × 103 3.68 × 103

C30
Mean 1.62 × 104 2.61 × 107 1.08 × 104 7.84 × 103 1.40 × 104

Min 1.07 × 103 1.22 × 107 5.67 × 103 6.36 × 103 5.96 × 103
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Table 4. Comparison of FDIBSO with latest competitive algorithms on 50-D problems.

BFs MSWOA HOA WMFO MFO-SFR FDIBSO

C1 Mean 1.46 × 108 1.15 × 1010 4.26 × 103 3.46 × 104 1.06 × 103

Min 6.34 × 107 8.35 × 109 1.05 × 102 9.39 × 103 2.83 × 102

C3 Mean 2.03 × 105 8.23 × 104 9.95 × 102 5.50 × 104 3.37 × 104

Min 9.34 × 104 6.99 × 104 3.22 × 102 4.22 × 104 1.74 × 104

C4 Mean 5.06 × 102 2.59 × 103 5.39 × 102 5.87 × 102 6.18 × 102

Min 4.28 × 102 2.06 × 103 4.96 × 102 5.20 × 102 5.61 × 102

C5 Mean 5.47 × 102 1.05 × 103 8.61 × 102 5.62 × 102 8.41 × 102

Min 5.18 × 102 1.01 × 103 7.21 × 102 5.32 × 102 8.22 × 102

C6 Mean 6.29 × 102 6.75 × 102 6.51 × 102 6.00 × 102 6.55 × 103

Min 6.21 × 102 6.65 × 102 6.29 × 102 6.00 × 102 6.51 × 102

C7 Mean 7.81 × 102 1.34 × 103 1.46 × 103 8.68 × 102 1.54 × 103

Min 7.54 × 102 1.29 × 103 1.20 × 103 8.10 × 102 1.33 × 103

C8 Mean 1.41 × 103 1.35 × 103 1.13 × 103 8.61 × 102 1.10 × 103

Min 8.10 × 102 1.28 × 103 1.02 × 103 8.32 × 103 1.07 × 103

C9 Mean 1.46 × 103 2.15 × 104 1.19 × 104 9.24 × 102 9.31 × 103

Min 1.11 × 103 1.42 × 104 5.50 × 103 9.07 × 102 6.43 × 103

C10 Mean 2.21 × 103 1.47 × 104 7.76 × 103 6.53 × 103 8.23 × 103

Min 2.03 × 103 1.32 × 104 6.40 × 103 5.14 × 103 6.83 × 103

C11 Mean 1.26 × 103 3.78 × 103 1.30 × 103 1.26 × 103 1.44 × 103

Min 1.16 × 103 3.24 × 103 1.20 × 103 1.15 × 103 1.29 × 103

C12 Mean 1.27 × 107 2.42 × 109 5.72 × 105 1.87 × 106 2.28 × 105

Min 8.56 × 106 1.71 × 109 1.34 × 105 1.08 × 106 1.03 × 105

C13 Mean 7.87 × 104 5.70 × 108 8.90 × 103 5.36 × 103 9.74 × 104

Min 4.86 × 104 4.31 × 108 2.61 × 103 1.75 × 103 2.47 × 104

C14 Mean 2.59 × 103 8.32 × 105 3.67 × 104 4.02 × 104 1.62 × 103

Min 2.54 × 103 2.22 × 105 1.15 × 104 1.20 × 104 1.56 × 103

C15 Mean 3.21 × 103 2.30 × 108 7.07 × 103 2.96 × 103 2.46 × 103

Min 2.81 × 103 9.91 × 107 1.94 × 103 1.53 × 103 1.73 × 103

C16 Mean 3.71 × 103 5.18 × 103 3.58 × 103 2.61 × 103 3.58 × 103

Min 2.57 × 103 4.75 × 103 2.51 × 103 2.15 × 103 3.04 × 103

C17 Mean 3.81 × 103 3.89 × 103 3.48 × 103 2.47 × 103 3.21 × 103

Min 2.77 × 103 3.18 × 103 2.83 × 103 2.02 × 103 2.92 × 103

C18 Mean 5.65 × 104 8.48 × 106 1.94 × 105 1.25 × 106 7.29 × 103

Min 4.29 × 104 4.50 × 106 3.38 × 104 1.07 × 105 2.51 × 103

C19 Mean 1.68 × 105 7.92 × 107 1.54 × 104 1.28 × 104 2.63 × 103

Min 9.57 × 104 2.98 × 107 2.17 × 103 2.45 × 103 2.17 × 103

