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Abstract: Invasive C4 grasses can inhibit the natural regeneration of secondary forest in tropical
landscapes after the cessation of intensive use for grazing and agriculture. In Panama, invasive
Saccharum spontaneum forms dense stands that require active management to re-establish forest
successional processes. In this region, restoration strategies typically involve clearing grass cover
manually and applying fertilizer prior to planting tree seedlings. However, if fertilizers alleviate
nutrient limitation and enhance grass competition with tree seedlings, these practices may exacerbate
the costs of Saccharum control and hamper restoration goals. Here, we evaluated how S. spontaneum
responds to nitrogen and phosphorus addition in the field to determine whether S. spontaneum is
nutrient limited in this system. S. spontaneum was limited by both nitrogen and phosphorus, as
revealed through increased foliar nutrient concentrations. S. spontaneum biomass was significantly
greater in both nitrogen and phosphorus addition plots after both the first growth period (early rainy
season) and second growth period (late rainy season), with stronger effects of nutrient limitation
during the second growth period for both N limitation and N and P co-limitation. Nutrient limitation
in S. spontaneum highlights a potential risk of fertilizer applications during restoration, agriculture, and
agroforestry activities in which invasion of this aggressive weed is a challenge to land management.

Keywords: biological invasions; restoration ecology; nutrient limitation; Saccharum spontaneum;
Panama Canal; invasive grasses; tropical ecology; nitrogen limitation; phosphorus limitation; nutrient
co-limitation

1. Introduction

Intensive agriculture and grazing in tropical systems can lead to soil degradation and
reduced productivity. When such lands are abandoned, succession is expected to lead
to habitat recovery. However, low propagule availability, seed and seedling predation,
seasonal drought, fire, competition with non-native weeds, and reduced nutrient avail-
ability are barriers that can slow or deter the rate of succession [1–5]. Although tropical
soils are diverse, they are generally less fertile than temperate soils and more likely to
be limited by phosphorus than nitrogen [6–8]. Tropical nutrient availability is strongly
regulated by nutrient cycling through decomposition [9]. Forest clearing and removal of
above-ground biomass in agriculture reduce the amount of nutrients that cycle back into
the system through decomposition [10], leading to a rapid loss of nutrients after as few as
three cycles of shifting agriculture [11]. As productivity decreases, increasing amounts of
exposed soils can cause further losses of nitrogen (N), phosphorus (P), potassium (K), and
other nutrients through erosion and/or run-off, leading to nutrient limitation and delayed
succession [6,9,12,13]. Reduced nutrient availability can impede the establishment of native
species [9,14].

Numerous species of non-native C4 grasses were introduced to the American tropics as
pasture grasses and many became weeds [1,3,5,15,16]. Invasive C4 grasses can inhibit forest
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succession through accelerated fire regimes [3–5,17–19]. Additionally, in comparison to
most native C3 woody plants, C4 grasses have high photosynthetic nitrogen use efficiency,
allowing them to maintain high photosynthetic rates under the hot, sunny, low-fertility
conditions of abandoned agricultural lands. High nitrogen use efficiency gives these
grasses an advantage in competition for nutrients and other resources, and it complicates
the maintenance or establishment of preferred vegetation [20,21]. Soil degradation via
intensive agriculture and grazing has the potential to favor colonization by weedy non-
native C4 grasses [2,3,15,22].

Understanding how soil fertility influences the growth of invasive plants is critical to
develop management strategies to restore invaded areas to agricultural use or forest cover.
Because fertilizers that are commonly applied as part of reforestation activities to help
reestablish trees could preferentially benefit undesired plants, it is important to understand
how invasive species will respond to nutrient addition. The same is true for other tropical
land use practices that involve grass control, including agriculture.

Saccharum spontaneum L. subsp. spontaneum is a large, exotic C4 grass species, native
to Asia and Northern Africa, that invades abandoned agricultural fields in many tropical
countries. It is adapted to drought, burns frequently, and is difficult to eradicate, which is
why it is considered one of the most serious weeds where it occurs [18,23]. S. spontaneum
was most likely introduced to the Republic of Panamá in 1939 with a United States Depart-
ment of Agriculture (USDA) germplasm collection for sugarcane [24] and by the 1960s, had
spread widely through disturbed areas [25]. Control of S. spontaneum is actively pursued
throughout the country and is especially important in the watershed of the Panama Canal,
where S. spontaneum is widespread and persistent [24,26]. Fires promoted by abundant
S. spontaneum reduce the germination and species richness of native trees and encourage
additional growth and reproduction of S. spontaneum [17,18,27]. In Panama, S. spontaneum
inhibits agriculture, forest restoration, and succession, generating huge costs associated
with weed management [23]. The use of fertilizers to support agricultural production or
forest restoration may facilitate S. spontaneum growth and persistence, thereby reducing
seedling establishment and increasing management costs.

