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Abstract: The moisture content of fine dead surface fuel in forests is a crucial metric for assessing
its combustibility and plays a pivotal role in the early warning, occurrence, and spread of forest
fires. Accurate prediction of the moisture content of fine dead fuel on the forest surface is a critical
challenge in forest fire management. Previous research on fine surface fuel moisture content has
been mainly focused on coniferous forests in cold temperate zones, but there has been less attention
given to understanding the fuel moisture dynamics in subtropical forests, which limits the develop-
ment of regional forest fire warning models. Here, we consider the coupled influence of multiple
meteorological, terrain, forest stand, and other characteristic factors on the fine dead fuel moisture
content within the subtropical evergreen broadleaved forest region of southern China. The ability
of five machine learning algorithms to predict the moisture content of fine dead fuel on the forest
surface is assessed, and the key factors affecting the model accuracy are identified. Results show
that when a single meteorological factor is used as a forecasting model, its forecasting accuracy is
less than that of the combined model with multiple characteristic factors. However, the prediction
accuracy of the model is improved after the addition of forest stand factors and terrain factors. The
model prediction ability is the best for the combination of all feature factors including meteorology,
forest stand, and terrain. The overall prediction accuracy of the model is ordered as follows: random
forest > extreme gradient boosting > support vector machine > stepwise linear regression > k-nearest
neighbor. Canopy density in forest stand factors, slope position and altitude in terrain factors, and
average relative air humidity and light intensity in the previous 15 days are the key meteorological
factors affecting the prediction accuracy of fuel moisture content. Our results provide scientific
guidance and support for understanding the variability of forest surface fuel moisture content and
improved regional forest fire warnings.

Keywords: fuel moisture content; multi-feature variable combination; model comparison; machine
learning; subtropical forest

1. Introduction

Uncontrolled forest fires can seriously damage or even destroy the structure and
function of forest ecosystems, and they also pose a threat to the safety of human life and
property [1]. In recent years, with the warming of climate and the intensification of human
activities, forest fires have become more frequent worldwide [2–5]. For example, Canada
suffered an unprecedented forest fire in 2023, with more than 6000 individual fires recorded
over an area of more than 170,000 square kilometers [6]. When the moisture content of fine
dead surface fuel (including dead leaves, thin branches, dead grass, needles, etc.) is low,
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the fuel becomes relatively dry with a lower ignition point, thereby increasing susceptibility
to forest fire. The moisture content directly affects the ignition potential and behavior of
forest fires; hence, it serves as a core reference index of regional forest fire warnings. For
example, the surface fine fuel moisture content is an essential parameter within forest fire
warning systems implemented in Canada and the United States [7,8].

There are many methods to predict the moisture content of fine dead forest surface,
including equilibrium moisture content, remote sensing estimation, meteorological element
regression, and the process model. The equilibrium moisture content method combines
the advantages of both the physical process and the statistical model, incorporating only
air temperature and relative air humidity as environmental factors. However, its key
parameters need to be obtained through experiments, which is greatly affected by the
environment and requires extensive work in large-scale application [9–11]. The remote
sensing estimation method is suitable for the prediction of fuel moisture content in forest
canopies. But remote sensing has limited observation ability under the forest canopy, so its
prediction accuracy is low [12,13]. The meteorological element regression method is simple
in design, but it is limited by the physical and chemical properties of the fuel itself and the
study area, and the spatio-temporal extrapolation effect is usually poor [14,15]. The process
model is based on physical descriptions, which is difficult to apply in practice because of
its complexity [16,17].

Machine learning algorithms can describe complex nonlinear relationships between
independent variables and dependent variables, and can be considered both process
models and statistical models. Such methods have found extensive recent application
in many fields, including fuel moisture content prediction [18,19]. Fan et al. analyzed
the dynamic changes and driving factors of typical dead surface fuel moisture content in
the cold temperate zone of northeast China and compared the performance of machine
learning algorithms with traditional equilibrium moisture content prediction models [14].
Miller et al. estimated the surface fuel moisture content of the continental United States by
establishing a temporal convolutional network [20]. Capps et al. estimated the fuel moisture
content in California by establishing a random forest model [21]. Typical models used
for predicting fuel moisture content include random forest (RF), support vector machine
(SVM), extreme gradient boosting (XGB), k-nearest neighbor (KNN), and stepwise linear
regression (StepLm). Each of these models have their own advantages and disadvantages
in parameter input and algorithm operation. For example, the linear regression method
is simple and easy to explain and has high computational efficiency. It works well when
there is a linear relationship between features and targets. However, it is unable to deal
with nonlinear relationships, is sensitive to outliers, and needs to meet linear regression
assumptions [15,19]. Random forest uses decision trees to reduce the overfitting risk of
regression, can handle high-dimensional data and large-scale features, and provides feature
importance assessment. However, some interpretability is lost, and it is difficult to adjust
the model parameters [15]. Support vector machines can deal with nonlinear problems and
can adapt to different types of data by selecting appropriate kernel functions. However, for
complex nonlinear relationships, it may be necessary to select appropriate kernel functions
and parameters, and the computational complexity is high, especially for large data sets [22].
Most previous approaches only use a single model, and there are relatively less studies
that comprehensively compare multiple machine learning algorithms; thus, how different
machine learning models differ in the prediction of fuel moisture content is unknown.