C20 Mean 3.23 × 103 3.68 × 103 3.32 × 103 2.49 × 103 3.22 × 103

Min 2.96 × 103 3.26 × 103 2.53 × 103 2.08 × 103 2.69 × 103

C21 Mean 2.85 × 103 2.85 × 103 2.64 × 103 2.36 × 103 2.43 × 103

Min 2.56 × 103 2.77 × 103 2.52 × 103 2.34 × 103 2.32 × 103

C22 Mean 2.33 × 104 1.53 × 104 9.54 × 103 8.34 × 103 1.02 × 104

Min 2.31 × 103 4.47 × 103 8.21 × 103 6.32 × 103 9.43 × 103

C23 Mean 2.64 × 103 3.75 × 103 3.18 × 103 2.79 × 103 2.47 × 103

Min 2.49 × 103 3.53 × 103 3.06 × 103 2.76 × 103 2.44 × 103

C24 Mean 3.77 × 103 3.74 × 103 3.27 × 103 2.97 × 103 2.91 × 103

Min 3.52 × 103 3.60 × 103 3.10 × 103 2.93 × 103 2.85 × 103

C25 Mean 3.99 × 103 4.33 × 103 3.06 × 103 3.07 × 103 3.03 × 103

Min 3.73 × 103 4.00 × 103 3.02 × 103 2.99 × 103 2.83 × 103

C26 Mean 5.19 × 103 5.80 × 103 8.34 × 103 4.41 × 103 5.08 × 103

Min 3.87 × 103 5.17 × 103 2.90 × 103 4.05 × 103 4.24 × 103

C27 Mean 5.11 × 103 5.05 × 103 3.76 × 103 3.31 × 103 3.81 × 103

Min 3.97 × 103 4.66 × 103 3.46 × 103 3.27 × 103 3.45 × 103

C28 Mean 3.75 × 103 4.74 × 103 3.30 × 103 3.38 × 103 3.30 × 103

Min 3.23 × 103 4.47 × 103 3.26 × 103 3.31 × 103 3.22 × 103

C29 Mean 4.23 × 103 6.51 × 103 4.87 × 103 3.55 × 103 4.05 × 103

Min 4.13 × 103 6.11 × 103 4.29 × 103 3.29 × 103 3.84 × 103

C30 Mean 1.14 × 107 3.34 × 108 1.20 × 106 1.14 × 106 7.54 × 106

Min 1.08 × 107 2.37 × 108 6.44 × 105 3.44 × 105 9.57 × 105
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(a) C3 (b) C14

(c) C15 (d) C18

Figure 3. The convergence trajectories for four benchmark functions in 30-dimensional scenarios.

Drawing on the optimization accuracy outcomes for each algorithm, this study un-
derscores the FDIBSO algorithm’s efficacy with additional proof from the Friedman test.
The outcomes of these non-parametric tests are detailed in Tables 5 and 6. Moreover,
the analyses involving the Friedman test are designed explicitly to contrast the FDIBSO
algorithm against other enhanced BSO algorithms, with the aim of maintaining the paper’s
conciseness.

Table 5. Outcomes of Friedman’s test across all algorithms.

Algorithm BSO ADMBSO GDBSO DDGBSO FDIBSO

Ranking 4.38 2.24 3.14 2.51 2.03

Table 6. Outcomes from the Wilcoxon statistical test for FDIBSO.

Algorithm p-Value R+ R−
FDIBSO vs. BSO 0.000016 417 18

FDIBSO vs. ADMBSO 0.149429 249 129
FDIBSO vs. GDBSO 0.004745 327 79

FDIBSO vs. DDGBSO 0.0750 256 119
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(c) C15 (d) C18

Figure 4. The convergence trajectories for four benchmark functions in 50-dimensional scenarios.

