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Abstract: This study presents an approach to forecast outbreaks of Dendrolimus sibiricus, a significant
pest affecting taiga ecosystems. Leveraging comprehensive datasets encompassing climatic variables
and forest attributes from 15,000 taiga parcels in the Krasnoyarsk Krai region, we employ genetic
programming-based predictive modeling. Our methodology utilizes Random Forest algorithm
to develop robust forecasting model through integrated data analysis techniques. By optimizing
hyperparameters within the predictive model, we achieved heightened accuracy, reaching a maximum
precision of 0.9941 in forecasting pest outbreaks up to one year in advance.
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1. Introduction

Dendrolimus sibiricus, commonly known as the Siberian moth (SM), is a pest insect
species that periodically undergoes outbreaks, defoliating vast areas of forests. It is one of
the most hazardous pests to coniferous forests [1], not only in Siberia. Historical records
dating back to the late 16th century from China [2] attest to its devastating impact on
Southeast Asian forests. Various subspecies exist, with the Siberian subspecies being the
most prevalent and rapidly spreading due to its significantly larger food base, making it
the most harmful [3]. Adult moths are large and furry, with a wingspan ranging from 53 to
104 mm, while caterpillars grow rapidly, reaching lengths of up to 8 cm [4]. The moth has a
biennial life cycle, overwintering twice as larvae in forest litter, and its activity is crepuscular.
Due to its threat to coniferous forests, the spread of the SM raises concerns and requires
preventive measures to avoid its invasion into new territories. An imbalance in coniferous
forests caused by this pest leads to serious consequences, including changes in forest
structure, drying out of forest stands and changes in the habitats of game animals [5]. SM
poses a potential threat to European forests due to its westward spread and susceptibility to
numerous conifer species. Recent sightings near Moscow indicate its proximity to European
territories [6].

Research on methods of combating SM has long been a subject of scientific inquiry,
shedding light on various strategies and approaches aimed at mitigating its impact on forest
ecosystems. Florov’s method [7], proposed in 1947, suggests using deviations in moisture
deficit exceeding 15% from the multi-year average for 2–3 consecutive years as a signal for
potential SM outbreaks. Rozhkov recommends [8] assessing outbreak conditions based
on the average number of eggs and caterpillars per tree. Nikitina’s empirical-statistical
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model [9] aids in forecasting based on spatiotemporal population dynamics. Improved
pheromone monitoring using traps with attractants enhances pest population tracking.
Identified chemical compounds formulating the sexual attractant of the SM recommend
its use in pheromone traps across its range. An optimal concentration for monitoring
purposes has been determined, along with a methodology for sparse population pheromone
monitoring.To mitigate its introduction and spread, proactive measures such as rigorous
inspections of forest products and timber are necessary. Quantitative risk assessments
and modeling techniques can aid in predicting its potential spread, informing targeted
prevention efforts. A mechanistic grid-based model was developed in [10] to simulate the
moth’s potential spread in Europe, providing valuable insights for forest managers and
policymakers to prioritize surveillance and mitigation efforts.

The detrimental effects of Dendrolimus sibiricus outbreaks on forest ecosystems, in-
cluding reduced biodiversity, altered nutrient cycling, and increased susceptibility to other
disturbances, have been well-documented in numerous research studies [11–13]. Addition-
ally, the economic impact of these outbreaks [14,15], in terms of losses to timber production,
forest regeneration efforts, and ecosystem services, has led to a heightened interest in
understanding and predicting the occurrence of these events [16–18].

Paper [16] identified an altitudinal belt between 400 and 800 m above sea level as
indicative of outbreak development. New parameters derived from remote sensing vari-
ables can forecast forest stand susceptibility to pest attacks up to 2–3 years in advance,
simplifying monitoring efforts in inaccessible taiga forests. The research [17] focuses on
enhancing the monitoring of SM outbreaks in the dark-coniferous taiga and aims to iden-
tify early detection methods and predict outbreaks. Through remote sensing and field
surveys conducted in 2018–2019, the study examines preferred habitats of the SM based
on terrain, forest type, and inventory characteristics. Work [18] addresses the urgent issue
of large-scale destruction of taiga forests by Siberian silk moth outbreaks in mid-altitude
mountains. It examines the influence of landscape factors on outbreak dynamics using
Landsat-8 satellite imagery and field surveys.