Prediction models of fuel moisture content based on meteorological factors have
been previously established [23]. However, the moisture content of fine dead fuel is
easily affected by many non-meteorological factors such as terrain and forest stand, and
these may have indirect or direct interactions. For example, topographic features (slope
gradient, aspect, slope position, and altitude) affect the moisture content of fine dead fuel by
controlling the light, air temperature, precipitation, and heat conditions in the forest [24,25].
Forest stand factors (canopy density, tree height, diameter at breast height, etc.) can
indirectly affect the moisture content of fine dead fuel by affecting the structure of the forest
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ecosystem [26,27]. In addition, there are local environmental differences in forests due to
the differences in terrain and vegetation. Even under the same meteorological conditions
(air temperature, relative air humidity, wind speed and illumination intensity, etc.) in
different vegetation and terrain conditions, the impact on the moisture content is different.
The influence of meteorological factors on the fuel moisture content is typically at a time
lag [18,28]. Therefore, better fuel moisture content prediction models can be constructed by
considering the coupled impact of meteorological, terrain, and forest stand factors.

The bulk of previous research on fuel moisture content focuses on cold temperate
coniferous forests and Mediterranean climate forest areas [14,15,29]. The subtropical zone,
which accounts for 11% of the global forest area [30], is one of hardest hit by forest fires [31].
Subtropical forest fires in China, the United States, Australia, and other countries have
become more frequent in recent years [1,32,33], with annual forest losses of about 3.9 million
hectares, accounting for about 18% of the world total forest loss [34]. China accounts for
21.7% of the global subtropical forest area, and about 84% of forest fires in China occur in
subtropical regions [31].

Here, we consider the Gannan area of southern China, which has significant subtrop-
ical forest coverage, and a variety of machine learning algorithms are used to construct
prediction models of fine dead fuel moisture content. Our approach involves:

(1) Employing a variety of machine learning algorithms including the stepwise linear
regression method (StepLm), random forest (RF), k-nearest neighbor (KNN), support vector
machine (SVM), and extreme gradient boosting (XGB) to explore the ability of different
machine learning algorithms to predict the fine dead fuel moisture content on the surface
of Pinus massoniana forests.

(2) Construction of different feature factor combination Schemes to compare the effects
of different parameters on the prediction of fine dead surface fuel moisture content.

(3) Evaluating the relative importance of variables in each machine learning algo-
rithm and analyzing the contribution rate of variables for each fuel moisture content
prediction model.

2. Materials and Methods
2.1. Study Area

Our research domain in the south of Jiangxi Province, China (Gannan region), is located in
24◦29′–27◦09′ N, 113◦54′–116◦38′ E, with a total area of 39,379.6 square kilometers (Figure 1). The
study area belongs to the subtropical monsoon humid climate, characterized by four distinct seasons,
an average annual air temperature of 19.3 ◦C, and an average annual precipitation of 1568.8 mm.
Over the past 20 years (2003–2023), there has been a decrease in average annual precipitation and
an increase in temperatures, leading to drier meteorological conditions from 2021 to 2023 within
the timeframe of this study (Figures S1 and S2 of Supplementary Materials). The terrain is mainly
mountainous and hilly, with an average altitude of 300–500 m. The population density in the Gannan
region is as high as 227 people per square kilometer, and the road network is well developed.

Gannan is one of the typical distribution areas of subtropical evergreen broad-leaved
forest, and the forest coverage rate is 76.2%. The main vegetation types are Pinus massoniana,
Cumninghamia lanceolata, Schima superba, Liquidambar formosana and Phyllostachys heterocycla.
Coniferous forests account for 64.2% of the total forest volume, and broad-leaved forests
account for 28.5% of the total forest volume [35].

