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Abstract: Estimations of deforestation are crucial as increased levels of deforestation induce serious
environmental problems. However, it is challenging to perform investigations over extensive areas,
such as the Amazon rainforest, due to the vast size of the region and the difficulty of direct human
access. Satellite imagery can be used as an effective solution to this problem; combining optical
images with synthetic aperture radar (SAR) images enables deforestation monitoring over large areas
irrespective of weather conditions. In this study, we propose a learning strategy for multi-modal
deforestation estimations on this basis. Images from three different satellites, Sentinel-1, Sentinel-2,
and Landsat 8, were utilized to this end. The proposed algorithm overcomes visibility limitations due
to a long rainy season of the Amazon by creating a multi-modal dataset using supplementary SAR
images, achieving high estimation accuracy. The dataset is composed of satellite data taken on a daily
basis with relatively less monthly generated, ground truth masking data, which is called the many-to-
one-mask condition. The Normalized Difference Vegetation Index and Normalized Difference Soil
Index bands are selected to comprise the datasets. This yields better detection performance and a
shorter training time than datasets consisting of RGB or all bands. Multiple deep neural networks are
independently trained for each modality and an appropriate fusion method is developed to detect
deforestation. The proposed method utilizes the distance similarity of the predicted deforestation
rate to filter prediction results. The elements with high degrees of similarity are merged into the
final result with average and denoising operations. The performances of five network variants of
the U-Net family are compared, with Attention U-Net observed to exhibit the best prediction results.
Finally, the proposed method is utilized to estimate the deforestation status of novel queries with
high accuracy.

Keywords: deforestation; remote sensing; multi-modal dataset; many-to-one mask; multi-view
learning

1. Introduction

Forests occupy more than 30% of the global terrestrial surface area and serve as habitats
for numerous species of plants and animals [1]. Additionally, they play a significant role in
the global ecosystem by preventing soil erosion and reducing the effects of climate change
via a process known as carbon cycling, which stores large amounts of carbon in the soil and
releases it back into the atmosphere [2]. In particular, the Amazon rainforest covers an area
of 5.5 million km2, making it the largest tropical forest, accounting for 40% of all tropical
rainforest areas on Earth [3]. However, forested regions have decreased by 11,568 km2 in
2022 according to the Legal Amazon Deforestation Satellite Monitoring Project (PRODES)
and the National Institute for Space Research (INPE) [4], and this decline is considered to be
one of the most serious environmental problems at the present moment. The degradation
of forests induces a loss of biomass and the devastation of natural resources, eventually
disrupting the ecological balance and causing far-reaching changes across the globe [5].
In particular, deforested regions in the Amazon rainforest have increased from less than
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100,000 km2 to more than 730,000 km2 over the past 40 years [6] according to satellite
monitoring data collected by the Brazilian National Institute for Space Research (INPE).
To make matters worse, the deforestation rate is increasing yearly, having increased by
more than 13% in 2022 compared to the previous year [4]. This could create landslides or
collapses due to soil erosion and may cause alarming animal and plant habitat losses [7]. At
this rate, the role of the Amazon rainforest as a carbon sink may end by 2035, accelerating
global warming significantly [8].

Analyses of changes in time-series data, necessary for understanding deforestation
trends, require continuous and extensive monitoring [9]. The INPE has been monitoring the
deforestation rate of the Amazon region via the PRODES and the Real-time Deforestation
Detection System (DETER) since the 1980s [5]. The DETER project is based on medium-
resolution satellite images and serves as an early detection tool to minimize the damage
caused by deforestation. Additionally, the PRODES project provides accurate deforested
area maps and calculates the annual deforestation rate [10].

Several deforestation monitoring studies have been proposed based on remote-sensing
data. For the monitoring of forest cover using optical data, the Normalized Difference
Vegetation Index (NDVI) is used to maximize the contrast between the background and
greenery to ascertain the characteristics of green vegetation or to estimate the amount of
plant biomass present on the surface via a spectral signal analysis [1,11]. Schultz et al. [12]
evaluated time-series Landsat performance outcomes through various vegetation indices,
including NDVI, to identify deforestation in tropical regions. DeVries et al. [13] constructed
an NDVI map based on Landsat data to identify deforestation and forest degradation
in Ethiopia. Alternatively, the pixel-based Break For Additive Seasonal Trends (BFAST)
method can be used to detect changes based on the prediction modeling of acquired time-
series data [14] for deforestation detection. BFAST detects pixels that deviate significantly
from breakpoints via a time-series data analysis and expresses the type of change using
different intensity levels [15]. It can be used to detect deforestation in nearly real time and
can help to identify breakpoints in long-term pattern data [14,16]. Nelson [17] studied
band ratios and image differencing to detect changes in the forest canopy and confirmed
that vegetation index differencing yields the best performance. Meanwhile, a number of
studies on deforestation characteristics using SAR as well as optics have been conducted.
Field research in the Madre de Dios region of Peru [18] revealed a marked reduction in the
(L-band, HV) backscatter of SAR in portions of the forest that had undergone deforestation.
In addition, deforested dry forests in Bolivia exhibited a clear reduction in cross-polarized
backscattering values in both the L- and C-bands [19].