Consequently, there is a pressing need for effective management strategies, under-
pinned by accurate forecasting techniques, to mitigate the adverse effects of Dendrolimus
sibiricus outbreaks on forest ecosystems and regional economies. The aim of our research is
to utilize data on forest composition and climate history for 15,000 taiga forest plots in the
Krasnoyarsk Krai region.

• Our primary goal is to identify the optimal parameters for a classification model,
employing machine learning techniques rooted in genetic programming.

• Specifically, we aim to forecast Siberian silk moth outbreaks one year in advance.
• The identification of these parameters is essential for precisely distinguishing between

infected and uninfected forest plots.

2. Materials and Methods
2.1. Data Collection Methods and Analysis

This scientific study delves into the characterization of forest plots, with a keen
focus on crucial parameters pivotal for predicting Siberian silk moth outbreaks. Among
these parameters, soil moisture and mossiness stand out as fundamental indicators of
habitat suitability for the moth’s proliferation[19]. Additionally, the presence of past
outbreaks serves as a benchmark for anticipating future occurrences. Age, height, diameter,
and density of trees within the plots offer insights into the maturity and health of the
forest [20–22], influencing the susceptibility to moth infestations. Furthermore, factors
such as volume and area of selected forest plots provide quantitative measures of forest
coverage [23], influencing the scale of potential outbreaks. Finally, slope exposure and
steepness contribute [24] valuable information about the topographic features affecting
microclimates within the forest, which play a significant role in shaping the moth’s habitat
preferences and population dynamics.
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Figure 1 shows the distribution of forestry districts in the Kracnoyarsk region. The
inset provides an overview of the entire area at a reduced scale.

Figure 1. Forestry Districts on the Map.

Figure 2 illustrates the distribution of forest districts based on the number of moth
outbreaks. Each bar represents a forestry district, and the height of the bar indicates the
count of incidents within each district.
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Figure 2. Distribution of Forest Districts by Number of Incidents.

Figure 3 depicts the distribution of forestry districts in the region as well as outbreaks of
moth. Red dots indicate areas with outbreaks, while blue dots represent healthy forest areas.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Distribution of Dendrolimus Sibiricus Outbreaks (red points) depending of forestry districts:
(a) Agulskoye (b) Epishenskoye (c) Yenisei (d) Kasovskoye (e) Kungusskoye (f) Losinoborskoye
(g) Majske (h) Nazimovskoe (i) Surnikhinskoye (j) Takuchet (k) Ust-Pitskoye (l) Yartsevskoye.

The image depicts the distribution of forestry districts in the region as well as outbreaks
of gypsy moth. Red dots indicate areas with gypsy moth outbreaks, while blue dots
represent healthy forest areas.

Field surveys conducted by researchers entail on-site assessments aimed at obtaining
data, including measurements of tree characteristics [25] such as age, height, and diame-
ter. These measurements are typically taken using specialized tools like clinometers and
diameter tapes. Soil moisture [26] and mossiness scores are also determined through
direct observation and soil sampling during these surveys. Remote sensing techniques
complement field surveys by providing satellite imagery [27] for large-scale data collection.
These images are analyzed to assess forest parameters such as tree height, forest type, slope
exposure and steepness.

Figure 4a illustrates correlation matrix of forest [28] characteristics which represents the
relationships between different forest characteristics. Understanding these correlations is
crucial for assessing the interdependencies among various environmental factors and their
impact on forest health and ecosystem dynamics. This information aids in identifying key
factors influencing forest ecosystems and informs management strategies for sustainable
forest conservation and management practices.

Figure 4b Illustrating the distribution of tree types across forest areas. Each whisker
plot displays the distribution of tree types [29] (like Pine, Spruce, Larch, Birch, Aspen,
Cedar, Fir, Willow) across different forest areas. The total count of tree types for each
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area sums up to 10, reflecting the diversity and composition of tree species within the
forest ecosystem. Variations in the distribution of tree species may indicate environmental
conditions’ peculiarities, as well as the impact of various factors such as climate, soil
properties, and human activities.
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Figure 4. (a) Correlation Matrix of Forest Characteristics. (b) Distribution of Tree Types Across
Forest Areas.