Pinus massoniana is a large area of artificial coniferous forest planted in subtropical areas
of China, with an area of about 9280 square kilometers, accounting for 36% of the total area
of regional forests [36]. Pinus massoniana has low foliar moisture content and high pine oil
content, making it highly susceptible to forest fires. Once a fire occurs, it easily and quickly
spreads, forming large fires which can be extremely difficult to control. Pinus massoniana
fires in the Gannan area account for 32.7% of the total number of forest fires.
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Figure 1. Study area location and plot distribution map.

2.2. Data Acquisition

Five monitoring plots of Pinus massoniana forest are selected in Gannan. From July 2021
to August 2023, at a time step of 2 h, the meteorological conditions and moisture content
of fine dead surface fuel (composed of dead surface herbs and branches with diameter
less than 0.64 cm) were monitored in real time by using an automatic moisture content
monitor. The automatic monitor of fuel moisture content is fixed by a tripod and a weighing
push-pull rod, which consists of a tension sensor and a weighing cargo net. The sensors
for monitoring wind, temperature, and humidity as well as light are placed on the device
(Figure 2). The wet mass (g), air temperature (◦C), atmospheric relative humidity (%), wind
speed (m/s), and light intensity (lux) of fine dead fuel are collected synchronously and
automatically. The data are collected by the acquisition host, while the fuel loading and
meteorological data can be obtained through the Android mobile phone app or Beidou
satellite transmission. The entire device is powered by an accumulator and a solar panel to
ensure continuous operation of the monitoring device [37].

In the study plot, a 50 cm × 50 cm quadrat is set up with the monitor as the center,
and an automatic moisture content monitor is installed. The fine dead surface fuel collected
in the field is dried to constant weight in advance using an oven, and its dry weight is
recorded. Then, it is packed into a nylon cargo net. The lower part is in contact with
the soil surface while leaving the upper part uncovered. This non-destructive placement
on the ground mimics natural conditions and ensures water vapor exchange with the
surrounding environment. Periodically, a high-precision tension sensor automatically lifts
and measures the wet mass of the sample for continuous monitoring of moisture content.
Regular maintenance of equipment includes checking and replacing any rotten samples, as
well as ensuring reliability and integrity of experimental data collection.
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Figure 2. Automatic fuel moisture content monitor.

The formula of fuel moisture content is

M =
WH − WD

WD
(1)

where M is the fuel moisture content, WH is the wet mass of fuel, and WD is the dry mass
of fuel.

After removing the missing data caused by instrument failure, a total of 13,700 sets of
fuel moisture content data of Pinus massoniana are collected during the sampling period
(Table 1).

Table 1. Statistics of fuel moisture content data.

Time
Period

Order Statistic Descriptive Statistic

Minimum 25%
Value Median 75%

Value Maximum Arithmetic
Mean

Standard
Deviation

Skewness
Coefficient

Kurtosis
Coefficient

Spring 0.01 7.96 24.31 40.10 193.68 31.82 33.64 1.89 3.43
Summer 0.04 10.37 16.62 30.73 196.51 30.59 38.56 2.19 3.77
Autumn 0.01 13.09 21.38 75.82 199.43 49.72 51.64 1.10 −0.18
Winter 0.01 18.23 46.92 132.12 199.90 72.60 60.54 0.41 −1.35
Annual 0.01 12.51 20.88 59.10 199.90 45.45 50.07 1.31 0.36

With the automatic moisture content monitor as the center, a 20 m × 20 m quadrate is
set to obtain the forest stand and terrain factor information of the monitoring plots (Table 2).
The forest stand information is mean height (m), mean diameter at breast (cm), mean first
stalk height (m), and canopy density (%). Terrain information includes altitude (m), slope
position (upper, middle, and lower), and slope gradient (◦) aspect. The aspect is divided
into eight grades; the larger the number, the sunnier it is: 1 is north, 2 is northeast, 3 is
northwest, 4 is east, 5 is west, 6 is southeast, 7 is southwest, and 8 is south. The slope
position is divided into 3 levels: lower, middle, and upper; 1 is the down slope, 2 is the
middle slope, and 3 is the upper slope.
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Table 2. Forest stand and terrain factors of sample plots.