The Friedman test facilitated the calculation of each algorithm’s average rank across all
test functions. Within this nonparametric statistical analysis, a lower rank indicates superior
algorithm performance. The outcomes of this test are displayed in Table 5. FDIBSO ranked
first (2.03), while ADMBSO ranked second (2.24). Additionally, the significance of the
algorithm was assessed using the Wilcoxon statistical test, with findings presented in Table 6.
Compared to FDIBSO, the p-values for the two algorithms were below 0.05, signifying that
the FDIBSO algorithm significantly outperforms the BSO and GDBSO algorithms. Although
the p-value of the FDIBSO algorithm is more significant than 0.05 when comparing the
ADMBSO and DDGBSO algorithms, they are both much less than the value of 0.5, which
proves that the FDIBSO algorithm performs better than the other two algorithms. Moreover,
the resistance values R+ and R− highlight FDIBSO’s outstanding performance. These
outcomes further affirm the efficacy of the FDIBSO algorithm.

4.3. AUV Intelligence Evaluation Application Example

AUV intelligence evaluation can save test costs and provide guidance direction for
enhancement of AUV intelligent capabilities, of which, the key technology is the solution of
the combined weight model. In this paper, we drew on the multi-expert combined weight
model (MMCW) proposed in [36] for evaluating AUV intelligence and simulation to verify
the effectiveness and feasibility of the FDIBSO algorithm. The expression for this combined
weight model is as follows.
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MinH = α
n

∑
i=1

ki ln ki + β
n

∑
i=1

{
m

∑
j=1

wcj ln

(
wcj

wij

)}
, (10)

where α and β are combination coefficients and are both set to 0.5, k is an n-dimensional
variable, wcj is a function related to the variable k, and wij is a constant value. The settings
for these parameters refer to reference [36]. This model is relatively complex, thus posing a
challenge to the performance of optimization algorithms.

In this reference, for the solution of this optimization model, the comparison algorithm
uses the differential evolution algorithm (DE), modified differential evolution algorithm
(MDE), and GDBSO algorithm, with the same parameter settings as in [36]. These algo-
rithms are relatively old and perform poorly, as can be seen in the experimental section
of this article, where the computational performance of several algorithms is low. What
is more noteworthy is that the experiments only pertain to four-dimensional variables.
Therefore, as the dimensions increase, the problems with the performance of the algorithms
become increasingly evident. The lower optimization performance can lead to bias in the
computation of weights, which in turn, affects the performance evaluation of different
AUV systems.

In response to the issues mentioned above, this paper introduces the FDIBSO algo-
rithm, which has higher optimization performance, into the model’s solution process to
achieve a more accurate assessment of AUV intelligence. In order to examine the per-
formance gap between the FDIBSO algorithm and the comparative algorithms at higher
dimensions, this paper employs the Monte Carlo method to generate multiple sets of
simulated weights. The experiments limited the number of iterations to 200. The speed
at which each algorithm converged was assessed across three conditions with 10, 20, 30,
and 50 dimensions, with the results depicted in Figure 5. Additionally, to ensure consis-
tency in experimental testing of the comparative algorithms, the performance of other BSO
variants used in the CEC2018 experiments, including ADMBSO and DDGBSO algorithms
(the GDBSO algorithm has already been compared), was tested. The results are shown
in Figure 6. The mean convergence time required to achieve the optimal solution was
calculated and documented in Tables 7 and 8. A “No” in the table means the algorithm
cannot find a global optimal solution within the given number of iterations.

Table 7. The mean convergence time of each algorithm (unit: seconds).

Algorithm BSO DE MDE GDBSO FDIBSO

Mean (D-10) 1.65 0.24 0.13 0.22 0.33

Mean (D-20) No 0.55 0.26 0.47 0.51

Mean (D-30) No No 0.53 0.82 0.98

Mean (D-50) No No No 1.44 1.72

Table 8. The mean convergence time of different BSO variants (unit: seconds).

Algorithm BSO ADMBSO DDGBSO GDBSO FDIBSO

Mean (D-10) 1.65 0.27 0.13 0.22 0.33

Mean (D-20) No 0.67 0.53 0.47 0.51

Mean (D-30) No 1.03 0.77 0.82 0.98

Mean (D-50) No 2.23 1.49 1.44 1.72
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(a) D-10 (b) D-20

(c) D-30 (d) D-50

Figure 5. Convergence curves for each algorithm based on the MMCW model in four dimensions.