The objective of this experiment was to test whether S. spontaneum in this system is
nutrient-limited, and specifically evaluate the relative importance of nitrogen and phospho-
rus limitation. We expected that, as for many other tropical systems, S. spontaneum growth
would be more P-limited than N-limited.

2. Materials and Methods
2.1. Site Description

This project was established in Parque Nacional Soberanía in the Panama Canal Wa-
tershed, Republic of Panamá (N 9◦6′5.5434”; W 79◦36′42.8934”), in abandoned agricultural
lands now dominated by S. spontaneum. This site experiences a mean rainfall of 2226 mm
and about 4 dry months annually from December to early April (defined as months with
<100 mm rainfall), with the wettest part of the year occurring in October and November [28].
Soils at this site are characterized as ultisols, predominantly clay and silty clay loams [29].
Moist tropical forest was cleared from this site during the 1960s, and the area was then
used for grazing and small-scale agriculture, until it was abandoned around 1993.

2.2. Experimental Design

A full factorial block design was used to test nutrient limitation of growth of S.
spontaneum. In June of 2011, a homogeneous area of S. spontaneum was cleared of above-
ground biomass by machete and gas-powered brush cutter from all blocks before applying
fertilizers. This experiment consisted of twelve blocks, each with four nutrient treatments:
no nutrient addition (control; C), nitrogen addition (N), phosphorus addition (P), and
nitrogen + phosphorus combination (N + P). Plots were 5× 5 m2, with a 2 m buffer between
plots within a block and a 3 m buffer between blocks. Buffer zones were maintained free of
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S. spontaneum to inhibit rhizomatous spread between the plots by S. spontaneum and reduce
the probability of horizontal movement of nutrients between plots.

Dry fertilizer was added by hand. Nitrogen was added as urea ((NH2)2CO2), and
phosphorus was added as triple super phosphate (Ca(H2PO4)2•H2O). Nutrient application
corresponded to 125 kg ha−1 N and 50 kg ha−1 P, as recommended for this region [30].
Based on these values, we calculated a nutrient application of 135.63 g triple super phos-
phate and 339.06 g urea per plot for each application. Nutrients were applied in July after
clearing the site and again in October after the first biomass harvest. Soil cores were taken
from each plot at the end of the study (December) to compare final soil nutrient availability
across treatments.

2.3. Nutrient Concentration Analysis

We compared soil and leaf nutrient concentration data across treatments. In December,
we randomly collected and homogenized 10 soil cores at 10 cm depth for each plot; a 20 g
subsample was used to extract soil nitrogen and another for phosphorus. We followed
the potassium chloride (KCl) [31] and Mehlich [32] standardized protocols to extract
available nitrate (NO3

−), ammonium (NH4
+), and phosphate (PO4

−2) [33]. Soil samples
were placed directly into solution in the field and processed in the lab within 24 h of being
collected. For plant tissue nutrient analysis, we collected the third mature leaf from the
base of 15 randomly selected individuals in each plot. Leaves were dried for 3 days at
60 ◦C, and samples were processed at the University of California Santa Cruz. Five leaves
were selected from each plot, and leaf N and P were extracted following the Kjeldahl acid
digestion protocol [34] using a Lachat BD 46 block digester (Lachat Instruments, Milwaukee,
WI, USA).

We assessed S. spontaneum performance, in terms of density and above-ground
biomass, in September and December 2011. Measurements of both biomass and den-
sity are useful because they each affect the establishment and persistence of native species
in this system; biomass is an indicator of the overall dominance of S. spontaneum in the field;
beyond biomass, the density of individual stems influences physical availability of space for
other plants to grow. The ability of S. spontaneum to spread through underground rhizomes
makes it very difficult to differentiate between genetic individuals of S. spontaneum in the
field. For this reason, we estimated density as the number of stalks; a tiller visibly emerging
from a stalk was considered a part of that stalk. In September, we measured density by
counting the number of stalks of S. spontaneum in 3 randomly placed 1 m2 quadrats in each
plot. S. spontaneum height varied across treatments but reached as high as 2 m (personal
observation). We randomly collected 10 stalks of S. spontaneum from half of the 1 m2 area
used for quantifying S. spontaneum density to calculate above-ground biomass. S. sponta-
neum biomass was dried at 60 ◦C for 3 days and then weighed. We estimated S. spontaneum
biomass as the product of the number of stalks and mean biomass per stalk. At the end
of September, we cleared the plots of S. spontaneum to simulate common management
practices in areas under restoration. In October, we re-applied nutrients and allowed S.
spontaneum to grow back until the onset of the dry season in December. Individuals of S.
spontaneum appeared much smaller during the December harvest, with few individuals
reaching heights greater than 2 m and many individuals less than 1 m, suggesting a re-
duction in above-ground growth after clearing. Data collection in December followed the
methods used in September.

