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Abstract: With the advent of big data science, the field of geoscience has undergone a paradigm
shift toward data-driven scientific discovery. However, the abundance of geoscience data distributed
across multiple sources poses significant challenges to researchers in terms of data compilation, which
includes data collection, collation, and database construction. To streamline the data compilation
process, we present GeoKnowledgeFusion, a publicly accessible platform for the fusion of text, visual,
and tabular knowledge extracted from the geoscience literature. GeoKnowledgeFusion leverages
a powerful network of models that provide a joint multimodal understanding of text, image, and
tabular data, enabling researchers to efficiently curate and continuously update their databases.
To demonstrate the practical applications of GeoKnowledgeFusion, we present two scenarios: the
compilation of Sm-Nd isotope data for constructing a domain-specific database and geographic
analysis, and the data extraction process for debris flow disasters. The data compilation process for
these use cases encompasses various tasks, including PDF pre-processing, target element recognition,
human-in-the-loop annotation, and joint multimodal knowledge understanding. The findings con-
sistently reveal patterns that align with manually compiled data, thus affirming the credibility and
dependability of our automated data processing tool. To date, GeoKnowledgeFusion has supported
forty geoscience research teams within the program by processing over 40,000 documents uploaded
by geoscientists.

Keywords: multimodal data compilation; data extraction; data fusion; scientific database

1. Introduction

Geoscience data hold a critical position within the scientific community due to their
significant role in understanding Earth’s systems [1]. These data serve as invaluable
snapshots of Earth’s diverse and irreplaceable characteristics, spanning both spatial and
temporal dimensions. By using such data, researchers gain insights into past and present
conditions of global systems and can make informed predictions about future states, rates,
and processes [2,3]. The rapid advancement of big data-related technologies has amplified
the importance of conducting big data-driven scientific research in geosciences. As a result,
data compilation, including collecting and collating information from diverse sources, plays
a vital role in the construction of customized scientific databases for geoscience studies [4].

The nature of geoscience data presents several challenging aspects, including non-
repeatability, uncertainty, multi-dimensionality, computational complexity, and frequent
updates, which pose significant obstacles in data collection and compilation [5]. As a result,
real-time data collection, compilation, and updating have become essential for building
geoscience databases for research purposes. Previous studies, such as AusGeochem [6],
EarthChem [7], CZChemDB [8], and CGD [9], have proposed permanent repositories for
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geoscience database construction using open data sources. However, the collection and
compilation of data from the geoscientific literature, which often consists of textual in-
formation, images, and structured tabular data, remains relatively unexplored. With the
ever-increasing volume of data published in scientific articles, the manual collection and
organization of such data have become increasingly challenging for researchers [10], neces-
sitating alternative approaches for effective data management.

Geoscientific literature is commonly available in unstructured Portable Document
Format (PDF), which preserves visual elements such as characters, lines, images, and more,
in a format suitable for human presentation [11]. The detection and comprehension of
different content elements within these PDF documents pose significant challenges for data
collection and collation. Developing a data processing system for geoscience academic
literature necessitates a focused approach in two distinct yet interconnected domains: mul-
timodal data pattern recognition and system architecture design. The former encompasses
a comprehensive suite of techniques aimed at accurately identifying and extracting key in-
formation embedded within diverse data formats—ranging from named entity recognition
in textual content to target identification in imagery and the detection and interpretation
of tabular data. The latter domain involves the meticulous construction of a robust sys-
tem infrastructure capable of efficiently managing the complexities associated with the
processing and integration of multimodal data.

Named Entity Recognition (NER) is a critical task in natural language processing that
involves identifying specific entities, known as rigid designators within a text, categorized by
predefined semantic types such as names, places, organizations, etc. [12]. Within the sphere of
geoscience research, Geological Named Entity Recognition (GNER) is instrumental in extract-
ing pertinent information, encompassing names, lithologies, geological ages, and geographic
locations related to research subjects. These methodologies are principally divided into rule-
based, machine-learning, and deep-learning approaches. Traditional rule-based methods
utilize customized rules and domain-specific dictionaries to perform entity extraction through
string-matching techniques [13–16]. This strategy is founded on the comprehensive devel-
opment of feature engineering and the careful design of templates. In contrast, the machine
learning paradigm explores a spectrum of algorithms, including but not limited to the Markov
model [17], decision trees [18], and the maximum entropy model [19]. Despite the variety in
these approaches, the precision of entity recognition they offer has frequently been insufficient
for the requirements of practical applications. The emergence of deep learning has heralded a
significant advancement in the field, with pre-trained language models (PLMs) exhibiting out-
standing performance in entity recognition tasks [20–23]. This progression highlights a crucial
shift towards harnessing deep learning models’ computational prowess and sophistication to
fulfill the intricate demands of entity recognition within complex scenarios. In our research,
we leverage the cutting-edge method, UIE [24], as the backbone model for NER and train it
with over 20,000 annotated geoscientific instances.

Image recognition plays a crucial role in geoscientific literature, involving tasks such
as image detection, image classification, and text extraction. These images in geoscience
literature cover a wide range of content, including map images, biological fossil images,
sample descriptions, and more. They contain valuable information such as latitude and
longitude details, sample types, and age information. In previous studies, the recognition
of visual elements in document images has relied primarily on standard object detectors
originally designed for natural scene images. Approaches based on popular methods
such as Faster R-CNN [25] and Mask R-CNN [26] have been explored for detecting image
regions in documents. In addition, several researchers have demonstrated impressive
performance in optical character recognition (OCR) [27,28], etc. Our work employed the
YOLO v3 model [29] due to its lightweight and easy-to-deploy characteristics.

Table recognition presents notably more significant complexities than image recognition,
attributed primarily to the sophisticated structures innate to tabular data and the significant
topological divergence between tabular formats and natural language. Table recognition is
bifurcated into two pivotal processes: table detection and the recognition of table structures.
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The advent and exploration of convolutional neural network (CNN) technologies have catalyzed
the adoption of R-CNN (Region-based CNN)-based approaches for table detection [30–33],
alongside experimental applications of Graph Neural Networks (GNN) [34] and Generative
Adversarial Networks (GAN) [35] in this domain. Nevertheless, these methodologies typically
necessitate extensive annotated datasets for training and impose considerable demands on
computational resources. In our research, we have opted for the YOLOv3 [29] model for table
detection, distinguished by its comparative lightweight and efficiency, addressing the challenges
of resource intensity and dataset dependency inherent in previous approaches.

For table structure recognition algorithms, traditional computer vision algorithms restore
table structures through graphic denoising and frame line recognition [36,37], in addition
to structure-aware methods that reconstruct table structures by calculating the spatial re-
lationships of cells [34,38]. These approaches tend to design specific structure recognition
rules, resulting in limited generalization capabilities. With the exploration of deep learning
methods, CNN-based algorithms for table structure reconstruction have also been widely
investigated [39–41]. However, these methods rely heavily on extensive annotated data for
training, necessitating significant human labor costs and training resources. In our work, we
have designed a heuristic algorithm based on computer vision to identify table structures,
which reconstructs the structure of tables by analyzing the range of tables recognized through
table parsing. This significantly saves on training resources and the cost of model deployment
while maintaining commendable capabilities in reconstructing table structures.