Plot
Number

Altitude
(m) Aspect Slope

Position

Slope
Gradient

(◦)

Mean
Height

(m)

Mean Diameter
at Breast

(cm)

Mean First
Stalk Height

(m)

Canopy
Density

(%)

1 249.1 East lower 16 7.1 12.0 3.1 10
2 235.8 West middle 9 4.1 8.2 1.1 20
3 159.7 Northeast upper 23 8.2 12.3 3.5 40
4 163.8 East middle 46 5.8 8.3 3.5 20
5 154.3 Southeast upper 22 8.4 12.0 2.6 25

2.3. Feature Factor Screening

The feature factors considered are meteorology, terrain, and forest stand. Because the
influence of air temperature, relative air humidity, wind speed, and light on the change in
fuel moisture content has a time lag, 48 average meteorological factors in the last m hours
(m = 0, 2, 4 . . . 24) and 16 average meteorological factors in the last n days (n = 3, 5, 7, 15)
are selected for a total of 64.

There is likely a high degree of collinearity between meteorological characteristic
factors. The collinearity between explanatory variables may distort model estimation
or interfere with simulation estimation accuracy, which makes its parameter estimation
unstable, and it is difficult to evaluate the relative importance of feature factors. Therefore,
a variance inflation factor (VIF) analysis is used to exclude meteorological factors with high
collinearity (VIF > 5) [38]. Out of 64 meteorological factors, 13 meteorological factors are
ultimately selected (Table 3).

Table 3. Feature factor screening.

Factors Abbreviation Full Name Unit Value Range VIF

meteorology

T Air temperature ◦C [−2.8, 44.4] 2.0

H Relative air humidity

%

[20, 99.9] 2.3

H8 Average relative air humidity in the last 8 h [21.7, 99.9] 3.2

H3d Average relative air humidity in the last 3 days [20.2, 99.7] 3.1

H15d Average relative air humidity in the last 15 days [47.7, 99.6] 2.2

S Light intensity

lux

[0, 81,469.4] 1.7

S8 Average light intensity in the last 8 h [0, 40,421.3] 3.0

S16 Average light intensity in the last 16 h [42.2, 22,745.3] 2.7

S15d Average light intensity in the last 15 days [959.7, 12,407.5] 2.4

W Wind speed

m/s

[0, 4.1] 1.9

W8 Average wind speed in the last 8 h [0, 2.2] 2.4

W3d Average wind speed in the last 3 days [0, 1.4] 2.1

W15d Average wind speed in the last 15 days [0, 0.8] 1.8

forest stand

MH Mean height m [4.1, 9.4]

/

MDBH Mean diameter at breast cm [8.2, 13.8]

MFSH Mean first stalk height m [1.1, 3.5]

CD Canopy density % [10, 50]

terrain

Alt Altitude m [153.1, 249.1]

Asp Aspect / [2, 6]

SP Slope position / [1, 3]

SG Slope gradient ◦ [9, 46]
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2.4. Feature Factor Combination Scheme

Four combination Schemes are constructed using the various meteorology, terrain, and
forest stand factors (Table 4). A separate meteorological factor is used to establish a model
and explore the prediction accuracy of fuel moisture content (Scheme 1). After adding the
forest stand and terrain factors to the meteorological factors, we determine whether the
prediction accuracy of the fuel moisture content is improved (Scheme 2 and Scheme 3). The
meteorology, forest stand, and terrain factors are then combined to explore the change in
prediction accuracy of fuel moisture content (Scheme 4).

Table 4. Feature factor combination Schemes.

Combining Scheme Type of Factors

Scheme 1 meteorology
Scheme 2 meteorology + forest stand
Scheme 3 meteorology + terrain
Scheme 4 meteorology + terrain + forest stand

2.5. Prediction Model

The sample data set is randomly divided into 70% for training and 30% for testing.
Taking meteorological, forest stand, and terrain as independent variables, five machine
learning algorithms including stepwise linear regression (StepLm), random forest (RF),
k-nearest neighbor (KNN), support vector machine (SVM), and extreme gradient boosting
(Xgboost) are constructed to predict fine dead fuel moisture content.

The stepwise liner regression method (StepLm) is a generalization of univariate linear
regression analysis. The principle is that after introducing all independent variables into
the equation, according to the degree of influence of independent variables on dependent
variables, a correlation significance test coefficient is used to eliminate the independent
variables without significance. The independent variables with statistical significance are
selected, and regression models are established to reflect the correlation between multiple
independent variables and dependent variables [14,15]. Stepwise linear regression is based
on the ‘MASS’ package in the R-project.