The multi-sensor data fusion strategy combining SAR and optical sensors such as
Landsat has improved the accuracy of forest mapping [20–22]. However, there are lim-
itations to the use of a fusion method to detect forest changes, such as discrepancies in
collection dates and the misalignment of multiple forms of data [23,24].

Forest research, which has classically focused on normalized vegetation indices or
individual tree classification [25], has been extended to include the integrated monitoring
of large regions by incorporating deep learning technology [26–29]. This state-of-the-
art technology detects deforestation with the best performance, using optical and SAR
datasets [30–33]. Mazza et al. [34] conducted a study on the detection of forests with high-
resolution images of 5 m using various CNN networks, with the best detection performance
exhibited by U-Net [35]. Using Landsat imagery, Maretto et al. [36] modified the U-Net
architecture to enable the integration of both spatial and temporal contexts to detect
deforestation. Torres et al. [37] evaluated the performance of different networks to detect
deforestation in the Amazon rainforest based on Landsat 8 and Sentinel-2 data. Through
this, it was confirmed that high-resolution Sentinel-2 images increase the detection accuracy,
suggesting that high deforestation detection is possible when PRODES and deep learning
technology are combined. In addition, this deep learning technology was hypothesized to
detect changes in Ukrainian forests by applying Sentinel-2 data to the U-Net in Isaienkov
et al. [38], and John and Zhang [39] proposed an attention U-Net [40] segmentation network
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to detect deforestation in the Amazon region and South America. In the Amazon and
Cerrado biomes, Ortega Adarme et al. [41] evaluated patch-wise classification algorithms
for the automatic detection of deforestation, finding that deep-learning-based approaches
surpassed the SVM (support vector machine) [42] baseline on all performance metrics. In
the context of the change detection of deforestation tasks, Soto et al. [43] proposed a domain
adaptation approach that takes into account several locations in the Amazon and Brazilian
Cerrado biomes to increase the accuracy of cross-domain deforestation detection. De
Andrade et al. [44] extended the original DeepLabv3+ to solve class-imbalanced problems
in deforestation detection in the Amazon using Landsat OLI-8 images. Zhang et al. [45]
used U-Net with LSTM to detect the deforestation change in China with Sentinel-2 imagery.
Islam et al. [46] analyzed forest cover changes in the Sundarbans in India with a transfer
learning method using Sentinel-2A imageries from 2016 and 2022.

In general, the training strategy used for deep learning is determined by the dataset
modality features. Learning based on a single modality dataset is called single-view single-
network learning. On the other hand, multi-view learning strategies are applied to learn
a common functional space or shared patterns with consistent high-level semantics from
multi-view data obtained from multiple modalities, sources, and formats [47,48]. To provide
more universal representations, the multi-view CNN architecture combines multi-view
data from several sources. In this study, we propose a novel multi-view learning strategy to
identify deforestation using a multi-modal dataset consisting of three different modalities.

The main contributions of this research are summarized below.

1. We propose a dataset selection strategy based on a spectral index that can achieve
high performance with less learning time compared to when large-capacity initial
multimodal datasets are used.

2. A novel multi-view learning strategy for a multi-modal satellite dataset is proposed,
and it applies to diverse conditions regardless of the availability of modalities.

3. The proposed fusion strategy, which combines multiple outputs from three networks,
achieves high accuracy for deforestation estimations in the Amazon area.

2. Dataset

This study was planned around the region and dataset provided by the Multimodal
Learning for Earth and Environment workshop (MultiEarth) [49] and consists of Sentinel-1,
Sentinel-2, and Landsat 8 satellite imagery sets. The region comprises a portion of dense
tropical Amazon rainforest in Pará, Brazil, containing thousands of species of broad-leaved
evergreen trees, and approximately 7.2 million hectares of forest have been lost in Pará
over the past 20 years [50]. The region is bounded by (4.39◦S, 55.20◦W), (4.39◦S, 54.48◦W),
(3.33◦S, 54.48◦W), and (3.33◦S, 55.20◦W), as depicted in Figure 1b [51,52]. The region
measures approximately 9500 km2 in area and is 80 km wide and 120 km across. The
satellite images and ground truth data in the dataset covers the whole study area depicted
in Figure 1.