Due to the inherent characteristics of geoscience data, the relevant knowledge is of-
ten distributed across multimodal data. The challenge lies in the joint understanding of
representations from textual information, images, and tabular data, particularly when
extracting data from multimodal sources. Previous research has explored the field of joint
image-text understanding in various vision-and-language (V + L) tasks [42,43], etc., where
inputs from multiple modalities are processed simultaneously to achieve a comprehensive
understanding of both visual and textual information. The advancements in pre-trained
language models (PLMs) have led to the development of PLM-based approaches, such as
ViLBERT [44], VisualBERT [45], LXMERT [46], Unicoder-VL [47], VL-BERT [48], etc., which
have significantly improved the performance of vision-and-language understanding tasks.
However, these end-to-end approaches may not be suitable for scientific data compilation,
as they prioritize overall performance over data accuracy. In contrast, the GeoKnowledge-
Fusion platform employs a target element recognition network for multimodal knowledge
fusion, as illustrated in Figure 1, along with a human-in-the-loop paradigm. This paradigm
allows geoscientists to actively participate in the data compilation process and utilize
human-annotated data to update the model parameters, ensuring a higher level of data
accuracy and reliability.

Recently, there have been some pioneer works of geoscience data compilation services
for open science research. Chronos [49], and GeoSciNet [50] designed the schema tools for
enhancing the geoscience research and education process. However, the usability of these
tools is hindered by poor graphical user interfaces (GUI) and limited user interaction systems,
making it challenging to extract the desired data and meet the requirements of large-scale
data compilation. With the remarkable development of natural language processing (NLP),
GeoDeepDive [51], SciSpace [52], etc., introduced pre-trained language models (PLM) to analyze
and retrieve information from the literature. However, due to the complete dependence on
the end-to-end extraction method [53], insufficient data accuracy has resulted from the lack of
labeled corpus, which makes it difficult to utilize such data directly in the research that requires
accurate data [54]. GeoDeepShovel [55] which has introduced the human-in-the-loop paradigm
allows experts to annotate the automatically extracted information and entitles their models
to be updated through the annotated corpus agility. However, their approach is limited to
processing single documents and only supports data extraction from one document. In addition,
their method does not facilitate the joint extraction and fusion of multimodal data, which can
lead to longer processing times compared to manual data extraction methods.
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To improve the effectiveness of data fusion, we propose the GeoKnowledgeFusion
platform. Figure 1 demonstrates an overview of the GeoKnowledgeFusion workflow. This
platform overcomes the limitations associated with the lack of domain-specific knowledge
and the need for a joint understanding of textual information, images, and tabular data.
We employ a human-in-the-loop annotation process that allows experts to revise the
automatically extracted information and update our model network based on the agility
of the annotated corpus. To comprehensively evaluate the effectiveness of our platform,
we conduct extensive experiments focusing on a downstream use case: the compilation
of Sm-Nd isotope data. The results consistently show trends consistent with previously
manually constructed databases, validating the reliability of our automated data collection
tool. A demonstration of GeoKnowledgeFusion is available through our Web User Interface
(UI) at: https://knowledgefusion.acemap.info, accessed on 1 June 2023.

The main contribution of this work is three-fold:

• We have developed a sophisticated pattern recognition model network to address
the multifaceted challenges associated with processing multimodal data embedded
in PDF documents. This network demonstrates proficiency in identifying essential
data across various formats, including tables, images, and textual content. To further
augment the data extraction precision, we have seamlessly integrated a Human-in-
the-loop annotation strategy. This strategic incorporation enhances the model’s ability
to discern and extract critical information accurately.

• Exploiting the capabilities of our developed pattern recognition model network, we
established GeoKnowledgeFusion—a platform specifically engineered to aggregate
multimodal data from geoscience literature. GeoKnowledgeFusion leverages this
advanced model network to streamline the simultaneous extraction of diverse data
types from geoscientific documents, including textual, tabular, and image data. This
integration furnishes the geoscience community with a robust toolkit, significantly
augmenting the efficiency of data collection and compilation processes.

• To assess the effectiveness of our platform, we conducted both automatic and manual
evaluations. The results consistently reveal trends that align with those of previ-
ously manually collected data compilations, thereby validating the reliability of our
automated data collection tool.
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Our understanding of the formation and evolution of the primary lunar crust is based on geochemical 
systematics from the lunar ferroan anorthosite (FAN) suite. Recently, much effort has been made to 
understand this suite’s petrologic history to constrain the timing of crystallisation and to interpret 
FAN chemical diversity. We investigate the shock histories of lunar anorthosites by combining Optical 
Microscope (OM) ‘cold’ cathodoluminescence (CL)-imaging and Fourier Transform Infrared (FTIR) 
spectroscopy analyses. In the first combined study of its kind, this study demonstrates that over ~4.5 
Ga of impact processing, plagioclase is on average weakly shocked (<15 GPa) and examples of high 
shock states (>30 GPa; maskelynite) are uncommon. To investigate how plagioclase trace-element 
systematics are affected by moderate to weak shock (~5 to 30 GPa) we couple REE+Y abundances with 
FTIR analyses for FAN clasts from lunar meteorite Northwest Africa (NWA) 2995. We observe weak 
correlations between plagioclase shock state and some REE+Y systematics (e.g., La/Y and Sm/Nd 
ratios). This observation could prove significant to our understanding of how crystallisation ages are 
evaluated (e.g., plagioclase-whole rock Sm-Nd isochrons) and for what trace-elements can be used to 
differentiate between lunar lithologies and assess magma source compositional differences.

The lunar surface has been subjected to periods of intense meteorite bombardment over geologic time (e.g., refs 1, 2.)  
Understanding how lunar lithologies have been modified during impact events represents an important 
‘first-order’ question that has implications for our understanding of regolith formation and impact structures 
on all rocky Solar System bodies3. The majority of samples from the lunar surface available to us for study have 
to some degree been affected by impact modification; ranging from rapid shock pulses resulting in the struc-
tural deformation of minerals (i.e., planar deformation effects4, 5); to longer duration thermal heating effects (i.e., 
chemical re-equilibration within and between mineral assemblages6, 7). Understanding the effects of these pro-
cesses is of critical importance for lunar highland derived lithologies, as these samples are vital for understanding 
the earliest records of lunar crustal history8, 9.

The primary lunar crust is thought to consist of predominantly plagioclase-rich units (ferroan anorthosite; 
FAN) consisting of >90% by mode Ca-rich plagioclase with a restricted An % range (~96 to ~98), and minor 
quantities of olivine and/or pyroxene phases with relatively ferroan compositions (Mg # ~40 to ~70 in orthopy-
roxene and olivine)10. However, only a few anorthosites have been recovered as hand specimens (2.8% of >10 mm 
sized samples recovered from the Moon11). Most anorthositic material is commonly sampled as small (<10 mm 
sized) rock fragments within the lunar soil, or clasts within regolith and fragmental breccias. It is the study of 
these small clasts that much of our understanding of the Moon’s earliest formed crust is based (e.g., refs 7, 12–14). 
Plagioclase, unlike olivine and pyroxene, is readily affected by shock, making it a useful mineral to investigate 
shock effects15–18. However, the extent to which these small fragments are representative of their parent bed-
rock lithology has recently been questioned19; furthermore, few studies have systematically deconvoluted the 
often-complex impact modification history that individual clasts have experienced.

