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Abstract: In many large-scale evacuations, public agencies often have limited resources to evacuate
all citizens, especially vulnerable populations such as the elderly and disabled people, and the
demand for additional transportation means for evacuation can be high. The recent development of
ride-sourcing companies can be leveraged in evacuations as an additional and important resource
in future evacuation planning. In contrast to public transit, the availability of ride-sourcing drivers
is highly dependent on the price, since surge pricing will occur when the demand is high and the
supply is low. The key challenge is thus to find the balance between evacuation demand and driver
supply. Based on the two-sided market theory, we propose mathematical modeling and analysis
strategies that can help balance demand and supply through a pricing mechanism designed for
ride-sourcing services in evacuation. A subsidy is considered in the model such that lower-income
and vulnerable individuals could benefit from ride-sourcing services. A hypothetical hurricane
evacuation scenario in New York City in the case study showed the feasibility of the proposed
method and the applicability of subsidies for ride-sourcing services in evacuation. The methodology
and results given in this research can provide useful insights for modeling on-demand ride-sourcing
for future evacuation planning.

Keywords: hurricane; evacuation; ride-sourcing; shared mobility; pricing strategy; subsidy; demand
and supply; social equity

1. Introduction

Private cars usually serve as the main transportation mode during evacuations; how-
ever, in metropolitan cities, a dense population means that personal automobiles are often
lacking. More than half the households in New York City (NYC) do not have personal
automobiles. This statistic is lowest in Manhattan, where only 23% of households own
cars [1]. Consequently, many people need to use public transport (such as buses, the
subway, trains, etc.) to reach safer regions. Despite the increasing involvement of public
transit in evacuations, many problems still exist. Limited resources were the first obsta-
cle, for instance, during Hurricane Katrina in 2005. New Orleans has about 500 buses in
regular service, but needed about 2000 buses to evacuate all residents who were not using
private cars [2]. Social equity is another critical problem in evacuation [3]. Preparation for
people in special categories (disabled, the elderly, infants, etc.) is inadequate, and some of
them cannot even reach bus stations in emergency events. One of the main problems in
New Orleans’ 2005 evacuation was the lack of planning to evacuate carless residents, the
elderly, the disabled, and people with other special needs [2]. Recent research by Renne
and Mayorga [4] reveals that only 16 of the 50 largest cities in the United States mention
carless and vulnerable populations in evacuation plans, and only 13 plans have detailed
information for such populations. New technologies and research are needed to ensure
safe and more equitable evacuation, especially for vulnerable populations.

Improvements in technology and communication have led to the rise of the sharing
economy and growth of private companies in transportation. Fast-growing ride-sourcing
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companies (e.g., Uber, Lyft), which provide an opportunity to mobilize their resources
to increase evacuation compliance and support vulnerable populations, are especially
popular in metropolitan cities [3,5–8]. Ride-sourcing services have many advantages, such
as flexibility in terms of time and route, and GPS-enabled tools to easily connect riders,
drivers, and vehicles. In an emergency evacuation, ride-sourcing services can serve not only
as a complementary transit mode, but also offer access to mobility-impaired people who are
difficult to evacuate. Ride-sourcing companies such as Uber and Lyft have been involved
in many recent evacuation events [5,9–14], and many drivers are willing to participate in
evacuations [7]. With the participation of ride-sourcing companies, resource limitations
and social equity problems may be addressed in future evacuations.

Recent research has identified two major concerns for leveraging ride-sourcing services
in evacuation: Driver availability and service price [3,5,6]. In contrast to public transit,
driver availability for ride-sourcing services has a close relationship with pricing. To
achieve market equilibrium, when the demand of riders is high and the supply of drivers is
low, a price multiplier will be applied, which is called “surge pricing”. During evacuations,
demand can be much higher than normal because many people want to evacuate from
the dangerous area, while the availability of drivers can be lower than normal since
some drivers need to evacuate their families and many may be afraid to get on the road.
Uber indicated that increasing the price can motivate more drivers to participate in the
evacuation [15]. Following Hurricane Sandy, Uber issued a surge of twice the base price on
all trips, which received intense criticism [15,16]. Surge prices may get more drivers on
the road, but people should not be required to pay for their lives. However, very limited
research has addressed this problem.

During regular times, the objective of ride-sourcing companies is to maximize their
profit, but during evacuations the main objective is to maximize the number of people
evacuated within a limited time. To put more drivers on the road, the government or ride-
sourcing companies can provide subsidies to drivers as an incentive. Uber and Lyft have
offered free rides in multiple evacuation events [5]. Generally, giving subsidies to drivers
while charging a lower price to passengers can increase the number of matched trips. With
subsidies provided by the government or ride-sourcing companies, lower-income and
vulnerable individuals can benefit substantially from ride-sourcing services. Although the
cost of subsidies will also become a burden for governments or companies, maximizing
the number of matched trips and minimizing the cost of subsidies is a trade-off.

Given the potential for leveraging ride-sourcing services in disasters as an alternative
evacuation mode, this paper aims to provide a model that can help balance demand
and driver supply through a pricing mechanism designed for ride-sourcing services in
evacuations. A weighted multi-objective model is proposed that considers two important
features: Spatial differentiation and time-dependent evacuation response behavior. The
spatial differentiation allows the platform to have different price settings in different
regions, since their demand and supply can be different. The time-dependent evacuation
demand and supply functions are used to estimate the proportion of people likely to
evacuate and the availability of services provided by drivers within each time step to
demonstrate how the proposed model can adapt to different types of evacuation-response
behaviors. More importantly, the weighted multi-objective model enables decision makers
to find the best result that can evacuate more people within their budget by changing the
weight parameters of the objective function.