The dataset contains synthetic aperture radar (SAR) images alongside optical imagery.
Some studies have reported reduced backscatter measurements in SAR images following a
deforestation event. For instance, Bouvet et al. [53] discovered a brief (5–6 months) decline
in C–band vertical transmit/vertical receive (VV) values corresponding to deforested
regions, consistent with patterns observed in deforested tropical forests in Indonesia [19,54].
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identify deforestation areas [58]: (1) Areas that underwent the intentional felling of trees 
by humans are deemed to be deforestation regions. (2) Forests with continuous forest can-
opies exceeding 1 ha are not marked. (3) The remaining unlabeled areas where rivers with 
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1, corresponding to deforested areas. Figure 2 shows examples of three types of satellite 
patches and their corresponding mask patches. 

Figure 1. (a) Deforestation map of Brazil [55], and (b) study area in the Amazon in Brazil (2021).

In this study, Sentinel-1 (C-band) imagery is used, which leverages the characteristics
of SAR to detect deforestation, using two polarization bands (Vertical-Vertical (VV) and
Vertical-Horizontal (VH)) with a 10 m resolution. Sentinel-2 consists of twelve bands
ranging from visible to shortwave infrared (SWIR) with spatial resolutions of 10 m, and
Landsat 8 has eleven bands with spatial resolutions of 30 m.

All collected satellite images were divided into (256 × 256) size patches, and a single
patch covers an area with a latitude and longitude range of 0.02◦. The raw dataset is
accessible on the MultiEarth workshop [49] webpage in the form of patches with the
specified latitude and longitude range. Final patches are converted so that they have a
spatial resolution of 10 m according to the masking data format. There are 69,977, 68,272,
and 32,642 Sentinel-1, Sentinel-2, and Landsat 8 daily patches included in the dataset,
respectively, and 17,514 monthly mask patches are used, significantly fewer than the
number of daily satellite image patches.

The deforestation mask patches are generated based on Planet satellite data [56] with a
spatial resolution of 3.7 m on the RGB band. In this study, we refer to the ground truth image
as a ‘mask patch,’ as the deforestation estimation task is a binary classification problem
(deforestation or not) [57]. The mask data consist of data captured between 2016 and 2021,
excluding those captured between October and April each year, which corresponds to
the rainy season in the region. The masking maker establishes the following criteria to
identify deforestation areas [58]: (1) Areas that underwent the intentional felling of trees
by humans are deemed to be deforestation regions. (2) Forests with continuous forest
canopies exceeding 1 ha are not marked. (3) The remaining unlabeled areas where rivers
with areas exceeding 1 ha pass through deforested regions are marked as deforestation
regions. Finally, each pixel of the raw data is converted to 0, corresponding to forested
areas, or to 1, corresponding to deforested areas. Figure 2 shows examples of three types of
satellite patches and their corresponding mask patches.
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A special feature of the dataset in this study is that multiple patches, taken at irregular
interval days from three different satellites, correspond to a single mask patch generated
on a monthly basis. Three types of satellite data are collected at different time resolutions
for each month and region, and the observation frequency is irregular, meaning that the
collected volume from those satellites differs even for each month. Such a problem, where
multiple patches for the same area are matched to one mask patch, is known as ‘many-to-
one labeling’ [59]. Given that we decided to refer to the ground truth image as ‘mask’, this
problem is referred to as ‘many-to-one mask’ for the duration of this paper.

The dataset is structured with dates, locations, and corresponding mask and multi-
modal source patches. Let us define the set of dates (D), locations (L), deforestation mask
patches (M), patches of Sentinel-1 (S1), patches of Sentinel-2 (S2), and patches of Landsat 8
(L8), as shown in Equations (1)–(6):

D = {d1, d2, . . . , dnD} = {yyyymm . . .} = {201608, 201707, . . . , 202108}, (1)

L = {l1, l2, . . . lnL} = {(lon1, lat1), (lon2, lat2), . . . (lonnL , latnL)}
= {(54.48, 3.33), (54.48, 3.35), . . . (55.20, 4.37), (55.20, 4.39)}, (2)

M =
{

Ml1,d1 , Ml2,d2 , . . . , MlnL ,dnD

}
, (3)

S1l,d =
{

s1l,d
1 , s1l,d

2 , . . . , s1l,d
i

}
, ∀d ∈ D, ∀l ∈ L, (4)

S2l,d =
{

s2l,d
1 , s2l,d

2 , . . . , s2l,d
j

}
, ∀d ∈ D, ∀l ∈ L, (5)

L8l,d =
{

l8l,d
1 , l8l,d

2 , . . . , l8l,d
k

}
, ∀d ∈ D, ∀l ∈ L, (6)

where nD is a set number representing a date, nL is a set number representing a location, and
(lon, lat) refers to longitude and latitude, respectively. In addition, i, j, and k, respectively,
represent the number of patches for Sentinel-1, Sentinel-2, and Landsat 8 included at the
given location l and on date d.
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Figure 3 shows an example of the May 2018 dataset. The entire set of data for the
month consists of one mask patch representing the eleven patches from three different
satellites.
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Figure 3. Example of the training dataset configuration: multiple daily patches obtained from
multiple satellites and one representative mask patch for a month.