Random forest (RF) is an ensemble learning method widely used in regression and
classification problems. It integrates the prediction results of multiple randomized decision
trees and obtains the final prediction results by voting or averaging [15,39]. Random
forest can overcome the complex nonlinear relationship between multi-factor and different
dimension data. It has high prediction accuracy, faster learning speed, and good tolerance
to outliers and noise [21,40]. This study uses the ‘randomForest’ package in the R-project
to construct a random forest model.

K-nearest neighbors (KNN) is a commonly used supervised learning algorithm. The
classification or prediction is based on the similarity between instances, that is, the decision is
made based on the characteristics of the sample and the label of the nearest k neighbors [41].
The basic idea of the KNN algorithm is, for an unknown sample, to calculate its distance from
each sample in the training data set and select the k neighbors that are closest to it. Then,
voting or weighted voting is performed according to the labels of these k neighbors, and the
sample is assigned to the majority class [42]. For the regression problem, the average of k
neighbors can be used as the predicted value. The k-nearest neighbor algorithm is based on
the ‘class’ package in the R-project.

Support vector machine (SVM) is a classifier developed based on statistical theory.
The core goal is to find an optimal hyperplane to clearly separate different classes of data
points in N-dimensional space while maximizing the spacing between this hyperplane
and data points [22,39]. It has great advantages in solving nonlinear and high-dimensional
pattern sample recognition, effectively overcoming the ‘dimensional disaster’ and other
problems to a large extent. Support vector machine is established by using the ‘kernlab’
package in the R-project.
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Extreme gradient boosting (XGB) is an ensemble learning model based on the gradient
boosting decision tree algorithm. It is an efficient, flexible, and extensible machine learning
algorithm with strong predictive performance and nonlinear mapping ability. It is often
used to solve problems such as classification and regression, and has been widely used in
data mining, recommendation systems, and other fields [42]. Extreme gradient boosting is
built using the ‘xgboost’ package in the R-project.

A 10-fold cross-validation (CV) of the ‘caret’ package in the R-project is used for all
machine learning algorithms to evaluate the performance of the model. The train function
in the ‘caret’ package is used to optimize the parameters of RF, KNN, SVM, and XGB in
different Schemes [43].

2.6. Model Evaluation

The mean absolute error (MAE), root mean square error (RMSE), and coefficient of de-
termination (R2) are used as the criteria for evaluating the performance of the fuel moisture
content prediction model and the comparison of feature factor combination Schemes:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(4)

where n represents the number of samples, yi represents the measured value of fuel
moisture content (%), ŷi represents the predicted value of the fuel moisture content (%),
y represents the average value of the measured value of the fuel moisture content.

3. Results
3.1. Parameter Selection and Accuracy Comparison of Machine Learning Algorithms

The optimization results of RF, KNN, SVM, and XGB parameters in different Schemes
are shown in Table S1. The fitting equation of the model in StepLm is shown in Table S2.

The prediction accuracy evaluation indexes R2 of each model are shown in Figure 3,
and RMSE and MAE are shown in Figure 4. The RF model has the highest prediction
accuracy and the best fitting effect, with the highest R2 of 0.996, the lowest RMSE and MAE
of 3.370% and 1.934%, respectively. The prediction accuracy of the XGB model is second,
R2 is up to 0.953. The R2 of the SVM model is up to 0.883, and RMSE and MAE are 17.059%
and 10.693%. The R2 of StepLm is 0.722, and the RMSE and MAE values are relatively high,
26.446% and 19.190%, and the accuracy of the prediction model is slightly worse. The KNN
model has the lowest prediction accuracy, R2 is only 0.238, and the RMSE and MAE values
are 43.701% and 33.352%.

The highest accuracy and optimal Scheme of the fuel moisture content prediction
model established by five different machine learning algorithms are next selected for
comparative analysis. The results show that the overall prediction accuracy of the model is
RF > XGB > SVM > StepLm > KNN (Table 5).
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Figure 3. Scatterplot of the error between the measured value and the predicted value of fuel 
moisture content. (A–D) RF, (E–H) XGB, (I–L) SVM, (M–P) StepLm, (Q–T) KNN. The red solid line 
represents the fitting line of the predicted value, and the black dotted line represents the 1:1 line. 

Figure 3. Scatterplot of the error between the measured value and the predicted value of fuel moisture
content. (A–D) RF, (E–H) XGB, (I–L) SVM, (M–P) StepLm, (Q–T) KNN. The red solid line represents
the fitting line of the predicted value, and the black dotted line represents the 1:1 line.