First, whether comparing various BSO variant algorithms or comparing the several
algorithms used in reference [36], the FDIBSO algorithm proposed in this paper demon-
strates the best convergence performance when solving the MMCW model. In addition, the
advantage of the FDIBSO algorithm is more evident with the increase in dimensions under
the four conditions. Second, under the limit of 200 iterations, some algorithms cannot find
the global optimal solution under some dimensional conditions. However, the FDIBSO
algorithms can all find the global optimal solution with the minimum number of iterations.
When comparing the mean convergence time, the FDIBSO algorithm, due to the use of
spectral clustering, leads to an increased time complexity. Although it is not advantageous
compared to some other BSO algorithm variants, it is only inferior to the DDGBSO and
GDBSO algorithms and is better than the ADMBSO algorithm.

The experimental findings indicate that, in terms of computing weights for AUV
intelligence evaluation, the FDIBSO algorithm exhibits superior overall performance.
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(a) D-10 (b) D-20

(c) D-30 (d) D-50

Figure 6. Convergence curves for BSO variants based on the MMCW model in four dimensions.

5. Discussion

Drawing upon the experimental outcomes detailed in Sections 4.2 and 4.3, it is evident
that the FDIBSO algorithm possesses several advantages. First, the FDIBSO algorithm
demonstrates superior optimization precision compared to other variations of the BSO
algorithm, showcasing its ideal advantage. The FDIBSO algorithm can achieve optimal
optimization search results on more than half of the functions featured in the CEC2018. This
assertion is supported by the data in Tables 1, 2, 5 and 6. Second, the optimization precision
of the FDIBSO algorithm holds a distinct edge over other contemporary competitive
intelligent algorithms. The results show that although the FDIBSO algorithm achieve the
same level of effectiveness as the MFO-SFR algorithm, it performs better at some functions
and significantly outperforms other intelligent algorithms. This assertion is substantiated
by Tables 3 and 4. Third, the rate of convergence for the FDIBSO algorithm does not match
the velocity of some BSO variants in the early stage, but with advancement of iterations, the
convergence speed can be realized to overtake that of the other algorithms. This assertion
is supported by Figures 3 and 4. Fourth, although the FDIBSO algorithm is slightly inferior
in time complexity to some BSO variant algorithms when calculating the MMCW model,
its convergence performance is superior to all algorithms. It can converge to the optimal
solution with the fewest iterations for problems with various dimensions, thus improving
the accuracy of weight calculations. The conclusion can be confirmed by Figures 5 and 6
and Tables 7 and 8.

Numerous experiments have confirmed FDIBSO’s advanced efficacy over prior en-
hanced BSO algorithms. As an innovative approach influenced by human behavioral
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patterns, FDIBSO has shown significant promise for tackling intricate optimization issues.
Additionally, incorporating the flock decision mutation strategy, good point set, and spec-
tral clustering method within FDIBSO encourages the development of more innovative
approaches for increasingly complex challenges. Moving forward, FDIBSO is set to tackle
high-dimensional and large-scale applications.

Future studies may explore several avenues: further improving the optimization
accuracy of the FDIBSO algorithm on all tested functions, improving the algorithm’s
convergence speed in the early stage, and utilizing the BSO algorithm for more real-world
engineering optimization challenges.

6. Conclusions

This study introduces the improved brain storm optimization algorithm based on the
flock decision mutation strategy. First, the flock decision mutation strategy is proposed
to improve the BSO algorithm’s optimization accuracy for various optimization issues.
Second, the good point set and spectral clustering are integrated within the BSO algorithm,
enhancing the algorithm’s population diversity and clustering accuracy. Third, this paper
compares and analyzes FDIBSO and the BSO, ADMBSO, GDBSO, DDGBSO, MSWOA,
HOA, WMFO, and MFO-SFR algorithms. The results show that for the MMCW model
in AUV intelligence evaluation and many benchmark functions from the CEC2018, the
FDIBSO algorithm has the best performance.
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