Climate data, obtained through the FLDAS Noah Land Surface Model [30], with spe-
cific attention directed towards the months of June and July. These months were chosen
due to their significance as the summer period in Siberia, devoid of winter conditions,
thus presenting optimal conditions for the proliferation of the Siberian silk moth. Key
variables include soil temperature at depths of 0–10 cm below ground, maximum win-
ter temperatures indicating thaw events, peak snow cover height, surface temperature
recorded monthly from May to October, monthly evaporation rates from May to September,
precipitation flux throughout the same period, and monthly soil moisture content at depths
of 0–10 cm below ground.

A comparative analysis of climatic indicators for Siberian silk moth outbreaks in 1996,
2016, and 2018 reveals notable trends. The air temperature variation during the three
years preceding each outbreak averaged four-six degrees Celsius lower for unaffected
territories compared to those affected (Figure 5a–f). Additionally, the average evaporation
level was 1.5–2 times higher for the infested area, reaching 3.5 mm/month compared to
2 mm/month for observations over four years preceding the outbreak (Figure 5g–i). Soil
moisture variation over the seven years before the outbreak generally showed similar
patterns for both affected and unaffected territories. However, there were localized peaks
in soil moisture (Figure 5d,e) for April in 1996 and 2016 outbreaks for unaffected territories,
while for affected areas, this value gradually declined to a minimum by July according to
observations over seven years preceding the outbreaks. Possible explanations for these
phenomena may include differences in microclimatic conditions, land use practices, and
ecological factors influencing soil moisture retention and evaporation rates.

Based on the Figure 6g–l, it appears that the amount of precipitation does not seem to
significantly influence the likelihood of an outbreak.
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Figure 5. Temperature Variation during 3 years before outbreak of 1996, 2016, and 2018 for infected
(a–c) and uninfected (d–f) areas from May to August; Evaporation Variation during 5 years before
outbreak of 1996, 2016, and 2018 for infected (g–i) and uninfected (j–l) areas from May to August.
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Figure 6. Soil Moisture during 7 years before outbreak of 1996, 2016, and 2018 for infected (a–c) and
uninfected (d–f) areas from March to October. Rainfall Variation during 7 years before outbreak of
1996, 2016, and 2018 for infected (g–i) and uninfected (j–l) areas from May to September.

2.2. Application of Machine Learning Technique

This study explores the application of genetic programming (GP) techniques [31] to
optimize the hyperparameters of a binary classifier, specifically the Random Forest [32]
algorithm, for the prediction of Siberian silk moth outbreaks based on available data on
forest composition and climatic indicators across 15,000 taiga forest plots in the Krasnoyarsk
Krai region. The GP methodology aims to enhance the classifier’s performance by fine-
tuning its parameters, thereby improving its predictive accuracy.

GP approach involves defining a fitness function [33] to evaluate the performance of
each individual, which represents a set of hyperparameters for the Random Forest classifier.
The algorithm’s hyperparameters, such as the number of estimators and maximum depth,
are optimized iteratively using an evolutionary algorithm that mimics natural selection
processes. We divided our dataset into training and testing subsets using a 80:20 ratio, with
80% of the data allocated for training and 20% for testing. This split ensured a sufficient
amount of data for training while allowing robust evaluation of the model’s performance.
The process continues through multiple generations, with the goal of identifying the
optimal hyperparameter configuration that maximizes the classifier’s predictive accuracy.

The Genetic Programming (GP) approach was implemented using Python, with the
code written utilizing the DEAP library [34]. Additionally, the statistical analysis was also
conducted using Python. The process involves defining the evaluation function, creating a
toolbox with functions for genetic operators, initializing the population, and running the
evolutionary algorithm to optimize the classifier’s hyperparameters. The best-performing
individual, representing the optimal hyperparameter configuration [35], is selected, and
the classifier is trained and evaluated using these parameters. Additionally, the results of
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each population iteration are stored in an Excel file for further analysis and comparison, as
illustrated in Figure 7.

0 10 20 30 40 50
Generation

40

50

60

70

80

90

Va
lue

Best Parameters over Generation
Best_N_Estimators
Best_Max_Depth

0 10 20 30 40 50
Generation

0.984

0.986

0.988

0.990

0.992

0.994

Ac
cu

rac
y

Accuracy over Generation

Figure 7. Evolution of Random Forest Hyperparameters and Accuracy over Generations.