Despite these potential complexities, plagioclase has the potential to record important physical and chemi-
cal magmatic processes (e.g., magma mixing, mantle source heterogeneity) as its structure incorporates several 
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(Fig. 2A; 10). Averages for plagioclase An % for all plagioclase crystals in hand specimen and breccia clasts inves-
tigated in this study fall within this range (94.8 to 97.1 An % for Apollo samples and 95.0 to 97.2 An % for NWA 
2995; Fig. 2). All individual measured plagioclase compositions for the Apollo samples are presented in the SOM 
(Table S1), and plagioclase compositions for NWA 2995 are presented in Table 1. Samples 60016,95 and NWA 
2995 contain numerous large (>250 µm) plagioclase fragments with no associated mafic phases. In order to con-
strain the parent lithologies of these fragments, we have plotted these clasts' An % against plagioclase Mg #. 
Whereas the plagioclase fragments from the Apollo 16 breccias and NWA 2995 are within range of reported FAN 
values (Fig. 2B), there is overlap with other lunar lithologies, in particular with the Mg-suite. Using the lunar rock 
suite classification scheme derived from [Eu/Sm]CI vs. Na ppm abundance30, the majority of plagioclase fragments 
from NWA 2995 fall within the FAN field (Fig. 2C). A petrologic summary (mineral modes and sample mass/clast 
size) is presented in Table 2.

Select plagioclase minor- and trace-element systematics, including REE+Y abundances were analysed for 3 
large (>500 µm) plagioclase fragments in NWA 2995 (abundances reported in Table 2). Chondrite normalised 
REE values analysed here fall within the range reported for Apollo FAN samples (Fig. 3) 8, 31. Plagioclase REE pro-
files display weak to moderate LREE enrichments ([La/Sm]CI 1.1 to 4.0) and strong positive Eu-anomalies ([Eu/
Sm]CI 5.6 to 42.0). Most HREE were below detection limits.

Petrographic shock deformation. A number of anorthosites investigated here are commonly described 
as being ‘cataclastic’ (e.g., ref. 32) indicating that they have been extensively fractured and deformed as a result of 
impact modification. The characterisation of mineral shock state has traditionally been classified using polished 
thin-sections4, 33, 34. This classification scheme, divided into 6 shock states, is based on the behaviour of plagioclase 
viewed under crossed-polarized light (the characteristic optical properties and equivalent shock pressures are 
summarised in Table S2). Plagioclase within Apollo FAN hand samples using this scheme range from S1 (0 to 
5 GPa) to S3 (5 to 15 GPa) and Apollo 16 breccias range from S1 to S4/S5 (10 to 60 GPa), reflecting the identifi-
cation of one maskelynite fragment (the high shock >~30 GPa plagioclase pseudomorph) in sample 61175,108. 
Only thick-sections were available for NWA 2995; as such, shock states using this scheme could not be used. 
Indeed, as this method relies on polished thin-sections to estimate shock states, the advantage of using FTIR and 

Figure 2. (A) Average An % (100*Ca/[Ca+Na+K]) in plagioclase vs. Mg # (100*Mg/[Mg+Fe]) in pyroxene 
for FAN hand samples (mineral chemistry data from32). Background fields mafic mineral Mg # and plagioclase 
An % for main Apollo highland rock suites are taken from Yamaguchi et al.65. (B) Average An % vs. Mg # in 
plagioclase for clasts and mineral fragments within Apollo 16 breccias. (C) [Eu/Sm]CI vs. Na ppm in plagioclase 
for clasts within lunar meteorite NWA 2995. Background fields for B and C have been made using data reported 
in refs 7, 8, 31, 66, 67.
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(Fig. 2A; 10). Averages for plagioclase An % for all plagioclase crystals in hand specimen and breccia clasts inves-
tigated in this study fall within this range (94.8 to 97.1 An % for Apollo samples and 95.0 to 97.2 An % for NWA 
2995; Fig. 2). All individual measured plagioclase compositions for the Apollo samples are presented in the SOM 
(Table S1), and plagioclase compositions for NWA 2995 are presented in Table 1. Samples 60016,95 and NWA 
2995 contain numerous large (>250 µm) plagioclase fragments with no associated mafic phases. In order to con-
strain the parent lithologies of these fragments, we have plotted these clasts' An % against plagioclase Mg #. 
Whereas the plagioclase fragments from the Apollo 16 breccias and NWA 2995 are within range of reported FAN 
values (Fig. 2B), there is overlap with other lunar lithologies, in particular with the Mg-suite. Using the lunar rock 
suite classification scheme derived from [Eu/Sm]CI vs. Na ppm abundance30, the majority of plagioclase fragments 
from NWA 2995 fall within the FAN field (Fig. 2C). A petrologic summary (mineral modes and sample mass/clast 
size) is presented in Table 2.

Select plagioclase minor- and trace-element systematics, including REE+Y abundances were analysed for 3 
large (>500 µm) plagioclase fragments in NWA 2995 (abundances reported in Table 2). Chondrite normalised 
REE values analysed here fall within the range reported for Apollo FAN samples (Fig. 3) 8, 31. Plagioclase REE pro-
files display weak to moderate LREE enrichments ([La/Sm]CI 1.1 to 4.0) and strong positive Eu-anomalies ([Eu/
Sm]CI 5.6 to 42.0). Most HREE were below detection limits.

Petrographic shock deformation. A number of anorthosites investigated here are commonly described 
as being ‘cataclastic’ (e.g., ref. 32) indicating that they have been extensively fractured and deformed as a result of 
impact modification. The characterisation of mineral shock state has traditionally been classified using polished 
thin-sections4, 33, 34. This classification scheme, divided into 6 shock states, is based on the behaviour of plagioclase 
viewed under crossed-polarized light (the characteristic optical properties and equivalent shock pressures are 
summarised in Table S2). Plagioclase within Apollo FAN hand samples using this scheme range from S1 (0 to 
5 GPa) to S3 (5 to 15 GPa) and Apollo 16 breccias range from S1 to S4/S5 (10 to 60 GPa), reflecting the identifi-
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in refs 7, 8, 31, 66, 67.
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CL-imaging is that shock state can be characterised for samples where only thick-sections or polished chips are 
available.