The entire dataset is divided into the training, validation, and test sets on a regional
basis, given the strong relationship between the trait and the location. Because the pattern
or aspect of deforestation can change depending on the regional characteristics, the dataset
was constructed to learn regional features and prevent overfitting and erroneous learning,
as opposed to using of random selection.

3. Proposed Training Strategy
3.1. Optimized Data Selection

For high-performance deforestation detection for arbitrary regions during arbitrary
seasons, we constructed a multi-modal dataset in this study. Deforestation changes the
reflectance of vegetation in satellite images such that suitable band selection from the
different satellites is crucial to detect this phenomenon efficiently. Deforestation induces
a large change in the reflectance in the shortwave infrared, vegetation red edge, and red
bands [60]. Thus, B4 (Red), B7 (Vegetation Red Edge), B11 (Shortwave Infrared), and
B12 (Shortwave Infrared) bands are selected for Sentinel-2, and B4 (Red), B6 (Shortwave
Infrared), and B7 (Shortwave Infrared) bands are selected for Landsat 8.

The NDVI is frequently used as an indicator to extract seasonal data based on the
relationship between spectral reflectance and vegetation characteristics [61]. As given by
Equation (7), the RED band represents the spectral absorption by the vegetation, and the
near-infrared (NIR) band accounts for the majority of change in reflectance in this case. In
addition, the Normalized Difference Soil Index (NDSI, Equation (8)) uses SWIR and NIR
band information, and SWIR accounts for the majority of change in the reflectance values of
soil areas. Thus, the NDSI could be a good indicator for distinguishing vegetated areas from
soil-degraded areas [62], and study [60] developed a model that effectively detects forests
even in areas with low reflectivity caused by clouds or shadows, by combining multiple
satellites and indexes. Therefore, to compose the two aforementioned spectral indices, the
B8 (Near Infrared) band of Sentinel-2 and the B5 (Near-Infrared) band of Landsat 8 are
additionally added to configure the dataset. Finally, eleven bands in total are selected for
this study based on the aforementioned indices and related works. These are described in
Table 1.

NDVI =
(NIR− RED)

(NIR + RED)
, (7)
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NDSI =
(SWIR− NIR)
(SWIR + NIR)

, (8)

Table 1. Final data specifications of the multi-modal dataset.

Type Selected Bands Patch Size Pixel Resolution

Sentinel-1 VV, VH 2 × 256 × 256 10 m
Sentinel-2 B4, B7, B8, B11, B12 5 × 256 × 256 10 m

Landsat 8 B4, B5, B6, B7 4 × 256 × 256

10 m
(resized with bicubic

interpolation from
30 m resolution)

3.2. Learning Strategy

As described in the previous section, images from three different satellites are utilized
in this study, and because each type of satellite data has unique characteristics, each can be
recognized as a single “view”. The single-view learning strategy, described in Figure 4a,
refers to training and inferring each modality’s output with only one view. In this study,
there are three views that must be acquired in what is referred to as a “multi-view learning”
strategy. Multi-view architectures are usually divided into multi-view-one-network and
one-view-one-network strategies [63], as depicted in Figure 4.
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The multi-view-one-network strategy feeds various types of data into a single network,
and fused results are generated through the network. Most studies that use two or more
satellite datasets utilized this method [37,39]. On the other hand, another network is
employed for each view in the one-view-one-network strategy and multiple inference
results are then fused during the next step.

The multi-view-one-network strategy is inappropriate for this study because the
numbers of training compositions and volumes in the training set vary irregularly from
month to month. Therefore, we used the one-view-one-network strategy to utilize the
unique characteristics of each satellite image and to ensure applicability even when there
are very few specific views that can be utilized. One of the basic principles of one-view-
one-network learning is the complementary usage of information contained in multi-
source data. For example, missing optical information (Sentinel-2, Landsat 8) due to harsh
weather conditions can be supplemented using SAR (Sentinel-1) images, and insufficient
information in Landsat 8 images owing to low image quality levels can be supplemented
using Sentinel-2. As depicted in Figure 4, an independent network is trained for each
view, and each trainer adopts a network that yields the optimal performance. In this
study, U-Net is selected as the backbone network due to its simple network structure and
good performance for segmentation. Four more U-Net variants, specifically R2U-Net [64],
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Attention U-Net, Attention R2U-Net [40], and Nested U-Net [65], are applied and the
performance capabilities of each are compared.