The experience of Hurricane Irene (2011) shows large-scale mass evacuations under
extreme conditions in NYC may overextend the public transit system [17]. With 1.61 million
carless people in all evacuation zones, public transit might successfully support some range
of evacuation, but it is hard to satisfy large numbers of evacuees and vulnerable populations
in severe disasters. In the past few years, app-based electronic dispatch services, such as
Uber and Lyft, have become very popular in NYC and are changing the way people get
around. In the case study section, a hypothetical hurricane evacuation scenario in NYC
is used to evaluate the performance of the proposed method for ride-sourcing services
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in evacuations, and the effect of different types of evacuation response behaviors will be
analyzed in the case study.

The model is designed to analyze the working of the ride-sourcing market in evacua-
tions. The model can help ride-sourcing companies like Uber and Lyft set prices as well
as help the city emergency response department develop regulation policies in evacua-
tions. The unique contributions of this study include: (1) Quantifying the relationship
between demand, supply, and price for ride-sourcing services in evacuations; (2) analyzing
the impact of different time-dependent evacuation response behaviors; (3) proposing a
mathematical modeling approach to optimize price settings for ride-sourcing services in
evacuations with the twin objectives of maximizing the number of matched trips and
minimizing the cost of subsidies; and (4) evaluating the impact of spatial demand and
supply on the optimal price settings.

The remainder of the study is organized as follows: Section 2 provides an overview
of the related research in evacuation and shared mobility. Section 3 provides the problem
description that will explain the available evacuation modes in NYC. Section 4 presents the
modeling approach designed for ride-sourcing services in evacuations. Section 5 provides
a hypothetical evacuation scenario in NYC to evaluate model performance. Section 6 will
summarize the research limitations and potential future research directions.

2. Literature Review

Emergency evacuation plans are important to ensure the safest and most efficient
evacuation when facing disasters. With more available data and advanced technology,
researchers can optimize disaster preparation and post-disaster recovery planning [18–27].
Evacuation analysis and planning have been developed through mathematical models
of evacuation demand, simulations, and optimization models of evacuation clearance
time [21,28,29]. Extensive research in the literature uses discrete choice models to study
evacuation choices [30–34], evacuation time [35–37], choice of destination [38,39], trans-
portation mode in evacuations [39,40], and routing problems [39,41–43].

Traditionally, evacuees without access to personal automobiles are expected to use
public transit to reach safer regions. Since transit has a much larger capacity than private
cars, the importance of transit-based evacuation has been increasingly recognized during
the past few decades [2]. Many studies have focused on improving transit operations dur-
ing evacuations, such as resource allocation in transit-based emergency evacuation [44,45],
transit-based evacuation planning for people with special needs [46–48], dynamic bus
dispatching with stochastic demand [49], and bus driver availability [50]. However, transit-
based evacuations have many problems in practice, such as limited resources and the lack
of planning to evacuate the elderly, disabled, and people with other special needs [2].

The limited resources and the problem of social equity in evacuations are still un-
solved [3,5]. The devastating events of Hurricane Katrina in 2005 demonstrated the lim-
itations of current evacuation plans, with many of these lessons learned indicating the
importance of equitable evacuation planning and the need to create a multimodal trans-
portation system with more evacuation options [2]. During Hurricane Katrina, between
127,000 and 300,000 people did not have access to reliable transportation in the New Or-
leans metropolitan area, and about 100,000 people did not evacuate before landfall [51,52].
Although some cities now provide emergency plans to the carless population, the special
needs of vulnerable populations remain unaddressed [4]. More research is needed in
areas such as how to define the vulnerable population [4] and how they make choices
during an evacuation [40]. Discussions of social equity problems can be found in the
literature [4,53–58].

Recent studies show the resource limitations and social equity problems may be
addressed by leveraging the sharing economy, which includes carsharing, homesharing,
and ride-sourcing services [3,5,6]. The shared resources from private companies and
citizens may supplement public resources in evacuations, which can yield several benefits
that have been identified in the literature, such as increasing compliance to evacuation,
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improving evacuation efficiency, and providing services for vulnerable populations, but
limitations also exist (e.g., liability and cost) [3,5,6]. The emergence of the sharing economy
brought new opportunities for a more equitable transportation system by increasing
accessibility, reducing costs of personal automobiles, and allowing more flexible travel
patterns [59,60]. An overview of shared mobility can be found in the literature [61–65].
Equity and discrimination issues of shared mobility also exist and have been discussed in
the literature [59,66,67].

Ride-sourcing services are especially popular in metropolitan regions; data shows Uber
and Lyft cars outnumber yellow cabs in NYC by 4-to-1 [68]. The feasibility and limitation
of using ride-sourcing services for evacuation have been studied in the literature [3,5–8].
Researchers have provided extensive recommendations and guidelines to understand
and develop more equitable evacuation by leveraging the sharing economy. Furthermore,
ride-sourcing services have been active in many disasters in the United States and received
positive feedback [6]. In 2012, when Hurricane Sandy struck NYC, public transportation
was very limited for a large number of carless residents, and the demand for Uber rides
was astronomically high [15,16]. In 2017, before Irma made landfall in Florida, Uber and
Lyft offered free rides to and from shelters near Tampa [9,10]. In the case of Hurricane
Harvey, also in 2017, Uber provided free rides to or from shelters in multiple cities [11]. In
2018, Uber and Lyft also provided free rides to and from shelters as Hurricane Florence
approached [12,13]. Figure 1 summarizes the actions of Uber and Lyft during hurricane
evacuations in the United States [5,9–14].
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Figure 1. Participation of ride-sourcing services in hurricane evacuations.