Overall, this study showcases the efficacy of genetic programming techniques in opti-
mizing the hyperparameters of a Random Forest classifier for predicting Siberian silk moth
outbreaks. The optimized classifier presents potential for enhancing forest management
strategies and alleviating the repercussions of pest outbreaks on taiga ecosystems. Addi-
tionally, the maximum accuracy achieved in predicting pest outbreaks one year in advance
reached 0.9941 by the 8th generation.

Spatial cross-validation was conducted to evaluate the performance of the best random
forest model identified through genetic algorithm optimization in predicting SM outbreaks
in forests. The process involved dividing the dataset into five spatially distinct folds. The
spatial cross-validation procedure was executed, resulting in accuracy scores for each fold.
The obtained validation scores were as follows: 0.79, 0.84, 0.93, 0.99, and 0.96. These scores
reflect the predictive capability of the model across different spatial regions, providing
insights into its robustness and generalization ability.

3. Results

Due to the inherent imbalance [36] in the dataset, it was essential to monitor the
precision parameter on the testing dataset to ensure the classifier’s performance was
accurately assessed. Precision measures the proportion of true positive predictions among
all positive predictions made by the classifier, making it a crucial metric for evaluating
classifier performance, especially in imbalanced datasets where the occurrence of positive
cases is significantly lower than negative cases.

Through the optimization process, an optimal feature set was identified to maximize
true positives (TP) while minimizing false negatives (FN). This feature set comprised a
combination of variables related to forest composition and climatic indicators, carefully
selected based on their predictive power and relevance to Siberian silk moth outbreak
prediction. By maximizing the TP rate and minimizing FN rate, the classifier aims to
improve its ability to correctly identify areas at risk of Siberian silk moth outbreaks, thereby
enhancing forest management strategies and facilitating timely intervention measures.
Confusion matrices illustrating various combinations of features are depicted in Figure 8.

Figure 8 dynamically illustrates how the confusion matrices evolve with varying
dataset modifications. Across scenarios such as utilizing One-Hot Encoding for the ‘forest
type’ feature, excluding this feature altogether, or incorporating temperature data without
averaging, the matrices offer a visual narrative of classification accuracy and misclassifica-
tions. Notably, these insights extend to the validation dataset, providing a comprehensive
exploration of model performance dynamics.

The evaluation of precision on the testing dataset allowed for the identification of
the optimal feature set, which exhibited the highest precision value among all evaluated
feature combinations. This optimal feature set not only maximized the classifier’s ability
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to correctly classify positive instances (outbreak occurrences) but also minimized the
likelihood of false positive predictions, thus improving the overall reliability and accuracy
of the classifier’s predictions.

(a) (b) (c) (d)

Figure 8. The confusion matrices for the test dataset of 3000 forest plots depicting the performance
of the best estimator under various dataset modifications are illustrated as follows: (a) with the
utilization of One-Hot Encoding (OHE) for the ‘forest type’ feature; (b) without the ‘forest type’
feature; (c) with temperature data not averaged and excluding the ‘forest type’ feature; and (d) the
same as (c), but for the validation dataset consisting of 1000 forest plots.

Feature importance (Figure 9) in the context of forest dataset helps identify which
attributes contribute most significantly to the model’s performance. By quantifying the
influence of each feature on the model’s predictions, feature importance provides valu-
able insights into the underlying relationships between input variables and the target
variable, such as the occurrence of forest pest outbreaks or ecosystem health. The most
important features were identified as climatic variables, including rainfall for July, and soil
moisture for August and September. They have the most significant impact on predicting
forest conditions or potential pest outbreaks. This information is essential for prioritizing
management strategies, allocating resources effectively, and informing decision-making
processes aimed at preserving forest ecosystems and mitigating risks associated with
environmental changes.
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Figure 9. Feature Importance Ranked by Random Forest: (a) Top 20 Features; (b) Top 21–40 Features.

The findings highlight the significance of precision as a pivotal performance metric for
classifiers dealing with imbalanced datasets, particularly within the domain of ecological
modeling and the prediction of pest outbreaks. The delineation of the optimal feature set
signifies a notable stride in fostering resilient and proficient predictive models for forecast-
ing Siberian silk moth outbreaks, carrying implications for enhancing forest management
strategies and safeguarding the health of taiga ecosystems.