3.3. Fusion Strategy

This section describes how to convert the multiple outputs from the one-view-one-
network into one final result. As shown in Figure 4, the proposed training strategy consists
of three steps: (1) pre-processing and input into distinct views, (2) training using the individ-
ual network, and (3) multi-output fusion and post-processing. After the pre-processing step,
the three datasets were entered into the three learning models to learn the features of each
view. After the training step, view-specific features were integrated into the following fu-
sion method to obtain a compact, discriminative shape feature. That is, the fusion step aims
to combine the reconstruction of multi-view features by minimizing reconstruction errors
and changing the set of multiple predicted results into one representative prediction (Y).

Figure 5 depicts the entire process of deriving the final deforestation detection result
through the learning strategy and the fusion method with a multi-modal dataset proposed
in this study.
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The problems that originate from the number of inputs from each satellite differ
depending on the location and date of the patch. Therefore, the number of prediction
result sets (n) used in the final output also differs. Commonly used methods in the fusion
layer include deriving the average value of all multiple predicted elements (Average),



Remote Sens. 2023, 15, 5167 9 of 20

adopting the only the maximum value among all output elements (Maximum), and using
the trimmed mean method after limiting the maximum and minimum values of elements
(Trimmed Average) [63]. These are described in Table 2 and the subscript x appearing in all
formulas in Table 2 means the index of the daily data set used to predict deforestation in a
specific region and month, as described in Figure 3.

Table 2. Different types of fusion strategies.

Fusion Types Mathematical Expression

Average YAvg = ∑ Px
n

Maximum YMax = max(Px)

Trimmed Average YTA =
∑
(

Px−Ymin
YMax−Ymin

)
n

Distance Similarity YDS =
∣∣Rx − Rx

∣∣, Rx = ∑ Rx
m

All of the other fusion methods are generally calculated in a pixel-wise method and
finally expressed as one 2D image. In this study, we suggest the rate of deforestation (R),
which represents the deforestation rate within one predicted result (P), as described in
Equation (9). If all pixels are predicted to be deforestation, the value is 100%, whereas if all
pixels are predicted to be forest, the value is 0%. All of the predicted 2D images (Pl,d) are
converted into a collection of elements representing the deforestation rate (Rl,d).

R
(

Pl,d
)
=

number o f de f orestation pixels o f Pl,d

total number o f pixels o f Pl,d =
∑1∈Pl,d 1

N
× 100 (%) = {R1, . . . , Rn}, ∀R ∈ R (9)

In addition, we proposed a method of calculating the ‘distance similarity’ between the
predicted elements (R) and mean (R) of the elements set, as described in Equation (10).

YDS =
∣∣Rx − Rx

∣∣, (10)

After certain elements with the lowest degree of similarity are eliminated according
to the criteria of Equation (11), the distance similarity is recalculated with the remaining
elements. Afterwards, only the elements corresponding to the condition in Equation (12)
remain, indicating that the degree of similarity has become stable. In this step, eliminated
elements, which have a low degree of similarity, may indicate outliers. For example,
inference images with particularly low or high deforestation rates compared to other
elements could have heavy cloud cover, which results in erroneous prediction results that
would be removed with this procedure.

Yl,d
Dis1 =

−3

√
1
n ∑n

i=1

(
Ri −

∑n
i=1 Ri

n

)2

<Yl,d
Dis < +3

√
1
n ∑n

i=1

(
Ri −

∑n
i=1 Ri

n

)2
, (11)

Yl,d
Dis2 =

−
√

1
m ∑m

i=1

(
Ri −

∑m
i=1 Ri

m

)2

<Yl,d
Dis < +

√
1
m ∑m

i=1

(
Ri −

∑m
i=1 Ri

m

)2
, (12)

Here, n is the total number of elements constituting the initial prediction result, and m
is the total number of remaining elements after Equation (11) is applied. The difference
between Equations (11) and (12) is that the filtering range for the degree of similarity is
different. The filtering range of Equation (11) is three sigma of the deforestation rate, which
can eliminate outliers in 99.7% of the data range with the assumption of normal distribution.
With this equation, we can eliminate certain outlier prediction results. Afterward, Equation
(12), which has one sigma range for the rate, would wipe out additional elements with low
degrees of distance similarity.
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Only elements with high degrees of similarity remain after applying the proposed
method, and the predicted images of Px matching the same index as these elements, Rx, are
averaged and regenerated as a single image. Finally, an opening operation (Equation (13))
is applied to denoise the obtained image. The opening operation (◦) involves applying an
erosion operation (	) that removes small objects effectively, and then applying a dilation
operation (

⊕
) that strengthens the shapes in the resulting image.