Although on-demand ride-sourcing has many advantages in evacuations, inappropri-
ate planning may lead to negative impacts. The ride-sourcing platforms consist of a typical
two-sided market, and many influential works on the economics of two-sided markets have
been studied in the literature [69–74]. The dynamic pricing strategy which helps to bal-
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ance varying demand and supply is crucial for ride-sourcing platforms. Cachon et al. [75]
studied the performance of the fixed price/wage and the optimal dynamic pricing con-
tract, with results showing that the latter can substantially increase platforms’ profit.
Castillo et al. [76] proposed a dynamic pricing method to avoid high prices when demand
is high. The role of optimal prices and the intermediary’s share of revenue was studied by
Bikhchandani [73]. The spatial differentiation and network externality in dynamic pricing
has been explored by Wu et al. [74]. Zha et al. [77] studied the spatial difference between
each region and proposed an optimization method for geometric matching and pricing for
ride-sourcing markets.

Many studies have explored the need to improve the operation of on-demand ride-
sourcing during regular times. However, very limited research has been conducted on
emergency evacuations. The recent research found in the literature consists of survey-
related studies to address questions such as whether drivers would be willing to provide
rides in evacuations and the preference to use ride-sourcing platforms during evacua-
tions [6–8]. Li et al. [7] investigated the use of ride-sourcing services for no-notice evac-
uations in China; the study shows that a majority of drivers are willing to participate
in evacuations. Most male drivers (52 out of 59) are willing to provide service when
their family members are in the safe area, and single, young, male drivers show strong
willingness: 10 of the 11 indicated willingness to provide services in evacuation. The
study in Wong and Shaheen [6] shows 59% to 72% of drivers are willing to share personal
transportation during an evacuation. Borowski and Stathopoulos [8] explored evacuation
demand from survey data collected in the three popular metropolitan areas in the United
States. The result shows ride-sourcing was selected as a preferred evacuation mode 17.6%
of the time, while driving was selected 49.5% of the time, transit 34.2%, and bike/walking
12.9%. The feasibility of leveraging the sharing economy in evacuations was studied in
the literature [3,5,6], which pointed out that driver availability and price are the biggest
concerns when using ride-sourcing services. However, to the best of our knowledge, no
study has yet paid substantial attention to the modeling of this problem in the context of
evacuation operations.

3. Problem Description and Methodology Overview

NYC Emergency Management (NYCEM) is responsible for emergency planning and
preparation. Figure 2 shows the 2016 hurricane evacuation zone map provided by NYCEM;
the zones are color coded and labeled as represented on the map. There are six hurricane
evacuation zones, ranked by the risk of storm surge impact, with Zone 1 being the most
likely to flood. During an evacuation, the city will order residents to evacuate depending
on the hurricane’s track and the projected storm surge.

3.1. Available Traffic Modes in Evacuation

According to American Community Survey [1], car ownership in NYC and Manhattan
is 46% and 23%, respectively. Assuming all members of a household will use the household
car to evacuate, 46% of people in NYC will evacuate by themselves, and 54% of households
without access to personal cars will need to find other ways to evacuate. Traditionally,
transit is the main transportation mode. The experience of Hurricane Sandy indicated how
much NYC depends on the mass transit system, especially buses because rail is often not
available in the outer boroughs. However, large-scale mass evacuation may overextend
the public transit system under extreme conditions [78]. For example, during Hurricane
Irene (2011), the subway system in NYC halted service, and stations were damaged as a
result of rain and flooding [17]. In addition, with 0.2 million carless people in Zone 1 and
1.61 million carless people in all evacuation zones, buses might be able to support some
range of evacuation, but they cannot serve a large number of evacuees in severe disasters,
not to mention members of the mobility-disabled population.

Taxis also played an important role during past evacuation events. Compared to buses
and subways, taxis can be flexible in terms of time and location, and they can successfully
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evacuate a small population. However, for mass evacuation, the number of existing taxis
would fall far short of satisfying the demand (NYC has about 17,000 taxicabs). Additionally,
taxi companies’ rates are set by local governments and cannot rise because of evacuation,
but without extra compensation, many taxi drivers may not be willing to work during
extreme weather conditions.
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Micromobility can be another alternative traffic mode during emergency evacuations.
Bicycles and e-scooters are convenient vehicles for short-distance travel, especially in
very densely populated urban areas such as NYC. The article by Martin [79] states that
people who used bicycles during Hurricane Katrina were able to evacuate faster than
car users because they could avoid sitting in traffic. The survey conducted by Borowski
and Stathopoulos [8] shows that biking/walking was selected as a preferred evacuation
mode 12.9% of the time. In the context of mass evacuation, however, the use of micromo-
bility requires careful planning. The streets may need to be redesigned with dedicated
micromobility lanes, and physical barriers such as bollards or curbs should be taken into
consideration for safety issues.

NYC has the lowest rate of private car ownership in the nation and the highest number
of ride-sourcing vehicles. In the past few years, the rapid growth of app-based electronic
dispatch services, such as Uber and Lyft, has changed the way people get around. As of
2018, there were about 130,000 for-hire vehicles (FHVs), mainly ride-sourcing vehicles,
in NYC [80]. Generally, ride-sourcing companies rely on mobile phones and internet to
provide services. This may raise the concern that not everyone has access to mobile phones
and internet. Research by Pew Research Center [81] found that 19% of Americans do not
have a smartphone, and 4% of Americans do not have any kind of cell phone. Vulnerable
people without access to mobile phones may require assistance during evacuations, perhaps
in the form of public agencies working with ride-sourcing companies to plan these trips in
advance. For most other people, the use of smartphones and real-time GPS location enables
ride-sourcing services to connect riders, drivers, and vehicles more quickly and effectively
in the case of natural disasters such as hurricanes, where evacuees have a relatively longer
time to react to evacuation orders by the authorities. Moreover, service disruptions that
make it difficult to use cell phones during no-notice events, such as earthquakes and
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human-made disasters, are not expected to occur in the case of hurricane evacuations.
However, it is important to consider possible loss of wireless services in certain cases when
planning to use ride-sourcing services that depend on cell phones [82].