Additionally, we systematically removed features from the dataset to investigate the
impact of reduced feature sets on prediction accuracy. This process involved iteratively
eliminating the least correlated features, prioritizing those with higher correlations with
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the target variable. We conducted this analysis using the best random forest model identi-
fied through genetic algorithm optimization for predicting Siberian silk moth outbreaks
in forests.

Throughout the experimentation, we observed a slight decrease in accuracy when
reducing the number of features, accompanied by a significant decrease in recall. This trend
was particularly pronounced when nearly all features were eliminated from the dataset.
From these findings, we inferred that reducing the number of features for such imbalanced
datasets may not yield high accuracy specifically in identifying the target variable.

It became evident that while feature importance plots highlighted certain variables
as significant for prediction within the context of the model, attributing significance to
these variables without further validation would be premature. The observed reduction
in accuracy and recall could be attributed to the loss of crucial information necessary for
effective classification.

4. Discussion

The study’s integration of climatological indicators and forest attributes to predict
Siberian silk moth outbreaks across 15,000 taiga parcels in the Krasnoyarsk Krai region
marks a significant methodological advancement with far-reaching implications for eco-
logical forecasting and pest management. By synthesizing a dataset comprising climatic
variables and forest characteristics, the study adopts a sophisticated approach to ecological
modeling, aiming to unravel the intricate interplay between environmental factors and
pest dynamics.

Climatic indicators such as soil moisture, air temperature, and evaporation play a
pivotal role in the occurrence of SM outbreaks in forests. Elevated soil moisture fosters
favorable conditions for the reproduction and survival of moth larvae, thereby increasing
the likelihood of pest population surges [37]. Air temperature influences the developmental
pace and activity of the moth within the forest ecosystem; higher temperatures can expedite
moth growth and proliferation [38]. Additionally, evaporation dynamics linked to atmo-
spheric moisture levels, which in turn impact larval viability [39]. Thus, comprehensive
understanding and monitoring of these climatic parameters are imperative for forecasting
and managing SM outbreaks in forest ecosystems.

Predicting pest outbreaks using ML holds paramount importance in contemporary
forestry management. Forest management depends on accurately predicting insect out-
breaks like the case with mountain pine beetle which was highlighted by Ramazi et al. [40],
often targeting future occurrences five years ahead. Their study utilizes machine learning
algorithms to forecast mountain pine beetle outbreaks across different timeframes, offering
insights crucial for effective forest and pest management planning.

Modeling and simulating forest land cover changes due to epidemic insect outbreaks,
like the mountain pine beetle (MPB), are crucial for effective forest management strategies.
The study [41] proposes an integrative approach utilizing supervised machine learning
techniques to simulate the spatiotemporal dynamics of MPB infestation over lodgepole pine
forests in British Columbia, Canada. By applying generalized linear regression (GLM) and
random forest (RF) algorithms to predict MPB infestation, they observed that RF algorithms
outperformed GLM, with simulations for 2020 suggesting a slower rate of spread in future
MPB infestations in the province.

Bark beetles, like Dendroctonus frontalis Zimmermann, pose significant threats to pine
trees in the United States and beyond, resulting in substantial economic and ecological dam-
ages. To enhance outbreak prediction models, the study [42] integrated spatial-temporal
dynamics, climate variables, terrain attributes, and vegetation indices using extreme gra-
dient boosting. Their models accurately predicted outbreak probability and magnitude,
highlighting areas at high risk for damage. This approach, incorporating climatic variables,
offers valuable insights into future pest population dynamics and facilitates proactive
management strategies to mitigate risks associated with bark beetle outbreaks.
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Examples in scientific literature highlight the analysis of climatic trends, such as a
study [43] analyzing climate trends near Lake Superior’s western end from 1984 to 2013
using weather station data. The results revealed a regional warming trend, with cooler
springs and warmer autumns, potentially impacting forest phenology and ecosystem
dynamics in this ecologically vital region.

The predictive modeling framework employed in this study is a sophisticated syn-
thesis of machine learning methodologies, specifically tailored to address the complex
ecological dynamics inherent in pest outbreak prediction. For example, in work [44] sug-
gests model which incorporates relevant water quality indicators, computes trophic scores
using ML techniques, and implements a new classification scheme. Evaluation across
diverse waterbodies in Ireland demonstrates its effectiveness compared to existing systems.