I ◦M = (I 	M)
⊕

M, (13)

In this equation, I and M denote the image and the structuring element, respectively.

4. Results

In Section 4.1, the effects of the band selection results are presented, and the results of
the proposed multi-view strategy, indicating a meaningful improvement in the prediction
results, are compared to those of the single-view method in the next subsection. Finally, the
effectiveness of the proposed fusion method is evaluated in the last subsection. To validate
the proposed method and compare the performance capabilities from a variety perspectives,
two evaluation metrics—the F1-score and Intersection over Union (IoU)—are used.

4.1. Band Selection Results

As described in Section 3.1, eleven spectral bands from three satellites were selected
to comprise the dataset. We conducted experiments by altering the dataset configuration
to evaluate the appropriateness of the proposed band selection method. These results are
shown in Figures 6 and 7. Figure 6 shows an example of the prediction results of different
band selection methods for Sentinel-2. Each column depicts (a) an RGB patch of Sentinel-2
data, (b) the prediction result based on the RGB band, (c) the prediction result based all
bands, and (d) the prediction result based on selected bands. True positives (deforestation)
and true negatives (background), which are correct prediction results, are highlighted in
green and gray, respectively. An unexpected prediction result when using only RGB bands
is the high rate of false negatives, where the model failed to detect actual deforestation.
In addition, when utilizing all bands, the prediction result demonstrated similarly high
performance. However, training with all bands required an additional 6–7% more time and
computation power in the same environment (NVIDIA 2080 Ti GPU).

Figure 7 shows the detection performance (F1-score, IoU) for different band configura-
tions in Sentinel-2 and Landsat 8. In both cases, it can be seen that the highest performance
arose when learning with the proposed selected band (green).

4.2. Multi-View Learning Effect

In this section, the results of the proposed learning strategy (one-view-one-network)
are compared with those of the single-view method, which utilizes only data from a single
satellite. Table 3 presents the effectiveness of the multi-view learning strategy. As described
in Table 3, when the proposed multi-view learning strategy is applied, the evaluation
metrics are significantly improved for every network type, meaning that the proposed
multi-view learning method exhibits a superior learning performance compared to the
single-view results. In addition, these performance improvements, compared to the single-
view result, are identical in the U-Net family test overall.
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Table 3. Deforestation estimation performance outcomes of different networks with different dataset
configurations.

Network Metric

Single-View Learning Multi-View Learning

Sentinel-1 Sentinel-2 Landsat 8 Intersection Dataset
(751 Queries)

Expanded Dataset
(1355 Queries)

U-Net F1-score
IoU

0.808 0.711 0.758 0.889 0.871
0.703 0.634 0.671 0.812 0.785

R2U-Net F1-score
IoU

0.703 0.538 0.630 0.752 0.758
0.568 0.402 0.540 0.631 0.642

Attention
U-Net

F1-score
IoU

0.841 0.719 0.773 0.897 0.883
0.743 0.642 0.690 0.823 0.801

Attention
R2U-Net

F1-score
IoU

0.704 0.582 0.729 0.786 0.789
0.576 0.450 0.6180 0.677 0.680

Nested U-Net
F1-score

IoU
0.811 0.708 0.760 0.890 0.874
0.705 0.629 0.673 0.814 0.789

Meanwhile, as mentioned in Section 2, the total number of mask patches in the test set
is 1355. Therefore, 1355 novel queries are available for testing the proposed deforestation
estimation algorithm. However, only 751 queries contain all three types of satellite imagery.
These queries are known as the ‘Intersection dataset’, indicating the availability of all
three types of modalities. The entire test dataset, consisting of 1355 queries, is called
the ‘Expanded dataset’, indicating the availability of partial sets of modalities. Table 3
summarizes the evaluation results for single-view-based predictions and the proposed
multi-view strategy-based predictions for the five different networks. The best values
among each criterion are highlighted in bold.

The three cases shown in Figure 8 depict single-view results using only data from a
single satellite and the prediction results with multi-modal data when using the proposed
training strategy. As shown, in the single-view results, if there are heavy clouds or poor
detection conditions, the final performance is reduced. However, given that the proposed
model was trained under all conditions, it shows a high and stable performance regardless
of exceptional conditions.

4.3. Performance of the Proposed Fusion Method

Here, we evaluate the performance of the proposed fusion method. The performance of
existing fusion strategies, specifically the Average, Maximum, and Trimmed average methods,
were compared with the proposed Distance similarity method.