Although public transit is dominant in NYC, ride-sourcing services can sometimes be
more preferred than the transit system. Many New Yorkers use Uber or Lyft because they
are comfortable, private, and easy to access. According to Metropolitan Transportation
Authority (MTA) ridership reports [83] and Taxi & Limousine Commission (TLC) trip
data [80], the percentage of annual ridership of FHVs and taxis in 2017 was 18%. The modal
split between taxis and FHVs was estimated by their average daily trips in 2019—27% of
trips were completed by taxis, while 73% of trips were completed by FHVs [84]. With
positive feedback received for services provided during previous disasters, ride-sourcing
services have the potential to be an important traffic mode in evacuations.

3.2. The Role of Ride-Sourcing Services in Evacuation Management

Russo and Rindone [85] classified emergency management actions into four categories:
Prevention/mitigation, preparedness, response, and recovery. Prevention/mitigations
comprise activities carried out in advance to reduce the impact of the disaster, including
land management and planning, public information campaigns, and educational programs.
Preparedness ensures communities, resources, and services can respond to the impact
and includes activities such as evacuation planning, exercising, and training. Response
activities, which control or modify the emergency, include implementation of emergency
plans and mobilization of resources. The last category, recovery, includes activities and
services to support community reconstruction after emergency situations. Successful
evacuation is closely related to timing. When sufficient time is available, a predesignated
evacuation plan can effectively move people to safe areas. However, it is hard to move all
the people when evacuation time is limited. In this case, a well-designed emergency plan
for short-notice events can help reduce risk and move more people. In many cities, there
are also shelter-in-place plans for people who cannot evacuate [86].

Ride-sourcing services can play a promising role in each part of the emergency man-
agement process. In the prevention/mitigation stage, ride-sourcing companies can partner
with governments to plan trips for individuals with special needs in advance, provide
resource information, and help increase emergency education to improve people’s will-
ingness to share. In the preparedness stage, ride-sourcing companies can partner with
governments to plan trips for individuals with special needs in advance. Training activities
are important in risk reduction and can improve evacuation planning [87]. Special training
and exercises can be provided to interested drivers, who can then assist all people in
emergencies [3,8]. In the response and recovery stages, ride-sourcing can help distribute
resource information, transfer evacuees with special needs, and provide travel services
during the evacuation and in the recovery period that follows. The methodology proposed
in this paper can provide insights for public officials and ride-sourcing companies to use in
their emergency management processes.

3.3. Methodology Overview

We propose a mathematical model designed to balance the demand and supply for
ride-sourcing services in evacuations. The spatial characteristic of the model can provide
different price settings in safe areas and evacuation areas. The temporal characteristic
will quantify the proportion of people likely to evacuate in different time periods. The
methodology framework is plotted in Figure 3. The bidirectional arrows indicate that
elements interact with each other. For example, the price settings in the strategy box will
affect demand and supply, which in turn will affect prices.
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4. Modeling Approach
4.1. Notation

The list of variables used in this section is summarized in Table 1.

Table 1. List of variables.

Notation Description Variables

pi Price to passengers in region i

wi Wage to drivers in region i

v Passengers’ utility for taking ride-sourcing services

ci Drivers’ cost for providing services in region i

Fb The cumulative distribution of passenger utility v with density function fb

Fs The cumulative distribution of drivers’ cost with density function fb

vb Passengers’ utility for choosing other outside options, such as transit

vs Drivers’ utility for choosing not to participate

Di Demand of ride-sourcing services in region i

Si Supply of ride-sourcing services in region i

µi
The number of demands in region i, the number of supplies is one, µi can be

viewed as the number of demands per unit number of supplies

θi Market tightness in region i, equal to θi = Si/Di

M(Di, Si)
The matching function of demand and supply, indicating the number of

matched trips in region i

mb(θi) Matching probability of passengers in region i

ms(θi) Matching probability of drivers in region i

α,β Weight parameters
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4.2. Demand, Supply, and Dynamic Pricing

The ride-sourcing services consist of a typical two-sided market, where price affects
both demand and supply. Usually, we call the fare charged to passengers the price and
remunerations paid to drivers the wage. There are two types of uncertainty during evacua-
tion. The first is the drivers’ cost to provide services in evacuations. For example, since
some drivers must also evacuate their families, participation can be costly for them, while
the services of drivers who are available and willing to help the evacuees can be less costly.
The second type of uncertainty occurs at the demand level. On regular days, the demand
for ride-sourcing services can be higher during peak hours or lower at off-peak hours. In
evacuations, however, the demand can be constantly much higher while the number of
available drivers can be much lower than regular days.

To be specific, we consider a system with two regions: The disaster-impacted region,
where evacuation orders are issued, and the safe/normal region. In this system, passengers
can use either ride-sourcing services or other outside options (e.g., passengers can travel
by public transit if the price of ride-sourcing service is too high for them). Following
the previous studies on the two-sided market [73,74,77], we assume each passenger will
have a utility v for taking ride-sourcing services, which is an independent draw from
the cumulative distribution function Fb with density function fb, and each passenger also
has the utility vb for choosing other outside options. On the supply side, drivers will
have different costs for providing services in different regions. We assume the pair of
cost (c1, c2) ∈ [0, γs]

2, which is independently distributed across drivers with cumulative
distribution function Fs and density function fs. Each driver also has the utility vs for
choosing not to participate.