Through systematic hyperparameter optimization within the Random Forest classifier,
our model demonstrates a heightened capacity to discern subtle patterns within the data
and extrapolate robust predictive insights. By elucidating the relationships between clima-
tological variables like rainfall, temperature, and soil moisture, and forest attributes such as
age, density, and composition, the model encapsulates the multifaceted nature of ecosystem
dynamics, thereby enhancing its predictive efficacy. For instance, the influence of spatial
autocorrelation on the performance estimation of machine learning algorithms in ecological
modeling was outlined in [45]. Comparing various methods, including random forest and
logistic regression, authors find that spatial cross-validation yields more accurate estimates.
Prioritizing spatial hyperparameter tuning ensures consistency with spatial performance
estimation, mitigating the risk of overoptimistic predictions that could misguide ecological
decision-making.

Leveraging GP approach embedded within the Random Forest classifier, the model
undergoes iterative refinement, dynamically adjusting hyperparameters to maximize pre-
dictive performance. This iterative optimization process enables the model to adapt and
evolve, iteratively fine-tuning parameters [46] such as the number of estimators and maxi-
mum depth, thereby enhancing its capacity to discern intricate patterns within the data.
This theme is also highlighted in scientific literature. For example, study [47] focuses on
the M3GP algorithm, a variant of GP, which facilitates feature construction by evolving
hyperfeatures from original satellite image data. By applying M3GP to diverse satellite
datasets from different countries, we enhance land cover classification accuracy. Integrat-
ing the evolved hyperfeatures into reference datasets notably boosts the performance of
decision trees, random forests, and XGBoost algorithms in multiclass classifications.

By harnessing the power of GP-based hyperparameter optimization [48], the model
transcends conventional static parameter settings, dynamically adapting to the nuances of
the dataset and underlying ecological dynamics. The GA framework operates on the princi-
ple of natural selection, iteratively refining parameter configurations based on their efficacy
in improving model performance metrics. Through successive generations of parameter
optimization, the model converges towards an optimal configuration, characterized by
heightened predictive accuracy and robustness.

Furthermore, the predictive framework’s applicability extends beyond mere fore-
cast accuracy, offering invaluable insights into the underlying mechanisms driving pest
outbreaks and their spatial-temporal dynamics. By discerning the relative importance of dif-
ferent features within the predictive model—such as climatological variables versus forest
attributes—the study sheds light on the key determinants shaping pest susceptibility and
outbreak propensity across diverse ecological landscapes. This holistic understanding not
only facilitates early detection and proactive management of pest outbreaks but also fosters
a deeper appreciation of the intricate ecological processes underpinning forest ecosystems.

GA-based predictive modeling approach delineated in this study represents a paradigm
shift in ecological forecasting, transcending traditional boundaries by integrating multi-
dimensional datasets and cutting-edge machine learning techniques. By harnessing the
predictive power of climatological indicators and forest attributes, this methodology holds
immense promise for informing evidence-based pest management strategies, fostering
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resilience in forest ecosystems, and safeguarding biodiversity in the face of mounting
environmental pressures.

5. Conclusions

In conclusion, forecasting Dendrolimus sibiricus outbreaks is crucial for mitigating their
adverse effects on forest ecosystems and regional economies. Practical recommendations
are provided for improving monitoring and forecasting efforts, emphasizing the importance
of collaborative research and innovative technologies. We propose several avenues for
future research in this area:

1. Integration of Additional Variables: Explore the inclusion of supplementary envi-
ronmental variables beyond those considered in the current model, such as soil
properties [49] (e.g., pH, nutrient levels) and landscape characteristics [50] (e.g., to-
pography, land use/land cover), to capture more comprehensive ecological dynamics
influencing pest outbreaks.

2. Temporal Dynamics Analysis: Investigate the temporal dynamics of Dendrolimus
sibiricus populations and their interaction with climatic variables over longer time
scales in other regions [51,52]. Analyze historical data to identify trends and patterns
in outbreak occurrences, considering factors like seasonal variability, interannual
fluctuations, and long-term climate change trends.