Table 5. Model accuracy in machine learning algorithm Schemes.

Method Scheme RMSE (%) MAE (%) R2

RF 4 3.370 1.934 0.996
XGB 4 10.925 7.727 0.953
SVM 2 17.059 10.693 0.883

StepLm 4 26.446 19.190 0.722
KNN 4 43.701 33.352 0.238
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3.2. Prediction Accuracy Evaluation of Each Combination

The maximum MAE and RMSE values of Scheme 1 containing only meteorological
factors are 45.561% and 35.123%, respectively, so the prediction accuracy of Scheme 1
fuel moisture content model is the lowest. After adding forest stand and terrain factors
to meteorological factors, the prediction accuracy of Scheme 2 and Scheme 3 is greatly
improved. The stepwise regression method has the most significant change, MAE improves
from 35.123% to 19.401%, RMSE improves from 45.561% to 26.635%, and other machine
learning algorithms also improve to varying degrees. The prediction accuracy of Scheme 4,
which includes all factors in the SVM method, is slightly lower than that of Scheme 2 and
Scheme 3. However, the difference is not significant. The Scheme 4 model with all factors
considered has the highest prediction accuracy (Figure 4).

Compared with Scheme 1 and Scheme 2, the accuracy of MAE is improved by 15.72%
and the accuracy of RMSE is improved by 18.926% after adding forest stand factors to
meteorological factors. Compared with Scheme 1 and Scheme 3, the MAE accuracy is
improved by 0.307%–14.902%, and the RMSE accuracy is improved by 0.346%–18.072%
after adding the terrain factor to the meteorological factor. Compared with Scheme 1 and
Scheme 4, MAE accuracy increases by 0.307%–15.934% and RMSE accuracy increases by
0.344%–19.115% when meteorological factors are combined with forest stand and terrain
factors; it is the largest improvement.
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The prediction accuracy of Scheme 1 model with meteorological factors alone is the
lowest. The model accuracy of Scheme 2 and Scheme 3 is better than that of Scheme 1, and
the overall accuracy of Scheme 2 and Scheme 3 is not much different. In addition to SVM, the
prediction model of fuel moisture content in Scheme 4 has the highest accuracy (Table 6).

Table 6. Accuracy difference of each machine learning algorithm model.

Accuracy Difference
RF XGB SVM StepLm KNN

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Scheme 1–Scheme 2 0.873 1.832 5.969 8.182 8.127 15.600 15.723 18.926 −0.002 −0.002
Scheme 1–Scheme 3 0.865 1.844 6.121 8.561 8.083 15.445 14.902 18.072 0.307 0.346
Scheme 1–Scheme 4 0.865 1.852 6.260 8.726 7.743 14.961 15.934 19.115 0.307 0.344
Scheme 2–Scheme 3 −0.008 0.012 0.152 0.378 −0.044 −0.155 −0.821 −0.854 0.309 0.347
Scheme 2–Scheme 4 −0.009 0.020 0.291 0.543 −0.384 −0.639 0.211 0.189 0.309 0.345
Scheme 3–Scheme 4 0.000 0.008 0.139 0.165 −0.340 −0.484 1.032 1.043 0.000 −0.002

3.3. Relative Importance of Factors

The optimal Scheme of five machine learning algorithms is selected, and the ‘caret’
package in R is used to explore the relative importance of each feature factor in each
machine learning algorithm, as shown in Figure 5.
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In the RF model, slope position (SP), canopy density (CD), average light intensity
within 15 days (S15d), altitude (Alt), average relative air humidity within 15 days (H15d), and
average wind speed within 15 days (W15d) have higher relative importance. The relative
importance of slope position (SP) and altitude (Alt) in terrain factors, canopy density (CD)
in forest stand factors, and average light intensity within 15 days (S15d) in meteorological
factors account for more than 60% Those are the four most important factors in the random
forest model.

In the SVM model, canopy density (CD), average relative air humidity within 15 days
(H15d), mean diameter at breast height (MDBH), average relative air humidity within
3 days (H3d), and average light intensity within 15 days (S15d) are relatively important in
the model construction. Canopy density (CD) and average relative air humidity within
15 days (H15d) are the two factors with the highest proportion of relative importance.