The ride-sourcing companies know the number of passengers and the number of
drivers in region i, as well as the distributions of agents’ types Fb, Fs. However, each
passengers’ value or drivers’ cost is not known, so in this paper we only focus on aggregate-
level analysis and do not do perfect price discrimination. The transaction cost and other
fixed costs are ignored since they do not have a major impact on the pricing strategy. Let
i = 1 represent the region with evacuation order and i = 2 represent the safe region. The
ride-sourcing companies will select a pair of prices (p1, p2) for passengers and a pair of
wages (w1, w2) for drivers in different regions. For example, any passengers in region i
with values greater than pi are willing to use the ride-sourcing service, and any driver in
region i with cost less than wi are willing to provide services. At regular times, wi = δpi,
where δ is a fixed commission rate that enables the market to function and the platform to
earn profits. As we are modeling the price in evacuations and Uber indicated they would
waive all service fees, the fixed commission rate is not considered in this paper.

If µi represents the number of demands in region i and the number of supply is one,
µi can be viewed as the number of demands per unit number of supply. We assume
the number of matched trips in region i is a matching function of demand and supply
M(Di, Si). The matching function gives the maximal number of matched trips and has the
following property:

M(ρDi, ρSi) = ρM(Di, Si) for any ρ ≥ 0 (1)

Let θi represent the market tightness in region i, which is equal to θi = Si/Di. Based on
the property of the matching function, the matching probability of passenger in region i is:

mb(θi) = M(1, θi) (2)

The matching probability of drivers in region i is:

ms(θi) = M(1/θi, 1) (3)



Sustainability 2021, 13, 4444 10 of 22

We can find that mb(θi) is strictly increasing for θi ∈ [0, 1] and ms(θi) is strictly
decreasing for θi > 1. In this paper, we assume the total number of matched trips is equal
to the minimal number of demand and supply, which is equal to:

M(Di, Si) = min(Di, Si) (4)

To estimate the demand for ride-sourcing services, we assume passengers will accept
the service only if the net payoff is larger than their outside options:

mb(θi)(v− pi) ≥ vb (5)

The demand in region i under price pi will be:

Di = µi(1− Fb(pi + vb/mb(θi)) (6)

Similarly, drivers who choose to provide services with different wages in different
regions will be willing to provide service in region i only if the earning in region i is higher
than in another region and higher than the utility of not participating (−i means not in
region i):

ms(θi)(wi − ci) ≥ max(vs, ms(θ−i)(w−i − c−i)) (7)

Equation (7) can be transferred to:

ms(θi)(wi − ci) ≥ vs → ci ≤ wi − vs/ms(θi) (8)

ms(θi)(wi − ci) ≥ ms(θ−i)(w−i − c−i) → ci ≤ wi −
ms(θ−i)

ms(θi)
(w−i − c−i) (9)

With drivers’ cost ci, the units of service provided in region i will be equal to:

Ωi =

{
(ci, c−i) ∈ [0, γs]

2
∣∣∣∣ci ≤ wi − vs/ms(θi), ci ≤ wi −

ms(θ−i)

ms(θi)
(w−i − c−i)

}
(10)

4.3. The Optimization Model for Pricing Strategy in Evacuation

We propose a model to optimize the ride-sourcing market in evacuations. We divide
the study area into two regions: i = 1 represents the region with an evacuation order, while
i = 2 represents the safe region. The ride-sourcing companies or government can determine
the prices for passengers and wages for drivers in two regions (p1, p2, w1, w2). At regular
times, ride-sourcing companies set prices and wages to maximize their profit, while the
main objective in evacuation modeling is to maximize the number of evacuated people
within a limited time.

To increase the supply of drivers while charging a lower price to passengers during
an evacuation, subsidies can be provided by private companies or the government as
an incentive for drivers to participate. The simultaneous optimization of the system
considering increasing matched trips and decreasing subsidy costs requires a designed
trade-off. Generally, giving a higher wage to drivers while charging a lower price to
passengers can increase the total number of matched trips, but subsidy costs will become a
burden for the ride-sourcing companies or government. We propose to model the problem
by optimizing the conflicting objective of maximizing the number of matched trips in the
evacuation region while minimizing the cost of subsidies. To solve the multi-objective
problem, a weighted approach was chosen so that the sum of two conflicting objectives
will be maximized. Instead of having a single optimal solution, the model can provide a
set of solutions by changing the weight parameters (α, β).

As we have mentioned, the service fee (commission rate) is not considered in evacua-
tion, so all the prices charged to passengers will go to drivers. Additionally, the subsidy
will only be provided for drivers in the evacuation region, so w1 ≥ p1 while w2 = p2. This
can be modified in future practices, such as adding the commission rate in the safe region
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so w2 = δp2, where δ is a fixed commission rate. The cost of subsidies for each trip equals
wi − pi, which is the difference between the wage paid to drivers and the price charged to
passengers. The nonlinearly constrained optimization problem is formulated in Model 1.

Model 1

max
{p1,p2,w1,w2}

αM(D1, S1)− β ∑
i

M(Di, Si)(wi − pi) (11)

s. t. Di = Si = µi(1− Fb(pi + vb/mb(θi)) =
∫

Ω
fs(x, y)dxdy (12)

w1 ≥ p1 and w2 = p2 (13)

{p1, p2, w1, w2} ∈ <4
+ (14)

where α ∈ [0, 1], β ∈[0, 1], and α + β = 1. Generally, the optimal solution is hard to obtain
from Model 1. However, with some appropriate assumptions for the distribution of Fb(.)
and Fs(.), we can find the existence of the optimal solution.

Assumption 1. The cumulative passenger value distribution Fb(.) is strictly concave. The
cumulative cost distribution Fs(.) is strictly concave, so the joint distribution of supply function∫

Ω fs(x, y)dxdy is strictly concave.