Table 4 describes the detection performance of the four fusion strategies. The Maximum
method shows the lowest performance, likely because only the maximum case was utilized
without judgments of any other predicted results. In addition, the Maximum method tends
to predict wider possible deforestation areas. On the other hand, the Average method shows
high accuracy relative to that of the proposed model, though the high standard deviation
implies that the true negative rate is very high, as shown in the first case in Figure 9. In
contrast, with regard to Trimmed average, it is applied with outliers eliminated, with the
result being that false positives are clearly reduced. However, as shown in the second and
last examples, for Trimmed average, there is a considerable variation in accuracy depending
on the image. This may have occurred because some false positives were not removed,
depending on the range of the prediction results. In contrast, for the proposed method,
only the prediction result that is as close to the ground truth as possible remains through
the distance similarity evaluation, therefore showing similar performance outcomes in
all cases.
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Table 4. Comparison of the detection performance capabilities of the different fusion methods.

Fusion Type
Metric Average Max Trimmed Mean Proposed

Fusion Method

F1-score
IoU

0.89 (σ = 0.12) 0.84 (σ = 0.10) 0.87 (σ = 0.10) 0.90 (σ = 0.10)
0.81 (σ = 0.14) 0.74 (σ = 0.14) 0.78 (σ = 0.13) 0.82 (σ = 0.13)
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4.4. Annual Deforestation Change Analysis

Using the proposed model, we extended the time scale to analyze the detected annual
deforestation levels for the entire test area. Deforestation areas in 2016 are highlighted in
yellow. The years 2016 to 2019, and 2019 to 2021, are shown in red and blue, respectively, as
illustrated in Figure 10. From this color marking, it is evident that the deforested area in
the test region has steadily increased over the past five years.



Remote Sens. 2023, 15, 5167 14 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

Table 4. Comparison of the detection performance capabilities of the different fusion methods. 

Fusion Type 
Metric 

Average Max Trimmed Mean Proposed Fusion Method 

F1-score 
IoU 

0.89 (σ = 0.12) 0.84 (σ = 0.10) 0.87 (σ = 0.10) 0.90 (σ = 0.10) 
0.81 (σ = 0.14) 0.74 (σ = 0.14) 0.78 (σ = 0.13) 0.82 (σ = 0.13) 

 
Figure 9. Three examples for the fusion method performance comparison. 

4.4. Annual Deforestation Change Analysis 
Using the proposed model, we extended the time scale to analyze the detected annual 

deforestation levels for the entire test area. Deforestation areas in 2016 are highlighted in 
yellow. The years 2016 to 2019, and 2019 to 2021, are shown in red and blue, respectively, 
as illustrated in Figure 10. From this color marking, it is evident that the deforested area 
in the test region has steadily increased over the past five years. 

Similar results are observed in the annual forest loss output by Hansen et al. [66]. 
Hansen’s study provides various analysis results, including information on loss due to 
fire, as well as deforestation information for the annual global region. Since it encompasses 
this information, it appears to be a valuable comparative analysis tool when expanding 
the model to other regions in the future. Through this proposed learning strategy, this 
study confirmed that the model exhibits high performance and demonstrates the possibil-
ity of analyzing monthly and even annual changes, despite the limitations of daily images 
and monthly mask configuration. 

Figure 9. Three examples for the fusion method performance comparison.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 10. An annual deforestation changes map of the test area: forest (green), deforestation level 
in 2016 (yellow), deforestation level in 2019 (red), and deforestation level in 2021 (blue). 

5. Discussion 
5.1. Cloudy Satellite Image Cases 

In this study, a multi-modal satellite dataset containing images from three different 
satellites is proposed with an optimal learning strategy that can perform similarly in all 
environmental conditions. In this section, the model performance is discussed under var-
ious cloud conditions. 

Cloudy images are classified into three types depending on the amount of cloud cov-
erage. First, scattered clouds allow near-perfect surface visibility for humans, and, in this 
case, the proposed model predicted deforestation areas satisfactorily. Examples of this 
type and the corresponding prediction results are depicted in Figure 11 (1) under ‘Scat-
tered Cases’. Second, more dense clouds are labeled as ‘Broken Cases’. In this case, the 
clouds are too thick for the surface to be observed by humans. However, the proposed 
method can estimate the deforestation status with high accuracy. 

Figure 10. An annual deforestation changes map of the test area: forest (green), deforestation level in
2016 (yellow), deforestation level in 2019 (red), and deforestation level in 2021 (blue).