In the XGB model, canopy density (CD), average light intensity within 15 days (S15d),
average relative air humidity within 15 days (H15d), average relative air humidity within
3 days (H3d), average light intensity within 16 h (S16), average wind speed within 15 days
(W15d), and air temperature (T) account for a relatively high proportion in the model. The
relative importance of canopy density (CD) is more than 60%.
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In the StepLm model, slope position (SP), canopy density (CD), altitude (Alt), average
relative air humidity within 15 days (H15d), and mean diameter at breast (MDBH) are
relatively important. Slope position (SP) and altitude (Alt) and canopy density (CD) are the
top three ranked in relative importance in the StepLm model.

In the KNN model, slope position (SP), canopy density (CD), altitude (Alt), average
relative air humidity within 15 days (H15d), mean diameter at breast height (MDBH),
average relative air humidity within 3 days (H3d), and average light intensity within
15 days (S15d) account for a relatively high proportion in the model construction process.
The slope position (SP) and the canopy density (CD) are similar to other models but are
still the two factors with the highest proportion of relative importance.

Comprehensive analysis shows that canopy density (CD), slope position (SP) and
altitude (Alt), average relative air humidity within 15 days (H15d), and average light inten-
sity within 15 days (S15d) are the most important overall factors. The relative importance
of wind speed (W) and light intensity (S) and the average light intensity within 8 h (S8)
rank last. According to the time series analysis, relative air humidity (H), average relative
air humidity within 8 h (H8), average relative air humidity within 3 days (H3d), average
relative air humidity within 15 days (H15d), and average light intensity within 8 h (S8)
exhibit a certain linear correlation with fuel moisture content (Figures 6 and S3). While
other meteorological factors are relatively important in machine learning models, there is
no clear linear relationship between them and the fuel moisture content. This indicates that
a complex nonlinear relationship exists between these factors and fuel moisture content.
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4. Discussion

Five machine learning algorithms performed well in predicting the moisture content
of fine dead fuel in the forest. The overall prediction accuracy of the models is RF > XGB >
SVM > StepLm > KNN. The determination coefficient R2 of the RF model can reach 0.996,
indicating that the RF model is suitable for the prediction of the moisture content of fine
dead fuel on the forest surface in subtropical regions. This is similar to the conclusion of
Masinda [44] for the middle temperate zone of China and McCandless [45] for the north
temperate zone of the United States. This shows that random forest can effectively simulate
the complex nonlinear relationship between fuel moisture content and environment and has
high prediction accuracy [14,15,21]. The optimal prediction accuracy R2 of XGB and SVM
models is 0.953 and 0.883, respectively, which shows that XGB and SVM have advantages
in solving nonlinear and multivariate pattern sample recognition and that they have strong
prediction performance and nonlinear mapping ability [42,46].

The accuracy (R2) of the StepLm model is 0.772, which is relatively lower than that of
other models, possibly because of the complex nonlinear relationship between the moisture
content of fine dead fuel and environmental factors [13]. However, the overall accuracy of
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StepLm in this paper is higher than that of Fan et al. [14] in predicting the fuel moisture
content of typical tree species in Northeast China (R2 is 0.244). More forest stand factors,
terrain factors, and meteorological factors at a time delay were considered here, which
may explain our improved results [28]. The lowest prediction accuracy R2 of the model in
KNN is 0.238, which may be due to the large sample size and more feature factors. KNN
is affected by the ‘dimension disaster’, which reduces the efficiency of KNN classification
and increases the error of model prediction results [19,42].

The model accuracy of the Schemes based on single meteorological factors is generally
low. However, the model prediction accuracy when adding forest stand factors and/or
terrain factors increased, which indicates that a single type of characteristic factor is insuffi-
cient to predict the moisture content of fine dead surface fuel with high accuracy [14,47].
However, most previous moisture content prediction models only included meteorological
factors, and did not consider forest stand, terrain, and average meteorological factors at a
time delay as important variables for modeling and analysis, which may explain the low
accuracy [14,48]. In subtropical evergreen broad-leaved forest areas with high biodiversity
and high vegetation coverage, the combination of multi-type characteristic factors can make
full use of terrain, forest stand, and other characteristic information to improve the accuracy
of the model to predict fine dead surface fuel moisture content in forests [26,47,49].