2.4. Data Analysis

We used two-way factorial ANOVA to compare the response of soil nutrients, leaf
nutrients, and S. spontaneum growth to application of nitrogen, phosphorus, or their com-
bination. Blocks were included in the model as a random effect. Soil nutrient response
variables included nitrate, ammonium, total N (nitrate + ammonium), phosphate, and
N:P ratio (total inorganic nitrogen/phosphate). Plant nutrient variables were leaf N and P
concentrations (mg/g), as well as leaf N:P ratios. Plant growth response variables included
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S. spontaneum density and biomass measured in both September (July–September growth)
and December (October–December growth).

3. Results

Soil nutrient concentrations responded significantly to nutrient additions. Although
there was no difference in soil nitrate across treatments, soil ammonium and total N were
significantly higher in plots where N was added (Table 1). Nutrient concentrations varied
across blocks for all nitrogen measures (Table 1). Soil phosphate was greatest in plots where
P was added (Table 1; Figure 1). There was no difference in soil N:P ratios across nutrient
treatments (Table 1; Figure 1).

Table 1. Two-way factorial analysis of final soil nutrient availability across treatments, showing the
degrees of freedom (df), F ratios (F), and probability (p). Nutrients were added at the beginning of the
study in July and again after the first harvest in October, and nutrient availability was measured in
December. Nutrient additions are treated as fixed effects with blocks as random effects. Bold values
represent significant treatment effects.

Ammonium
(mg/kg)

Nitrate
(mg/kg)

Total Inorganic N
(mg/kg)

Phosphate
(mg/kg) N:P

Treatment df F p F p F p F p F p

N addition 1.33 9.20 0.005 0.10 0.10 9.73 0.004 0.11 0.75 0.001 0.98
P addition 1.33 1.77 0.19 0.59 0.59 1.78 0.19 4.14 0.05 0.08 0.78

N × P interaction 1.33 0.16 0.70 1.49 0.23 0.03 0.87 0.32 0.35 0.57 0.46
Block 11.33 5.91 <0.001 2.51 0.02 5.95 <0.001 1.17 0.58 1.12 0.38
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The above-ground biomass of Saccharum spontaneum showed rapid growth from July 
to September (Figure 2), averaging approximately 2–3 kg dry biomass per m2 across the 
four treatments. The growth from October through to December was nearly an order of 

Figure 1. Mean total soil (a) inorganic nitrogen and (b) phosphate nutrient concentrations, and (c)
soil N:P across control (C), nitrogen (N), phosphorus (P), and nitrogen and phosphorus (NP) fertilizer
treatments (n = 12). Mean soil nutrient concentrations were measured in December at the end of
the study, with fertilizer applications in July and October. Box plots indicate median (thick line), 1st
and 3rd quartiles (grey box), and range whiskers, with extreme values as open circles. Filled circles
indicate the mean. See Table 1 for associated statistics.

The above-ground biomass of Saccharum spontaneum showed rapid growth from July
to September (Figure 2), averaging approximately 2–3 kg dry biomass per m2 across the
four treatments. The growth from October through to December was nearly an order of
magnitude slower than the growth from July to September. However, stem density was
higher in the later period (Figure 2).

We found a significant positive effect of nitrogen and phosphorus addition on mean
S. spontaneum biomass from July to September (Table 2; Figure 2a). From October to
December, we found a significant positive effect of nitrogen addition and a significant
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positive interaction between nitrogen and phosphorus on S. spontaneum above-ground
biomass (Table 2; Figure 2b). Stem density in September increased by an average of 14%
with the addition of N (p = 0.10), whereas in December, it increased by 25% (p = 0.02)
(Table 2; Figure 2c,d). We found no significant effect of P on density in September or
December (Table 2; Figure 2c,d).
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Density Biomass

September December September December

Treatment df F p F p F p F p

N addition 1.33 2.87 0.10 5.84 0.02 6.78 0.01 6.88 0.01
P addition 1.33 1.17 0.29 0.29 0.59 6.23 0.02 3.20 0.08

N × P interaction 1.33 1.02 0.17 0.39 0.31 0.81 0.31 7.74 0.008
Block 11.33 1.53 0.32 1.22 0.53 3.36 0.003 2.20 0.04
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S. spontaneum responded to nutrient additions by increasing internal nutrient con-
centrations. In plots where N was added, we found significantly higher leaf N and no
significant effect on leaf P (Table 3; Figure 3). In plots where P was added, we found
significantly higher leaf P and no significant increase in leaf N (Table 3; Figure 3). Both leaf
N and leaf P also varied by block (Table 3). In addition, there was a significant effect of both
N and P fertilization on the leaf N:P ratio, where the leaf N:P was significantly lower in
plots where P was added (Table 3; Figure 3). There was no significant interaction between
N and P treatments for leaf nutrient concentrations (p > 0.15, Table 3).