Assumption 1 requires that the density function fb is a decreasing function. Many
commonly used distributions satisfy this assumption (e.g., uniform, exponential, Pareto).
The joint strict concavity of

∫
Ω fs(x, y)dxdy also has a similar property. This shows that a

higher passenger utility will lead to fewer passengers, while more service will be provided
with higher wages. To simplify our analysis here, in the remainder of the paper we
assume that Fb and Fs are uniformly distributed on [0, 1] and [0, 1]2, respectively. Similar
assumptions for ride-sourcing services at regular times can be found in Bikhchandani [73]
and Wu et al. [74]. Since we only focus on the application of ride-sourcing services, to
simplify the model, the outside options are assumed to be 0 (vb = vs = 0). Then, we have
the demand function in region i:

Di = µi(1− Fb(pi)) (15)

From Equation (10), the provided services for the two regions are:

Ωi =
{
(ci, c−i) ∈ [0, 1]2

∣∣∣ci ≤ wi, ci ≤ wi − w−i + c−i)
}

(16)

Proposition 1. Based on Assumption 1, a unique tuple of optimal prices
(

p∗1 , p∗2 , w∗1 , w∗2
)

for the
objective function in Equation (11) can be obtained.

Proof. With the market equilibrium requirement, Si = Di, the objective function can be
written as:

max
{p1,p2,w1,w2}

Π = αS1 − β ∑
i

Si(wi − pi) (17)

Based on Equation (15) and Di = Si, the passenger price is equal to:

pi = F−1
b

(
1− Si

µi

)
(18)

The objective function can be written as:

max
{p1,p2,w1,w2}

Π = αS1 − β ∑
i

Si

(
wi − F−1

b

(
1− Si

µi

))
(19)

�



Sustainability 2021, 13, 4444 12 of 22

Assumption 1 implies that F−1
b is convex and strictly increasing; the joint supply func-

tion
∫

Ω fs(x, y)dxdy is also a strictly concave function. The assumption on the distribution
functions shows that the secondary derivative of the function Π is negative and Π is strictly
concave, which guarantees the optimality and uniqueness of the solution in Model 1.

Remember we set two regions: i = 1 represents the region with the evacuation order,
while i = 2 represents the safe region. We can divide any study area into these two regions.
The supply functions can be obtained with Equation (16) and Si =

∫
Ω fs(x, y)dxdy under

two conditions:

1. If the wage in Region 2 is higher than Region 1 w1 ≤ w2:

S1 =
1
2
(w1)

2 + w1 − w1w2, S2 = −1
2
(w1)

2 + w2 (20)

2. If the wage in Region 1 is higher than Region 2 w1 > w2:

S1 = −1
2
(w2)

2 + w1, S2 =
1
2
(w2)

2 + w2 − w1w2 (21)

With the equilibrium condition, the price for passengers can be obtained by having
demand function equal supply function Di = Si. Using Equation (15), the prices will be:

pi = 1− Si/µi (22)

Equations (20) and (21) show that the wage in region i will directly affect the number
of services supplied in that region: A higher wi will increase the supply Si in region i
while decreasing the supply in another region S−i. The price equation pi = 1− Si/µi
shows that the wage will affect the passenger price. This is because the spatial difference of
wage will change the supply distribution in different regions, and the supply will in turn
affect the demand in the same region. With Assumption 1, Model 1 can be transferred to
Model 2 below.

Model 2
max

{p1,p2,w1,w2}
αS1 − β ∑

i
Si(wi + Si/µi − 1) (23)

s. t. Di = Si = µi(1− Fb(pi)) =
∫

Ω
fs(x, y)dxdy (24)

w1 ≥ p1 and w2 = p2 (25)

{p1, p2, w1, w2} ∈ <4
+ (26)

The sequential quadratic programming (SQP) algorithm build in Python, which is an
iterative method for constrained nonlinear optimization, is used to solve the problem.

4.4. Time-Dependent Demand and Supply of Ride-Sourcing Services in Evacuation

In evacuations, the demand cannot be evenly distributed in each hour, so model-
ing time-dependent evacuation demand determines the number of people evacuating
and spreads them temporally [26,88,89]. This is typically done by using a demand re-
sponse curve, which estimates the proportion of people beginning to evacuate within
each time interval. The U.S. Army Corps of Engineers (USACE) proposed three types of
response curves—slow, median, and fast—based on behavioral analysis of past storms [90].
Li et al. [20] estimated the evacuation response curve during Hurricane Irene in Cape
May County, New Jersey. As the calibrated S-curves obtained using logit functions are
observed to fit the empirical data better, this will be used as the demand response function
in this paper.

Similarly, we assume the availability of ride-sourcing drivers during an evacuation
is time dependent. More drivers are willing to offer services at the beginning of the
evacuation, but as time goes by it becomes more dangerous for drivers to provide services.
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As a result, the supply of drivers should be a time-dependent decreasing curve. Since
the data and related studies are limited for estimating the supply response behavior of
ride-sourcing services in past evacuations, we assume the supply is a decreasing S-curve
similar to the demand model, but continuously decreasing with time t. The cumulative
demand and percent supply functions are equal to:

Pt,d = 1/[1 + exp(−ad(t− Hd)) ] (27)

Pt,s = 1/[1 + exp(as(t− Hs)) ] (28)

where Pt,d is the cumulative demand percentage of evacuees at time t, Pt,s is the percentage
of supply at time t, and ad, as, Hd, Hs are shape parameters. ad gives the slope of the
cumulative demand loading curve, and Hd is the half loading time, when half of the
evacuees in the system have departed. as gives the slope of the traffic supply curve, and
Hs indicates the time when half of the services can be provided. The parameters should be
calibrated using real data in the future if available.