The canopy density (forest stand factors), slope position and altitude (terrain factor),
and average relative air humidity within 15 days and average light intensity within 15 days
(meteorological factors) all play an important role in the prediction of fuel moisture content.
When the canopy density is high, the light intensity in the forest is low, the air temperature
is decreased, the relative air humidity is increased, the water evaporation rate is slowed
down, and the surface fuel moisture content is increased [27,50]. There is also a clear
correlation between slope location and altitude. Generally, the air temperature is low in
the high-altitude area, while the light intensity, air temperature, and ventilation are weak
in the downhill area, and the surface fuel moisture content is high [24]. It takes time for
the fuel moisture content to change to an equilibrium state, so meteorological factors are
time-lagged to the change in the fuel moisture content [28]. Yu et al. proposed that the
appropriate equilibrium moisture content model should be selected according to forest
stand and terrain conditions in different regions, or a prediction model of fuel moisture
content based on different forest stand parameters should be established [27]. Hu et al.
pointed out that terrain factors such as slope gradient and aspect are significantly correlated
with fuel moisture content [51]. Shmuel et al. pointed out that adding meteorological factors
at a time delay into the dead fuel moisture content prediction model can greatly improve
the prediction accuracy of the model [18]. Therefore, among all factors, selecting the
characteristic factors with highest relative importance significantly improves the prediction
accuracy of the model.

Guo et al. pointed out that the lower the relative humidity of the air, the higher the
altitude and the steeper the slope of subtropical forest, the more likely the high-intensity
forest fire will occur [35]. The moisture content model in this study predicts that low
moisture content is more likely to cause forest fires under these conditions, which aligns
with our results. Additionally, according to the report by Jiangxi Provincial Emergency
Management Department from 2022 to 2023, there were 13 forest fires in the study area. Of
those, 11 occurred during the periods of relatively low moisture content (84.62%), indicating
high prediction accuracy. Currently, most of the forest fire warning platforms rely solely on
meteorological factors alone and struggle to accurately predict fire occurrence. However,
since the moisture content is influenced by multiple factors and directly related to fire risk.
The lower the moisture content, the higher the forest fire risk. Therefore, this model has an
important reference value for assessing forest fires.

The prediction accuracy of machine learning algorithms used here is generally high,
with the prediction accuracy of RF model being the highest [15,21]. However, it is worth
noting that machine learning models cannot clearly describe the intermediate operation
process via mathematics [14,19]. Therefore, future research should consider combining
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machine learning algorithms with process models based on physical descriptions so as to
achieve more comprehensive, accurate, and reliable support for constructing a forest fire
warning platform in the future.

In our work, environmental factors such as fuel moisture content and meteorological
data have only been observed for a period of two years. The meteorological, terrain and
forest stand factors that influence the fuel moisture content exhibit significant temporal or
spatial variability. There are variations in the interannual fluctuations of meteorological
factors and the moisture content among different forest vegetation types at various suc-
cession stages. Therefore, in order to improve the accuracy and reliability of the model’s
predictions, it is imperative to collect meteorological and other factor data over a longer
time period in the future. Additionally, it is essential to develop fuel moisture content
prediction models on a broader spatial scale for various vegetation types [52,53].

5. Conclusions

Here, five machine learning algorithms, StepLm, RF, KNN, SVM, and XGB are used
to establish prediction models of fine dead surface fuel moisture content. The results
show that the overall prediction accuracy of the model is RF > XGB > SVM > StepLm >
KNN. The prediction accuracy of RF, XGB, and SVM models is good, and the coefficient of
determination R2 can exceed 0.88.

In this study, four types of combination Schemes of meteorological, forest stand, and
terrain characteristics are comprehensively considered to predict fine dead surface fuel
moisture content. Scheme 1, which only includes meteorological factors, has the lowest
prediction accuracy. However, the prediction accuracy increases in Scheme 2 when forest
stand factors are added and in Scheme 3 when terrain factors are included. The best model
prediction ability is achieved in Scheme 4, which incorporates all feature factors, such as
meteorological, forest stand, and terrain.

The comprehensive consideration of forest stand, terrain, and average meteorological
factors (including time delayed factors) for predicting fine dead surface moisture content is
critical. The canopy density (forest stand factor), slope position and altitude (terrain factors),
and the average relative air humidity and light intensity in the last 15 days (meteorological
factors) are found here to be particularly important.

Fine dead fuel moisture content is a key indicator of forest fire warning, which signifi-
cantly influences the occurrence and spread of forest fire. In this study, the variability and
influencing factors of fine dead fuel moisture content on forest surface in subtropical region
are revealed, and several machine learning algorithm models are compared and analyzed.
The results can provide a scientific basis and theoretical guidance for future studies on
forest fire warning.
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