Similar results are observed in the annual forest loss output by Hansen et al. [66].
Hansen’s study provides various analysis results, including information on loss due to fire,
as well as deforestation information for the annual global region. Since it encompasses this
information, it appears to be a valuable comparative analysis tool when expanding the
model to other regions in the future. Through this proposed learning strategy, this study
confirmed that the model exhibits high performance and demonstrates the possibility of
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analyzing monthly and even annual changes, despite the limitations of daily images and
monthly mask configuration.

5. Discussion
5.1. Cloudy Satellite Image Cases

In this study, a multi-modal satellite dataset containing images from three different
satellites is proposed with an optimal learning strategy that can perform similarly in all
environmental conditions. In this section, the model performance is discussed under
various cloud conditions.

Cloudy images are classified into three types depending on the amount of cloud
coverage. First, scattered clouds allow near-perfect surface visibility for humans, and, in
this case, the proposed model predicted deforestation areas satisfactorily. Examples of this
type and the corresponding prediction results are depicted in Figure 11 (1) under ‘Scattered
Cases’. Second, more dense clouds are labeled as ‘Broken Cases’. In this case, the clouds
are too thick for the surface to be observed by humans. However, the proposed method
can estimate the deforestation status with high accuracy.Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21 
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In the last case, the cloud cover is extremely dense, and the ground is not visible
at all. These are labeled as ‘Overcast Cases’. Such cases are common in Amazonian
forests, especially during the rainy season. Related research has focused on estimations
of deforestation in the Amazon region [37] based on electro-optical (EO) images taken
between July and August. If we trained the model with only a single optical satellite or
with the single-view learning method, the model would not have detected deforested
areas well. However, we can utilize multi-modal datasets, e.g., SAR images obtained from
Sentinel-1 and clear images from another day, and an optimal dataset configuration with
selected bands including the IR range to predict deforestation. Thus, even in the presence of
overcast skies, highly accurate predictions can be obtained using other clear/SAR images.

5.2. Estimation Performance for Different Time Scales in the Many-to-One-Mask Condition

This study proposed an optimal learning strategy and fusion method for the many-
to-one-mask dataset environment. The features of daily images are learned through the
proposed one-view-one-learning approach, and through the fusion method it is confirmed
that final high-performance monthly detection results are derived. In other words, results
showing very high performances can be obtained without generating matching masks for
all daily satellite images, confirming the possibility of constructing an efficient ground truth
dataset. In particular, this method maintains high performance regardless of the amount
of data or the composition, and it operates regardless of the satellite revisit time or in the
event of data collection problems caused by weather conditions.

In addition, high detection accuracy for daily changes was confirmed by the proposed
method. As shown in Figure 12, as a result of analyzing two cases with a difference of
about two weeks, it was found that daily changes are clearly detected despite training
based on monthly masks. Case 1 utilizes Sentinel-2 RGB patches captured on 2 July and 18
July 2017. Unlike the first result (yellow), the newly detected result (orange) identifies an
expansion of approximately 6% of the deforestation area. Similarly, in case 2, it is observed
that the deforestation area, which was about 11% as of 3 August 2017, increased to 17% as
of 19 August 2017. This result shows that the proposed model defines deforestation areas
as well as the exact ratio of the changed deforestation area.
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(b1,b2) the second Sentinel-2 RGB patch, (c1,c2) deforestation detection result (yellow) from first
patch (a1,a2), respectively, and (d1,d2) represents the change from the first patch (a1,a2) to the second
patch (b1,b2) (orange).
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6. Conclusions

In this study, a novel learning strategy for deforestation estimations using a multi-
modal satellite dataset is presented. The dataset, which contains three different types of
satellite data (Sentinel-1, Sentinel-2, and Landsat 8), consists of daily captured images and
monthly masked ground truth deforestation information. The proposed multi-view learn-
ing strategy consists of three phases—optimizing data selection, multi-view learning, and
result fusion. The detection performances with respect to varying input band configuration
strategies—RGB, all, and selected bands, based on spectral indices (NDVI, NDSI)—are
compared, and the proposed band selection was found to yield a better performance with
lower computation costs. The neural networks for each satellite type are independently
trained using the one-view-one-network strategy. The networks are then used to infer
the individual deforestation estimation rates from each patch and the final estimation
results are calculated using the proposed fusion method. It was confirmed that the optimal
dataset configuration and learning strategy displayed a robust performance in all weather
conditions. The prediction performances of diverse U-Net family networks (U-Net, R2U-
Net, Attention U-Net, Attention R2U-Net, and Nested U-Net) were compared in terms of
two evaluation metrics, revealing that Attention U-Net achieves the best predictions for
both metrics. We expect that a more extensive investigation of time-series deforestation
estimations could predict future deforestation risks effectively, with these results then used
to formulate appropriate forest protection policies.
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