Figure 4 shows examples of evacuation demand and supply response curves. Figure 4a
shows the cumulative evacuation demand, Figure 4b,c show the percent population evac-
uated and percent service supplied in each time step (T is the total evacuation time),
respectively. To study the impact of different evacuation response behaviors on the total
matched trips and cost of subsidies in an evacuation, we can divide the entire evacuation
into multiple time periods. For each time period, we can use Model 2 to optimize the price
settings, then sum the matched trips and cost over the entire evacuation.
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Sustainability 2021, 13, 4444 14 of 22

5. Numerical Study

Ride-sourcing services may help address the limited resources and social equity
problems [3]. We proposed a mathematical model that can help balance demand and driver
supply through a realistic pricing mechanism for ride-sourcing services in evacuations.
Subsidies are considered an incentive to help increase the supply of drivers in evacuations.
The main objective of evacuation-related modeling is to maximize the number of evacuated
people within a limited time. A weighted multi-objective model is used to maximize
the total number of matched trips in the evacuation region while minimizing the cost of
subsidies. In future practice, ride-sourcing companies can use the model to determine
prices, and government can develop regulation policies based on the model and results.

The proposed pricing strategy is tested using a hypothetical hurricane evacuation
scenario in NYC. Taxi and FHV trip data are released by NYC TLC [80]. The taxi dataset is
available from 2010, while FHV data is available from 2015. The most recent evacuation
order was Hurricane Sandy in 2012. NYC officials issued mandatory evacuation orders
for Evacuation Zone 1, which had about 370,000 residents, on Sunday, 28 October 2012.
We use taxi data during Hurricane Sandy to estimate the demand and supply of ride-
sourcing services because this is the safest way to evaluate the model performance with
realistic data from previous evacuation events. This can be improved in the future with
reliable data or survey results for demand and supply estimation of ride-souring services in
evacuations. Figure 5 shows the number of taxi trips by pickup locations in the evacuation
zone. We compared the taxi trips on Sunday, 28 October 2012 (evacuation order issued in
Hurricane Sandy) and Sunday, 14 October 2012, which is two weeks before Sandy with
normal weather condition. The colors in outer boroughs are lighter during the evacuation
period compared to normal time periods, which indicates a lower number of taxi trips in
the area after the evacuation order is issued before the landfall of Hurricane Sandy.
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area is the case study area located in Manhattan from 60th Street south). (Data source: NYC TLC data).

The case study area is located in Manhattan from 60th Street south, which is high-
lighted in Figure 5. The FHV trip records are only available from 2015, but the demand
and supply of FHV trips in future evacuation events should have similar trends as taxi
data during Hurricane Sandy. The number of taxi pickup trips and the corresponding
ridership in each zone are shown in Table 2. Ridership is estimated by counting the number
of passengers from the taxi trip data. The total ridership will be used as an approximate
FHV demand. The average daily trips in Zone 1 during Sandy evacuation is 81% of the
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regular time, which can be an indication of decreased supply during the evacuation before
the landfall of Hurricane Sandy. We assume the percent decreased supply in the case study
will be similar in each zone as during Sandy. In October 2019, the average daily trips of
high-volume FHVs and taxis was 682,635 trips and 243,641 trips, respectively. We assume
the total supply of FHVs in this case study will be 2.8 times the number of taxi trips during
Sandy. The average passenger in each trip is 1.7 persons per vehicle, according to taxi data
from the Sandy evacuation, so we assume each supply can serve 1.7 demands.

Table 2. Taxi data during and before Hurricane Sandy in the case study area.

Evacuation Zone
Sandy Evacuation Before Sandy

Taxi Trips Taxi Ridership Taxi Trips Taxi Ridership

Zone 1 23,482 41,666 28,954 50,878
Zone 2 15,089 27,031 16,666 29,385
Zone 3 17,861 31,622 20,825 37,022
Zone 4 24,112 42,669 26,733 47,252
Zone 5 40,171 70,011 43,472 76,030
Zone 6 33,632 58,967 34,215 59,373

Table 3 shows a list of major input parameters for the model. Three types of demand-
supply response behaviors with different shape parameters are tested: Slow response,
median response, and fast response. The slow response can represent more proactive
evacuation planning or a less dangerous event in which people will initially evacuate
slowly and continue to increase later. In a fast response, many people may react to
evacuation quickly and begin to evacuate at an earlier time, so the supply will be mainly
needed during early periods. When more evacuation trip data is available in the future,
the shape parameters of the demand and supply response curve can be calibrated with
real data.

Table 3. Input parameters.

Parameter Symbol Unit Value

1. Evacuation time T Hour 24
2. Passenger value distribution Fb [0, γb] $ [0, 1]
3. Driver cost distribution Fs [0, γs]

2 $ [0, 1]2

4. Demand and supply curve parameters
- Slow response [ad, Hd, as, Hs] - [0.2, 14, 0.2, 14]
- Median response [ad, Hd, as, Hs] - [0.3, 12, 0.3, 12]
- Fast response [ad, Hd, as, Hs] - [0.4, 10, 0.4, 10]

5.1. Comparison between Different Pricing Strategies

Assume a hypothetical evacuation is ordered in Zone 1. Let i = 1 represent trips
within Zone 1 and i = 2 represent trips in the study area outside of Zone 1. To study the
impact of evacuation behaviors on the total matched trips and cost of subsidies, µ1 at each
time step will be estimated from Equations (27) and (28). The parameters of demand and
supply curve are shown in Table 3; µ2 is assumed to be 1. Other input parameters are given
in Table 3. We compare three pricing strategies here. The objective of FHV platforms is
to maximize their profit at regular times. Thus, Method 1 is to use the pricing strategy at
regular times, allowing the passenger price to be higher or lower than the drivers’ wage in
both regions by setting the objective function to be equal to:

max
{p1,p2,w1,w2}

∑
i

Si(pi − wi) (29)

Then, we test the model performance with different weight parameters in the objective
function. We select two extreme conditions where α = 0, β = 1 and α = 1, β = 0 as
Method 2 and Method 3. The three methods are briefly described below:
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• Method 1: Pricing strategy at regular times with the objective in Equation (29).
• Method 2: Proposed pricing strategy in Model 2 designed for evacuations, w1 ≥ p1

in the evacuation region, w2 = p2 in the safe region. The weight parameters in the
objective function are equal to α = 0, β = 1.