Plagioclase FTIR spectra. The mid-infrared (~3500 to 650 cm−1 or ~3 to 15 µm) region of the electro-
magnetic spectrum (3–15 µm) is sensitive to the mineral chemistry and crystal structure of silicate minerals. 
The FTIR reflectance spectra of plagioclase in all the samples investigated are consistent with reported high-Ca 
plagioclase5, 35, 36. Figure 4 plots FTIR reflectance spectra (%) between 700 and 1300 cm−1. Within this spectral 
range, Si-O stretching and bending vibrations in the crystal lattice result in a number of reflectance features, 
collectively known as the Reststrahlen bands. For coarse-particulate high Ca-plagioclase, two main reflectance 
features are observed with maxima at ~950 cm−1 and 1150 cm−1. The strengths and absolute positions of these 
bands are controlled by a combination of crystal structure (e.g. crystal orientation, see SOM) and mineral chem-
istry36. All silicate minerals also display a reflectance minimum known as the Christiansen feature (CF) which 
is indicative of the bulk composition of the sample. The CF position of the plagioclase investigated here ranges 
from 1212 to 1246 cm−1, consistent with reported high-Ca plagioclase5, 18, 37, 38. Maskelynite has been observed in 
only one clast, from Apollo 16 breccia sample 61175,108 (Clast 3) displaying a distinct FTIR spectrum relative to 
‘unshocked’ plagioclase (red stippled line; Fig. 4B). The maskelynite FTIR spectrum is characterised by a single 
broad reflectance peak (Full-width half-maximum value are 243 cm−1 and 120 cm−1 for maskelynite and crystal-
line plagioclase respectively) with a maximum at ~930 cm−1, a CF position of 1242 cm−1 (within range of plagi-
oclase39), and typically a lower maximum % reflectance (~30%) relative to plagioclase, consistent with reported 
maskelynite35. This occurrence of maskelynite is within the core of a plagioclase, characterised by its ‘unshocked’ 
plagioclase FTIR profile (Fig. S9 for photomicrographs under plain and polarised light; maskelynite core is iso-
tropic under crossed polarised light). It’s textural appearance suggests that this is likely to be maskelynite rather 
than amorphous glass, furthermore, it is spectrally distinct from amorphous impact melt-glass18. Together, the 
plagioclase spectra reported in this study display a range of intermediate spectra, from diagnostic ‘crystalline’ 
anorthite reststrahlen bands in the 900 to 1200 cm−1 region (characteristic of ‘crystalline’ anorthite) to a single 
reflectance band near ~930 cm−1 characteristic of maskelynite, reflecting intermediate shock states5, 18, 39. Full 
resolution laboratory spectra for all plagioclase analyses are reported in Table S1. The FTIR analyses for sample 
NWA 2995 have been conducted on the same spots as the SIMS trace-element analyses.

NWA 2995 Clast 1 NWA 2995 Clast 2 NWA 2995 Clast 3
Plag 1 %RSD Plag 2 %RSD Plag 3 %RSD Plag 4 %RSD Plag 7 %RSD Plag 8 %RSD Plag 9 % RSD Plag 10 % RSD Plag 11 %RSD Plag 12 %RSD

EMPA (wt%)
 SiO2 44.6 44.6 42.7 44.4 43.3 43.9 43.8 43.4 43.2 43.5
 Al2O3 35.3 35.3 34.3 35.6 35.8 35.9 36.4 35.7 34.9 34.7
 MgO 0.13 0.13 0.10 0.06 0.08 0.10 0.07 0.08 0.03 0.04
 CaO 19.4 19.4 19.1 19.6 19.5 19.1 19.6 19.1 20.0 20.0
 FeO 0.34 0.34 0.26 0.26 0.10 0.09 0.10 0.21 0.11 0.13
 Na2O 0.60 0.60 0.46 0.50 0.37 0.52 0.38 0.39 0.30 0.30
 K2O 0.02 0.02 0.06 0.01 0.03 0.06 0.02 0.06 0.02 0.02
 Total 100.4 100.4 96.9 100.4 99.2 99.7 100.3 99.0 98.6 98.7
SIMS (ppm)
 Ti 100.3 1 294.6 1 139.0 1 88.4 1 201.0 1 83.8 1 243.1 1 73.1 1 230.4 1 89.0 1
 Sr 144.3 0.4 268.1 0.3 200.1 0.3 197.2 0.3 215.0 0.3 195.4 0.3 220.7 0.3 234.2 0.3 171.3 0.3 172.1 0.4
 Y 0.78 4 1.59 3 0.47 4 0.35 5 1.55 3 1.44 3 1.66 2 0.41 5 0.85 3 0.27 7
 Ba 18.60 2 35.46 1 16.13 2 13.93 2 64.68 1 34.83 1 74.85 1 23.63 1 10.34 2 8.83 2
 La 0.54 6 1.26 4 0.62 6 0.37 7 2.48 3 1.00 5 3.31 3 0.43 7 0.21 10 0.20 11
 Ce 1.20 5 3.06 3 1.34 4 0.86 5 5.38 2 2.41 3 6.96 2 0.87 5 0.48 7 0.42 9
 Pr 0.14 11 0.43 7 0.13 11 0.11 13 0.63 6 0.32 8 0.73 5 0.11 13 0.06 17 0.05 20
 Nd 0.73 15 2.09 9 0.72 14 0.45 18 3.10 8 1.41 11 3.28 7 0.54 17 0.39 19 0.23 28
 Sm 0.14 29 0.54 15 0.15 27 0.06 42 0.57 16 0.32 19 0.52 14 0.12 30 0.12 31 0.05 50
 Eu 0.78 7 1.94 5 1.13 6 0.96 6 1.19 6 1.18 5 1.33 5 1.10 6 0.85 7 0.82 8
 An % 94.6 94.6 95.5 95.6 96.5 95.0 96.5 96.1 97.2 97.2
 Ab % 5.3 5.3 4.1 4.4 3.3 4.6 3.4 3.5 2.6 2.6
 Or % 0.1 0.1 0.4 0.1 0.2 0.3 0.1 0.4 0.1 0.1
 Mg # 40.9 40.9 40.2 29.1 57.4 66.0 54.4 39.6 29.6 33.2
 GPa* 10 7 8 11 14 9 9 3 12 5

Table 1. NWA 2995 plagioclase major-elements as measured by EMP) and trace-elements (by SIMS) For SIMS 
data % Relative Standard deviation (%RSD) is also shown. Reference images of these clasts are shown in Fig. S7. 
*See SOM for details of calculation. ±3 GPa (1σ) for all samples.
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CL-imaging is that shock state can be characterised for samples where only thick-sections or polished chips are 
available.

Plagioclase FTIR spectra. The mid-infrared (~3500 to 650 cm−1 or ~3 to 15 µm) region of the electro-
magnetic spectrum (3–15 µm) is sensitive to the mineral chemistry and crystal structure of silicate minerals. 
The FTIR reflectance spectra of plagioclase in all the samples investigated are consistent with reported high-Ca 
plagioclase5, 35, 36. Figure 4 plots FTIR reflectance spectra (%) between 700 and 1300 cm−1. Within this spectral 
range, Si-O stretching and bending vibrations in the crystal lattice result in a number of reflectance features, 
collectively known as the Reststrahlen bands. For coarse-particulate high Ca-plagioclase, two main reflectance 
features are observed with maxima at ~950 cm−1 and 1150 cm−1. The strengths and absolute positions of these 
bands are controlled by a combination of crystal structure (e.g. crystal orientation, see SOM) and mineral chem-
istry36. All silicate minerals also display a reflectance minimum known as the Christiansen feature (CF) which 
is indicative of the bulk composition of the sample. The CF position of the plagioclase investigated here ranges 
from 1212 to 1246 cm−1, consistent with reported high-Ca plagioclase5, 18, 37, 38. Maskelynite has been observed in 
only one clast, from Apollo 16 breccia sample 61175,108 (Clast 3) displaying a distinct FTIR spectrum relative to 
‘unshocked’ plagioclase (red stippled line; Fig. 4B). The maskelynite FTIR spectrum is characterised by a single 
broad reflectance peak (Full-width half-maximum value are 243 cm−1 and 120 cm−1 for maskelynite and crystal-
line plagioclase respectively) with a maximum at ~930 cm−1, a CF position of 1242 cm−1 (within range of plagi-
oclase39), and typically a lower maximum % reflectance (~30%) relative to plagioclase, consistent with reported 
maskelynite35. This occurrence of maskelynite is within the core of a plagioclase, characterised by its ‘unshocked’ 
plagioclase FTIR profile (Fig. S9 for photomicrographs under plain and polarised light; maskelynite core is iso-
tropic under crossed polarised light). It’s textural appearance suggests that this is likely to be maskelynite rather 
than amorphous glass, furthermore, it is spectrally distinct from amorphous impact melt-glass18. Together, the 
plagioclase spectra reported in this study display a range of intermediate spectra, from diagnostic ‘crystalline’ 
anorthite reststrahlen bands in the 900 to 1200 cm−1 region (characteristic of ‘crystalline’ anorthite) to a single 
reflectance band near ~930 cm−1 characteristic of maskelynite, reflecting intermediate shock states5, 18, 39. Full 
resolution laboratory spectra for all plagioclase analyses are reported in Table S1. The FTIR analyses for sample 
NWA 2995 have been conducted on the same spots as the SIMS trace-element analyses.
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Plag 1 %RSD Plag 2 %RSD Plag 3 %RSD Plag 4 %RSD Plag 7 %RSD Plag 8 %RSD Plag 9 % RSD Plag 10 % RSD Plag 11 %RSD Plag 12 %RSD