Table 3. Two-way factorial analysis of S. spontaneum leaf nutrient concentrations across treatments,
showing the degrees of freedom (df), F ratios (F), and probability (p). Leaves were collected during
the December S. spontaneum harvest, following July and October fertilization treatments. Nutrient
additions are treated as fixed effects with blocks as random effects. Bold values represent significant
treatment effects.

Leaf N (mg/g) Leaf P (mg/g) Leaf N:P

Treatment df F p F p F p

N addition 1.33 10.82 0.002 0.22 0.64 6.71 0.01
P addition 1.33 0.40 0.53 65.20 <0.001 126.63 <0.001

N × P interaction 1.33 2.10 0.16 0.08 0.77 0.51 0.48
Block 11.33 2.19 0.04 3.94 0.001 5.14 <0.001
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ratio across control (C), nitrogen (N), phosphorus (P), and nitrogen and phosphorus (NP) fertilizer
treatments (n = 12). Mean leaf nutrient concentrations were measured in December at the end of
the study, with fertilizer applications in July and October. Box plots indicate median (thick line), 1st
and 3rd quartiles (gray box) and range whiskers, with extreme values as open circles. Filled circles
indicate the mean. See Table 2 for associated statistics.

4. Discussion

Biomass growth of S. spontaneum showed a positive response to both N and P addition,
suggesting that S. spontaneum is both nitrogen and phosphorus was limited in this system.
This positive effect is likely linked to increased photosynthetic capacity under increased
nutrient availability. The net CO2 assimilation rate increases nonlinearly with increasing
leaf N for eight species of Saccharum [35], likely reflecting an increase in the concentration of
Rubisco. Similarly, leaf P and growth in C4 grasses increased with increasing soil P supply
in other studies [36,37]. We also found evidence for N and P co-limitation of biomass in S.
spontaneum, in particular in the later growing period.

Final soil N and P concentrations were significantly higher in plots where N and P
were added. This indicates that treatments were effective in increasing nutrient availability
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throughout the study. Leaf N and P were greater in plots where we added N and P,
respectively, indicating that S. spontaneum had increased nutrient uptake in fertilized plots.

In our system, nitrogen addition produced a slight increase in stem density. Tiller-
ing of both C3 and C4 grasses in temperate systems increased in response to increased
nitrogen [38–40]. In addition, frequent cutting can increase tillering in Hyparrhenia rufa,
another tropical invasive C4 grass [41]. Our results suggest that S. spontaneum responds
similarly to other grasses by increasing tillering in response to both nitrogen addition and
cutting.

Growth in above-ground biomass was an order of magnitude lower in December than
September. After the first growing period, the energy reserves in the rhizomes may have
been severely depleted, meaning there was little stored carbohydrate left to sustain growth
during the second growth period. Alternatively, this growth pattern may suggest that
resource allocation varies temporally in S. spontaneum. In our study, the period from July
to September represents the middle of the wet season, with peak flowering in August–
September. The October–December periods include the wettest and cloudiest parts of the
rainy season, along with the transition into the dry season. Investment in above-ground
growth in the early rainy season may allow the plant to shade competitors and attain
heights that optimize pollination and seed dispersal, with a shift in allocation to below-
ground growth before the onset of the dry season. Other studies of tropical C4 grasses have
also found a high growth rate at the beginning of the rainy season (e.g., [42]).

In conjunction with resource reallocation, multiple rounds of removal of above-ground
biomass may have reduced the growth ability of S. spontaneum. Repeated clearing can
reduce below-ground carbon stores [43]. For a number of temperate grass species, increased
annual above-ground biomass clearing reduced carbohydrate reserves [43]. Our results
are consistent with studies that show that repeated clearing of S. spontaneum can reduce
S. spontaneum growth [44]. Future studies should evaluate whether growth after clearing
varies seasonally.

5. Conclusions

In summary, we found that nutrient addition increased the growth of Saccharum
spontaneum, but these effects varied seasonally and differed between biomass and density
responses. Given the substantial impacts of S. spontaneum within the Panama Canal
Watershed [24] and in many other parts of the world where it is a weedy invader [45],
there is a great need to understand the management activities that help suppress, or
unintentionally promote, its growth. This study highlights a potential risk of fertilizer
applications during restoration, agriculture, agroforestry, or other activities in which S.
spontaneum invasion is a challenge to land management.
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