3. Model Refinement and Validation: Refine the predictive model by incorporating
advanced machine learning techniques or ensemble methods [53] to improve accuracy
and robustness. Validate the model’s performance using independent datasets or
through cross-validation techniques to ensure its reliability across different spatial
and temporal contexts.

4. Spatially Explicit Modeling: Develop spatially explicit models [54] to account for
spatial autocorrelation and heterogeneity in pest distribution patterns. Utilize geospa-
tial analysis techniques and remote sensing data to delineate spatial risk zones and
identify hotspots of pest activity within the study area.

5. Ecological Drivers Identification: Conduct in-depth analyses to identify the key
ecological drivers influencing Dendrolimus sibiricus outbreaks, including interactions
with host plant species [55], natural enemies, and abiotic factors. Investigate how
changes in forest composition, structure, and management practices may affect pest
population dynamics and outbreak severity.

6. Management Strategies Evaluation: Evaluate the effectiveness of different pest
management strategies [56], such as biological control, chemical intervention, and
silvicultural practices, in mitigating Dendrolimus sibiricus outbreaks. Assess the
ecological and socioeconomic impacts of these strategies to inform sustainable forest
management decisions.

7. Climate Change Adaptation: Anticipate the potential effects of climate change on Den-
drolimus sibiricus outbreaks and develop adaptive management strategies to mitigate
associated risks. Investigate how projected changes in temperature [57], precipitation,
and extreme weather events may alter pest phenology, distribution, and abundance
in the future.

8. Interdisciplinary Collaboration: Foster interdisciplinary collaboration [58] between
ecologists, climatologists, entomologists, remote sensing experts, and decision-makers
to integrate diverse expertise and perspectives into pest management research. Pro-
mote knowledge exchange and stakeholder engagement to facilitate the translation of
scientific findings into actionable management strategies.
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3. Skrzecz, I.; Ślusarski, S.; Tkaczyk, M. Integration of science and practice for Dendrolimus pini (L.) management—A review with

special reference to Central Europe. For. Ecol. Manag. 2020, 455, 117697. [CrossRef]
4. Vinokurov, N.N.; Isaev, A.P. The Siberian moth in Yakutia. Sci. Technol. Yakutia 2002, 2, 53–56.
5. Koltunov, E.; Erdakov, L. Cyclicity features of the multi-year dynamics of outbreaks of mass reproduction of different geographical

populations of the Siberian moth (Dendrolimus superans sibiricus tschetv) in Siberia. In Modern Problems of Science and Education;
Moscow State University of Psychology and Education (MSUPE): Moscow, Russia, 2013; p. 700.

6. Gninenko, Y.I.; Orlinskii, A. Dendrolimus sibiricus in the coniferous forests of European Russia at the beginning of the twenty-first
century. EPPO Bull. 2002, 32, 481–483. [CrossRef]

7. Florov, D. Forest Insect Pests; OGIZ, Irkutsk Regional Publishing House: Irkutsk, Russia, 1948. (In Russian)
8. Rozhkov, A.S. Siberian Moth: Systematic Position, Phylogeny, Distribution, Economic Significance, Structure, and Way of Life; AS USSR

Press: Moscow, Russia, 1963. (In Russian)
9. Nikitina, Y. Development of a point model of the Siberian moth population. Interexpo-Geo-Sib. 2006, 3, 156–161.
10. Flø, D.; Rafoss, T.; Wendell, M.; Sundheim, L. The Siberian moth (Dendrolimus sibiricus), a pest risk assessment for Norway. For.

Ecosyst. 2020, 7, 48. [CrossRef]
11. Pavlov, I.; Litovka, Y.A.; Golubev, D.; Astapenko, S.; Chromogin, P. New outbreak of Dendrolimus sibiricus tschetv. in Siberia

(2012–2017): Monitoring, modeling and biological control. Contemp. Probl. Ecol. 2018, 11, 406–419. [CrossRef]
12. Kirichenko, N.; Flament, J.; Baranchikov, Y.; Grégoire, J.C. Native and exotic coniferous species in Europe–possible host plants for

the potentially invasive Siberian moth, Dendrolimus sibiricus 1 Tschtv. (Lepidoptera, Lasiocampidae). EPPO Bull. 2008, 38, 259–263.
[CrossRef]

13. Sul’tson, S.; Mikhaylov, P.; Kulakov, S.; Goroshko, A. Opportunities for assessing the risk of an outbreak of Siberian silkworm
(Dendrolimus superans sibiricus Tschetv.) in taiga forests. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 052051. [CrossRef]

14. Buck, J.H. Effects of Natural Disturbances Caused by the Siberian Moth, Dendrolimus Superans Sibiricus (Tschetverikov), and
Fire on the Dynamics of Boreal Forests in Krasnoyarsk Krai, Russia. Ph.D. Thesis, School for Environment and Sustainability,
Ann Arbor, MI, USA, 2008.