EMPA (wt%)
 SiO2 44.6 44.6 42.7 44.4 43.3 43.9 43.8 43.4 43.2 43.5
 Al2O3 35.3 35.3 34.3 35.6 35.8 35.9 36.4 35.7 34.9 34.7
 MgO 0.13 0.13 0.10 0.06 0.08 0.10 0.07 0.08 0.03 0.04
 CaO 19.4 19.4 19.1 19.6 19.5 19.1 19.6 19.1 20.0 20.0
 FeO 0.34 0.34 0.26 0.26 0.10 0.09 0.10 0.21 0.11 0.13
 Na2O 0.60 0.60 0.46 0.50 0.37 0.52 0.38 0.39 0.30 0.30
 K2O 0.02 0.02 0.06 0.01 0.03 0.06 0.02 0.06 0.02 0.02
 Total 100.4 100.4 96.9 100.4 99.2 99.7 100.3 99.0 98.6 98.7
SIMS (ppm)
 Ti 100.3 1 294.6 1 139.0 1 88.4 1 201.0 1 83.8 1 243.1 1 73.1 1 230.4 1 89.0 1
 Sr 144.3 0.4 268.1 0.3 200.1 0.3 197.2 0.3 215.0 0.3 195.4 0.3 220.7 0.3 234.2 0.3 171.3 0.3 172.1 0.4
 Y 0.78 4 1.59 3 0.47 4 0.35 5 1.55 3 1.44 3 1.66 2 0.41 5 0.85 3 0.27 7
 Ba 18.60 2 35.46 1 16.13 2 13.93 2 64.68 1 34.83 1 74.85 1 23.63 1 10.34 2 8.83 2
 La 0.54 6 1.26 4 0.62 6 0.37 7 2.48 3 1.00 5 3.31 3 0.43 7 0.21 10 0.20 11
 Ce 1.20 5 3.06 3 1.34 4 0.86 5 5.38 2 2.41 3 6.96 2 0.87 5 0.48 7 0.42 9
 Pr 0.14 11 0.43 7 0.13 11 0.11 13 0.63 6 0.32 8 0.73 5 0.11 13 0.06 17 0.05 20
 Nd 0.73 15 2.09 9 0.72 14 0.45 18 3.10 8 1.41 11 3.28 7 0.54 17 0.39 19 0.23 28
 Sm 0.14 29 0.54 15 0.15 27 0.06 42 0.57 16 0.32 19 0.52 14 0.12 30 0.12 31 0.05 50
 Eu 0.78 7 1.94 5 1.13 6 0.96 6 1.19 6 1.18 5 1.33 5 1.10 6 0.85 7 0.82 8
 An % 94.6 94.6 95.5 95.6 96.5 95.0 96.5 96.1 97.2 97.2
 Ab % 5.3 5.3 4.1 4.4 3.3 4.6 3.4 3.5 2.6 2.6
 Or % 0.1 0.1 0.4 0.1 0.2 0.3 0.1 0.4 0.1 0.1
 Mg # 40.9 40.9 40.2 29.1 57.4 66.0 54.4 39.6 29.6 33.2
 GPa* 10 7 8 11 14 9 9 3 12 5

Table 1. NWA 2995 plagioclase major-elements as measured by EMP) and trace-elements (by SIMS) For SIMS 
data % Relative Standard deviation (%RSD) is also shown. Reference images of these clasts are shown in Fig. S7. 
*See SOM for details of calculation. ±3 GPa (1σ) for all samples.

Figure 1. An overview of the GeoKnowledgeFusion workflow, which consists of four main com-
ponents: (a) PDF pre-processing, (b) target element recognition, (c) human-in-the-loop annotation,
and (d) joint multimodal knowledge understanding.

https://knowledgefusion.acemap.info
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2. Materials and Methods

In our study, we have engineered an advanced target element detection framework,
as illustrated in Figure 2, designed to enhance the identification and recognition of target
data within heterogeneous datasets. This meticulously developed network empowers us
to accurately and efficiently detect and categorize target elements, such as named entities,
images, and tables, dispersed across a spectrum of data modalities. By deploying this
network, we tackle the complexities arising from diverse data formats, thereby ensuring
the precise detection and classification of relevant information from various data sources.
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(b) Image Recognition
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UIE

SSi + Text —> SEL

Structural Schema Instructor Structured Extraction Language

[spot] time [asso], an extremely heavy 
rainstorm hit a restricted area in [spot] 

area [asso].

Table 
Construction

time : June 19, 1996
area : the Apuan Alps (northwestern 

Tuscany, Italy)

Most of the landslides were shallow 
and linear, referable to complex, earth 
and debris translational slide, which 
quickly developed into flow [spot] 

chain [asso]. 

disaster chain: soil slip–debris flow

Table 7: AUC on clique prediction.

arXiv-AstroPh
Model 2-clique 3-clique 4-clique
AGM 0.919 0.987 0.959
node2vec 0.579 0.514 0.544
LINE 0.918 0.980 0.963
GraphGAN 0.799 0.859 0.855
ComE 0.904 0.951 0.953
CommunityGAN 0.923 0.990 0.970

arXiv-GrQc
Model 2-clique 3-clique 4-clique
AGM 0.900 0.980 0.871
node2vec 0.632 0.569 0.534
LINE 0.969 0.989 0.880
GraphGAN 0.756 0.880 0.728
ComE 0.924 0.962 0.914
CommunityGAN 0.904 0.993 0.956

ground truth from generated samples better. However, the gener-
ated samples are all around the center vertex, which causes the
discriminator to lose some global discrimination ability.

6.3 Clique Prediction
In clique prediction, our goal is to predict whether a given subset
of vertices is a clique. Therefore, this task shows the performance
of graph local structure extraction ability of di�erent graph repre-
sentation learning methods.