• Method 3: Similar to Method 2, but the weight parameters are equal to α = 1, β = 0.

We optimize the price settings in each time period, then sum all matched trips and
costs. Table 4 shows the model results under different methods and evacuation response
behaviors. The objective of Method 1 is to maximize the profit, so the costs are negative.
Compared to Method 1, Method 2 can increase the number of trips by 52%, 43%, and 43%
without any cost in slow response, median response, and fast response, respectively. After
adding subsidies to drivers’ wages, Method 3 can increase the matched trips in Method 2
by 62%, 53%, and 48% (which will be 148%, 120%, and 113% compared to Method 1) in
slow response, median response, and fast response, respectively. Method 2 and Method 3
can be considered as two extreme versions of the proposed model where more trips
can be matched with more subsidies. With subsidies provided by the city government
or companies, lower-income and vulnerable individuals can benefit substantially from
reduced costs of transportation.

Table 4. Model performance comparison.

Method
Slow Response Median Response Fast Response

Matched Trips Cost ($) Matched Trips Cost ($) Matched Trips Cost ($)

Method 1 6382 −2700 6347 −2614 5591 −2330
Method 2 9756 0 9126 0 8038 0
Method 3 15,838 9844 13,982 7706 11,913 6124

Different evacuation behaviors are found to have significant impacts on the results. In
Method 3, for example, compared to the slow response condition, the median response
has 12% fewer matched trips, while in the case of the fast response, the matched trips are
25% fewer than the slow response. Therefore, evacuation behavior is shown to be a crucial
component of an evacuation study involving ride-sourcing services where the demand and
supply are mainly controlled through pricing.

5.2. Sensitivity Analysis of Demand and Supply

The sensitivity of the model with respect to the demands µi in different regions is
also tested. The variable µi shows the amount of demand per unit number of supply,
which is one of the key factors that will affect the model results. Changes in demand (e.g.,
mode share, car ownership) and supply (e.g., available drivers) are essentially changes
in µi. Figure 6 shows the impact of µi on the set of optimal pricings

(
p∗1 , p∗2 , w∗1 , w∗2

)
with

different weight parameters. Region 1 is the evacuation region, while Region 2 is the safe
region. From the model result, we can conclude that increase of µi in one region increases
the passenger prices and drivers’ wages in this region. This result shows that the model
is increasing the drivers’ wages to attract more drivers while decreasing the demand by
increasing the passengers’ prices. The optimal pricing sets with different weight parameters
are shown in Figure 6. In Figure 6a, drivers’ wages are always higher than the prices paid
by passengers in Region 1, while prices are equal to wages in Region 2. In Figure 6b, the
prices are always equal to the wages in both regions because α = 0 and β = 1.
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6. Conclusions and Future Work

With limited public resources available to evacuate all citizens, especially vulnerable
populations like the elderly and disabled people, alternative transportation strategies
must be considered for optimizing and expanding resources. The shared mobility of
ride-sourcing companies may help address problems of limited resources and social eq-
uity [3,5–8]. This paper proposes a mathematical modeling approach to optimize the
efficiency of evacuations by leveraging ride-sourcing services. Most importantly, this study
shows that more equitable evacuations can be achieved in the future with subsidies pro-
vided by governments or companies, such that lower-income and vulnerable individuals
could benefit substantially from ride-sourcing services. The models and solution methods
proposed in this paper can provide decision-making support for emergency management
officials as well as local and regional transportation agencies. The case study section of the
paper showed the feasibility of the proposed method and the applicability of subsidies for
ride-sourcing services in evacuations.

This paper provides initial insights for modeling ride-sourcing services in evacuations.
There are some limitations in this research that may be addressed in future work. First, the
demand and supply of ride-sourcing services in evacuations should be more accurately
estimated in future practice by using real data if available. People’s choices among these
new alternative transportation modes during an evacuation require further research. Russo
and Rindone [85] indicated that the target evacuees include four categories: Residents
within the evacuation area, nonresidents who systematically travel to the evacuation area
for work (employees), occasional nonresidents who occasionally travel to the evacuation
area for shopping or other activities, and users with special needs. Therefore, when
estimating the evacuation demand, it is important to understand the behavior of local
residents as well as the transitionary population, such as commuters and tourists. Second,
assumptions in the modeling section (e.g., passenger value distribution function Fb and
driver cost distribution function Fs) can be calibrated in the future with available data.
Different types of subsidies can be added to the model for different population groups.
The compatibility between travel time and evacuation time can be enhanced in future
research with evacuation route planning. Finally, it should be noted that the feasibility of
the proposed method depends on the size of the carless population and the availability and
size of ride-sourcing services. Large cities with large carless populations (e.g., NYC, San
Francisco, New Orleans) can benefit from the increase in resources during an evacuation,
while in many small cities or rural areas where there are not enough FHVs to start with, it
may be more efficient to use private cars or coordinate some kind of emergency carpooling
with neighbors.

There are many uncertainties in developing shared resources and providing social
equity services to fill the gaps in current disaster preparation. Several key directions for
future research regarding leveraging shared resources in evacuations can be found in
recent research [3,5–8]. More research and policies are needed in this field to support
collaborative disaster response through public–private partnerships. Many challenges
also remain in the use of ride-sourcing services in evacuations, including the effects of
increased road congestion, methods to prevent drivers from accessing a dangerous region,
and the physical and psychological impact of the evacuation process on drivers. The
recent COVID-19 pandemic also adds new risks for hurricane evacuation with the social
distancing requirement [91].

Although many challenges remain in developing shared mobility strategies for evac-
uations, public agencies and private companies should consider ride-sourcing to be an
additional and important resource in future evacuation planning. The methodology and
results in this paper can provide useful insights for modeling on-demand ride-sourcing
for evacuations.
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