15. Demidko, D.A.; Trefilova, O.V.; Kulakov, S.S.; Mikhaylov, P.V. Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case
Study for Southern Siberia. Insects 2021, 12, 90. [CrossRef]

16. Soukhovolsky, V.; Kovalev, A.; Goroshko, A.A.; Ivanova, Y.; Tarasova, O. Monitoring and Prediction of Siberian Silk Moth
Dendrolimus sibiricus Tschetv. (Lepidoptera: Lasiocampidae) Outbreaks Using Remote Sensing Techniques. Insects 2023, 14, 955.
[CrossRef]

17. Sultson, S.M.; Goroshko, A.A.; Mikhaylov, P.V.; Demidko, D.A.; Ponomarev, E.; Verkhovets, S.V. Improving the Monitoring
System Towards Early Detection and Prediction of the Siberian Moth Out-breaks in Eastern Siberia. In Proceedings of the 1st
International Electronic Conference on Entomology, Online, 1–15 July 2021; pp. 1–15.

18. Sultson, S.M.; Goroshko, A.A.; Verkhovets, S.V.; Mikhaylov, P.V.; Ivanov, V.A.; Demidko, D.A.; Kulakov, S.S. Orographic factors as
a predictor of the spread of the Siberian silk moth outbreak in the mountainous southern taiga Forests of Siberia. Land 2021,
10, 115. [CrossRef]

19. Bruijnzeel, L.; Kappelle, M.; Mulligan, M.; Scatena, F.N. Tropical Montane Cloud Forests: State of Knowledge and Sustainability
Perspectives in a Changing World; Cambridge University Press: Cambridge, UK, 2010; pp. 691–740.

https://github.com/catauggie/sibiricus
http://doi.org/10.1016/j.foreco.2019.117697
http://dx.doi.org/10.1046/j.1365-2338.2002.00593.x
http://dx.doi.org/10.1186/s40663-020-00258-9
http://dx.doi.org/10.1134/S1995425518040054
http://dx.doi.org/10.1111/j.1365-2338.2008.01213.x
http://dx.doi.org/10.1088/1755-1315/548/5/052051
http://dx.doi.org/10.3390/insects12020090
http://dx.doi.org/10.3390/insects14120955
http://dx.doi.org/10.3390/land10020115


Forests 2024, 15, 800 14 of 15

20. Roberts, A.J.; Crowley, L.M.; Sadler, J.P.; Nguyen, T.T.; Gardner, A.M.; Hayward, S.A.; Metcalfe, D.B. Effects of elevated
atmospheric CO2 concentration on insect herbivory and nutrient fluxes in a mature temperate Forest. Forests 2022, 13, 998.
[CrossRef]

21. Giupponi, L.; Leoni, V.; Pedrali, D.; Giorgi, A. Restoration of Vegetation Greenness and Possible Changes in Mature Forest
Communities in Two Forests Damaged by the Vaia Storm in Northern Italy. Plants 2023, 12, 1369. [CrossRef]

22. Harris, R.C.; Kennedy, L.M.; Pingel, T.J.; Thomas, V.A. Assessment of canopy health with drone-based orthoimagery in a Southern
Appalachian red spruce forest. Remote Sens. 2022, 14, 1341. [CrossRef]

23. Ganz, S.; Adler, P.; Kändler, G. Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data
compared to National Forest Inventory data. Forests 2020, 11, 1322. [CrossRef]

24. Jourgholami, M.; Karami, S.; Tavankar, F.; Lo Monaco, A.; Picchio, R. Effects of slope gradient on runoff and sediment yield on
machine-induced compacted soil in temperate forests. Forests 2020, 12, 49. [CrossRef]
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