Setup. In the clique prediction experiment, because some tradi-
tional community detection methods (including MMSB and CPM)
cannot predict the existence of edges among vertices, these meth-
ods are omitted in this experiment. To analyze the e�ect of motif
generation and discrimination in CommunityGAN, in this experi-
ment, we have evaluated the prediction for 2-clique (same to edge),
3-clique and 4-clique. With the size of cliques determined, we ran-
domly hide some cliques, which cover 10% of edges, in the original
graph as ground truth, and use the left graph to train all graph
representation learning models. After training, we obtain the repre-
sentation vectors for all vertices and use logistic regression method
to predict the probability of being clique for a given vertex set. Our
test set consists of the hidden vertex sets (cliques) in the original
graph as the positive samples and the randomly selected non-fully
connected vertex sets as negative samples with the equal number.

Results. We use arXiv-AstroPh and arXiv-GrQc as datasets, and
report the results of AUC in Table 7. As we can see, even though
in 2-clique (edge) prediction CommunityGAN does not always get
the highest score, CommunityGAN outperforms all the baselines
in both 3-clique and 4-clique prediction. For example, on arXiv-
GrQc, CommunityGAN achieves gains of 0.40% to 74.52% and 4.60%
to 79.03% in 3-clique and 4-clique prediction, respectively. This
indicates that though CommunityGAN is designed for community
detection, with the design of motif generation and discrimination,

100 101 102 103 104

Training time
on Amazon

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

Sc
or

e

CPM

AGM

MMSB

node2vec

LINE

GraphGAN

ComE

CommunityGAN

100 101 102 103 104

Training time
on Youtube

0.0

0.1

0.2

0.3

0.4

100 101 102 103 104

Training time
on DBLP

0.0

0.1

0.2

0.3

0.4

0.5

Figure 9: Performance as training time (Sec.).

it can still e�ectively encode the information of clique structures
into the learned representations.

6.4 E�ciency analysis
In this paper, we propose Graph AGM for e�ciently generating
the most likely motifs with graph structure awareness. Because of
the random walk process, in which the exact time complexity is
not easy to infer, we evaluate the e�ciency of CommunityGAN by
directly comparing the training time with baselines. In this eval-
uation, the number of threads is set as 16 if the model supports
parallelization and other parameters for baselines are as default.
Figure 9 illustrates the performance and training time. Notably,
the training time of CommunityGAN includes the time of the pre-
training process. Even though CommunityGAN is not the fastest
model, the training time of CommunityGAN is still acceptable and
its performance signi�cantly outperforms the faster models.

7 CONCLUSION
In this paper we proposed CommunityGAN that jointly solves the
overlapping community detection and graph representation learn-
ing. Unlike the embedding of general graph learning algorithms in
which the vector values have no meanings, the embedding in Com-
munityGAN indicates the membership strength of vertices to com-
munities, which enables CommunityGAN to detect densely over-
lapped communities. Then a speci�cally designed GAN is adopted
to optimize such embedding. Through the minimax game of motif-
level generator and discriminator, both of them can boost their
performance and �nally output better community structures. We
adopted CKB Graph Generator to create a series of synthetic graphs
with ground-truth communities. Two experiments were conducted
on these graphs to prove the ability of CommunityGAN to solve
dense overlapping problem and its e�cacy of motif generation and
discrimination. Additionally, to complement the experiments on the
synthetic datasets, we did experiments on �ve real-world datasets
in two scenarios, where the results demonstrate that Community-
GAN substantially outperforms baselines in all experiments due to
its speci�c embedding design and motif-level optimization.
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ground truth from generated samples better. However, the gener-
ated samples are all around the center vertex, which causes the
discriminator to lose some global discrimination ability.

6.3 Clique Prediction
In clique prediction, our goal is to predict whether a given subset
of vertices is a clique. Therefore, this task shows the performance
of graph local structure extraction ability of di�erent graph repre-
sentation learning methods.

Setup. In the clique prediction experiment, because some tradi-
tional community detection methods (including MMSB and CPM)
cannot predict the existence of edges among vertices, these meth-
ods are omitted in this experiment. To analyze the e�ect of motif
generation and discrimination in CommunityGAN, in this experi-
ment, we have evaluated the prediction for 2-clique (same to edge),
3-clique and 4-clique. With the size of cliques determined, we ran-
domly hide some cliques, which cover 10% of edges, in the original
graph as ground truth, and use the left graph to train all graph
representation learning models. After training, we obtain the repre-
sentation vectors for all vertices and use logistic regression method
to predict the probability of being clique for a given vertex set. Our
test set consists of the hidden vertex sets (cliques) in the original
graph as the positive samples and the randomly selected non-fully
connected vertex sets as negative samples with the equal number.

Results. We use arXiv-AstroPh and arXiv-GrQc as datasets, and
report the results of AUC in Table 7. As we can see, even though
in 2-clique (edge) prediction CommunityGAN does not always get
the highest score, CommunityGAN outperforms all the baselines
in both 3-clique and 4-clique prediction. For example, on arXiv-
GrQc, CommunityGAN achieves gains of 0.40% to 74.52% and 4.60%
to 79.03% in 3-clique and 4-clique prediction, respectively. This
indicates that though CommunityGAN is designed for community
detection, with the design of motif generation and discrimination,
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it can still e�ectively encode the information of clique structures
into the learned representations.

6.4 E�ciency analysis
In this paper, we propose Graph AGM for e�ciently generating
the most likely motifs with graph structure awareness. Because of
the random walk process, in which the exact time complexity is
not easy to infer, we evaluate the e�ciency of CommunityGAN by
directly comparing the training time with baselines. In this eval-
uation, the number of threads is set as 16 if the model supports
parallelization and other parameters for baselines are as default.
Figure 9 illustrates the performance and training time. Notably,
the training time of CommunityGAN includes the time of the pre-
training process. Even though CommunityGAN is not the fastest
model, the training time of CommunityGAN is still acceptable and
its performance signi�cantly outperforms the faster models.

7 CONCLUSION
In this paper we proposed CommunityGAN that jointly solves the
overlapping community detection and graph representation learn-
ing. Unlike the embedding of general graph learning algorithms in
which the vector values have no meanings, the embedding in Com-
munityGAN indicates the membership strength of vertices to com-
munities, which enables CommunityGAN to detect densely over-
lapped communities. Then a speci�cally designed GAN is adopted
to optimize such embedding. Through the minimax game of motif-
level generator and discriminator, both of them can boost their
performance and �nally output better community structures. We
adopted CKB Graph Generator to create a series of synthetic graphs
with ground-truth communities. Two experiments were conducted
on these graphs to prove the ability of CommunityGAN to solve
dense overlapping problem and its e�cacy of motif generation and
discrimination. Additionally, to complement the experiments on the
synthetic datasets, we did experiments on �ve real-world datasets
in two scenarios, where the results demonstrate that Community-
GAN substantially outperforms baselines in all experiments due to
its speci�c embedding design and motif-level optimization.
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Figure 2. An overview of the model network for target element recognition, including named entity,
image, and table.

2.1. Named Entity Recognition

Named entities (NEs) are specific words or phrases that are identifiable by names or
categories within a particular domain. Commonly, NER systems classify entities into four
primary categories: person, location, organization, and a broadly defined miscellaneous
(MIS) category. In our research, we have adopted a supervised learning approach for
NER, treating it essentially as a classification task for each token within a dataset. This
perspective aligns with the sequence labeling framework, wherein the algorithm is tasked
with predicting labels for a contiguous sequence of tokens, typically within a sentence.
This method effectively captures the interdependencies among tokens, enhancing the
model’s ability to identify named entities accurately. Within this framework, a sentence is
decomposed into a series of token variables t1, t2, . . . , tN , and the objective is to ascertain the
most probable sequence of named entity labels y1, y2, . . . , yN . For instance, in the sentence
“The Qinghai-Tibet Plateau, an inland plateau in Asia, is the largest plateau in China and
the highest in the world.”, the phrases Qinghai-Tibet Plateau, Asia, and China exemplify
typical NEs in the geoscience domain.

In this study,we utilized the widely recognized UIE method [24] for NER. The UIE
model is specifically tailored to extract structured information from unstructured natural
language texts, making it particularly effective for identifying pertinent geoscience entities.
Within the sequence labeling framework, a sentence is represented as a sequence of token
variables t1, t2, . . . , tN . Our methodology aims to determine the most probable sequence of
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named entity labels y1, y2, . . . , yN . We formulate this problem probabilistically, where the
objective is to predict the label sequence by maximizing the conditional probability defined
by Equation (1):

S = argmax
y1 ...yN

P(y1 . . . yN | t1 . . . tN) (1)

This probabilistic formulation allows us to systematically infer the most likely labels
for the sequence of tokens, leveraging the inherent dependencies between tokens to enhance
the accuracy of entity recognition.

To address the challenges posed by limited training samples in our research, we have
established a collaborative framework with domain experts in geosciences to enhance the
data annotation process. This collaborative effort involved 126 geoscience students from
12 premier Chinese universities and research institutes focusing specifically on debris flow
and mountain hazards. Through this initiative, 14,665 data samples were rigorously anno-
tated on our platform. In our structured approach, we annotated a dataset encompassing
17 distinct types of entities, including Nation, Region, Longitude, Latitude, Lithology, Age,
Time, Disaster Type, Relevant Indicators, Damage Loss, Disaster Magnitude, Influence
Factors, Prevention Measures, Reason of Disaster Formation, and Disaster Chain. This
comprehensive annotation methodology aimed to capture a wide range of information
pertinent to geoscience and disaster research. We ensured that each entity type was de-
fined clearly and consistently throughout the dataset. These categories were selected to
support an in-depth analysis of factors related to natural disasters and their subsequent
impacts, thus significantly enhancing the dataset’s utility for both predictive modeling and
scholarly research.

Given the constraints of costly human resources, our model primarily addresses gen-
eral geoscience-related entities, including latitude, longitude, geological age, and conditions
associated with debris flows. We have implemented a human-in-the-loop annotation sys-
tem to enhance the model’s generalization capabilities. This system facilitates ongoing
improvement by allowing geoscience researchers to compile NER-related data, which are
then preserved for subsequent model training. This iterative process not only refines the
accuracy of our model but also expands its applicability in the field of geoscience.

2.2. Image and Table Object Detection

In our research, we have applied supervised methods for image object and table
detection, focusing on boundary identification. The prevalent strategy in object detection
translates the challenge into a classification task. This involves identifying instances of
a specific object class that may vary in position but maintain a consistent size within the
image. Let W represent the reference window size that an instance of the object would
occupy, and L denote a grid of potential locations within the image. Further, let Xs + W
signify the image features within a window (sub-image) whose top-left corner is located
at s ∈ L. The object detection task can then be simplified to binary classification: for each
location, s ∈ L, classify Xs + W into two categories, windows containing an object and
windows devoid of an object.

Given the well-established efficacy of object detection methods and the straightfor-
ward requirements of such tasks, we have chosen to employ the widely recognized YOLOv3
object detection model [29], renowned for its optimal balance between accuracy and effi-
ciency. In our study, we utilized the standard YOLOv3 loss function, defined as follows in
Equation (2):

L = Lbbox + Lobj + Lclass (2)

where Lbbox represents the bounding box regression loss, Lobj denotes the objectness loss
and Lclass signifies the class prediction loss.

The bounding box regression loss Lbbox is calculated using mean squared error when
an object is detected, focusing on the x, y coordinates of the center, as well as the width
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and height of the bounding boxes. YOLOv3 adjusts offsets to predefined anchor boxes,
applying the loss to these offsets defined in Equation (3):

Lbbox =
S2

∑
i=0

B

∑
j=0

1obj
i

[
(xi − x̂i)

2 + (yi − ŷi)
2 +

(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

(3)

Here, 1obj
i indicates the presence of an object in cell i, with x, y, w, h and x̂, ŷ, ŵ, ĥ being

the actual and predicted box coordinates and dimensions, respectively.
The Objectness Loss Lobj penalizes incorrect object presence scores, defined in Equation (4):

Lobj =
S2

∑
i=0

B

∑
j=0

1obj
i

(
Ci − Ĉi

)2
+ λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
i

(
Ci − Ĉi

)2 (4)

where C represents the confidence score, and λnoobj is a weighting factor that balances the
detection of objects and non-objects.

As shown in Equation (5), the Class Prediction Loss Lclass, using a cross-entropy loss
is aimed at accurately classifying detected objects:

Lclass =
S2

∑
i=0

1obj
i ∑

c∈ classes
pi(c) log( p̂i(c)) (5)

where p(c) denotes the probability of the class c being present in the box and p̂(c) is the
predicted probability.

This comprehensive formulation of the loss function ensures that YOLOv3 effectively
localizes and classifies objects, reinforcing its suitability for real-time object detection tasks.

2.3. Table Structure Recognition

Table structure recognition is an essential task that seeks to delineate the row and
column architecture within tables, particularly within non-digital document formats, such
as scanned images. Analogous to target detection in broader object recognition contexts,
table structure recognition can be conceptualized as a specialized form of target detection,
focusing on the identification of individual table cells. This nuanced approach to table
structure recognition involves discerning the spatial arrangement and relational dynamics
of table cells, thereby enabling the accurate reconstruction of the table’s foundational
grid structure.

Table recognition presents a formidable challenge due to the diverse array of structural
configurations encountered in document analysis. In our research, we adopt a traditional
computer vision approach, enhanced by the integration of a heuristic algorithm, to process
images for table structure recognition. To effectively address the complexity of table
structures, we categorize tables into two distinct types: those with outer borders and
those without.

As shown in Algorithm 1, for tables with outer borders, our methodology involves
leveraging precise boundary detection techniques to delineate the table perimeter, which
facilitates the accurate identification of internal cells and their relationships. Conversely,
for tables lacking distinct outer borders, we employ a more nuanced strategy that relies on
advanced pattern recognition and spatial analysis to infer the boundaries and layout of the
table. This dual strategy allows us to tailor our approach to the specific characteristics of
each table type, ensuring robust and accurate table recognition across a broad spectrum of
documents. This refined approach not only enhances the precision of table detection but
also significantly improves the reliability of extracting and interpreting tabular data from
complex document layouts. In our method, we set the threshold as 0.7.
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Algorithm 1 Table Structure Recognition

1: Input: Document or image containing a table
2: Output: Structurally processed table with delineated internal frame lines
3: Step 1: Image Capture and Pre-processing
4: Capture images of tables or use provided images focusing on table regions.
5: Convert to grayscale and apply adaptive thresholding for binarization.
6: Perform morphological operations to identify vertical and horizontal lines.
7: Step 2: Line Identification and Pruning
8: Detect vertical and horizontal lines using enhanced morphological operations.
9: Eliminate lines exceeding predefined thresholds to clarify line data.

10: Conditional Step Based on Outer Frame Lines Detection
11: if Outer frame lines are detected then
12: Proceed with internal line detection and intersection analysis.
13: else
14: Perform systematic pixel scans to identify potential zones for horizontal and vertical

internal frame lines.
15: Merge potential zones to locate precise line locations.
16: end if
17: Step 3: Frame Line Validation and Structural Recognition
18: Validate detected lines against pixel count thresholds.
19: Connect validated lines to form internal frame structures.
20: Delineate primary unit cells of the table by intersecting frame lines.
21: Step 4: Table Morphology Analysis and Output Generation
22: Categorize table morphologies based on the presence of internal structures.
23: Compile and refine data into a structural representation.
24: Generate and store the structural representations of tables for further analysis or display.

2.4. Joint Multimodal Knowledge Understanding

Due to the diverse and multilingual nature of data sources, the knowledge extracted in
the process often appears vague and heterogeneous. This variability manifests as multiple
names or references for the same entity and other related inconsistencies. Such challenges
underscore the need for a robust methodology to manage and disambiguate these data
effectively. To address these issues, the extracted entities are parsed into a series of token
variables e1, e2, . . . , eN . The primary objective is to determine the most probable sequence of
named entity labels E1, E2, . . . , EN . This approach facilitates the systematic disambiguation
and correct categorization of entities, which is crucial for maintaining the integrity and
utility of the extracted knowledge.

We implement a data integration method once the target elements have been detected
and recognized. We systematically gather and organize all potential entity names, linking
them to a standardized dictionary to facilitate name disambiguation. To enhance the
schema customization process, we utilize BERT (Bidirectional Encoder Representations
from Transformers) [56], encoding each entity name into a high-dimensional vector to
produce a dense representation. We normalize user preferences for knowledge fusion by
calculating the similarity between the user’s preference vector and the standardized entity
names. This process ensures a refined integration of user-specific requirements with the
overarching data framework, enabling more precise and contextually relevant data retrieval
and analysis.

3. Result

To evaluate the efficacy of our proposed network model, we conducted a performance
assessment using a curated dataset of 100 geoscience documents. These documents were
meticulously annotated to facilitate the detection of named entities, images, and tables.
This approach allows for a comprehensive analysis of the model’s capabilities in accurately
identifying and classifying various data types embedded within complex academic texts.
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The selection of geoscience literature specifically aims to test the model’s effectiveness
across diverse content and intricate data presentations typical of this scientific field.

We compared the NER performance between the original UIE model and our fine-
tuned UIE model, as detailed in Table 1. The results demonstrate that the fine-tuned UIE
model significantly improved over the baseline model, which was trained on open, generic
data. This enhancement underscores the importance of incorporating domain-specific
knowledge into the training process. NER robustness typically necessitates substantial
investment in human resources for annotation.

Table 1. NER recall result.

Position Method Entity
Name Time Disaster

Type
Damage

Loss
Disaster

Magnitude
Influence

Factors
Prevention
Measures

Reason of
Disaster Formation

Disaster
Chain

UIE 64.67% 62.54% 13.43% 88.98% 40.94% 34.41% 24.00% 42.01% 15.53% 13.19% 16.00%
Finetuned UIE 83.36% 70.95% 94.32% 92.64% 75.59% 73.98% 78.65% 67.46% 61.15% 32.52% 44.83%

As part of our ongoing commitment to enhancing our platform, we will continuously
improve the generalization capabilities of our system’s NER by engaging with geoscientists
from diverse specializations. By integrating their expert annotations of domain-specific
data modifications into our model iterations, we aim to refine our system’s performance
progressively. This approach not only bolsters the accuracy of our NER system but also
adapts it more effectively to the nuanced requirements of geoscience research.

For image detection, we employ the widely adopted YOLOv3 object detection model [29],
chosen for its exceptional balance between accuracy and efficiency. To ensure optimal per-
formance, we have fine-tuned YOLOv3 using a dataset of 422 images, each meticulously
annotated by domain experts. The dataset was partitioned into training and testing sets
at a 9:1 ratio, a strategy designed to rigorously evaluate the model under varied condi-
tions. Table 2 provides a comprehensive overview of our network’s image recognition
performance, detailing enhancements and outcomes from the fine-tuning process. This
methodological approach ensures that our system not only achieves high accuracy but also
maintains efficiency across real-world applications.

Table 2. Precision results of image detection of geoscientific literature. IoU denotes the intersection of
the union of the labeled and predicted bounding boxes.

IoU 0.5 0.75 0.9
Precision 95.4% 72.9% 7%

Table recognition presents a significant challenge due to the diversity of structures
encountered. To enhance the accuracy of table detection, we fine-tuned the YOLOv3
model using the Tablebank dataset [43]. Combined with our specially designed table
structure recognition algorithm (referenced in Algorithm 1), we conducted a comprehensive
evaluation across 100 articles resulting in the recognition and detection of 423 tables.
The performance outcomes of these tables are systematically documented and presented in
Table 3. This approach not only validates the effectiveness of our model adjustments but
also underscores the robustness of our algorithm in accurately identifying diverse table
structures in academic texts.

Table 3. Table region detection, structure recognition, and content recognition precision.

Region Detection
(IoU = 0.5)

Structure
Recognition

Content
Recognition

93.5% 91.7% 91.9%

To rigorously evaluate the effectiveness of our data fusion approach, we manually
annotated and organized data from 100 scientific articles, which contain 2650 data points.
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This meticulous annotation served as a baseline for assessing the efficiency of our multi-
modal target data recognition system. We compared the data fill rates achieved through
the recognition of different modal data types, demonstrating the enhanced efficiency of
our system after integrating these modalities. The specific results, which illustrate the
performance improvements and efficacy of our designed system, are detailed in Table 4.
This empirical assessment validates the robustness and practical utility of our data fusion
methodology in handling complex datasets.

Table 4. Knowledge Fusion Rate.

Table Recognition Finetuned UIE Multimodal Model Network Human Annotation

Filling Rate (%) 58.7 12.3 71.0 85.6

4. Discussion

This chapter focuses on delineating the fundamental components requisite for the
establishment of the GeoKnowledgeFusion system, supplemented by the elucidation of
two pertinent employment scenarios: Sm-Nd Data Extraction and Debris Flow Data Ex-
traction. A comprehensive depiction of the GeoKnowledgeFusion workflow is provided
in Figure 1, encapsulating four principal components: (1) PDF pre-processing, (2) target
element recognition, (3) human-in-the-loop annotation, and (4) joint multimodal knowl-
edge understanding.

4.1. PDF Pre-Processing Pipeline

To augment the efficiency of the data retrieval operations, our methodology integrates
a preliminary stage that entails the pre-processing of all PDF documents. This initial phase
involves the extraction and subsequent analytical evaluation of relevant metadata from
each document. Upon completing this phase, we proceed with a data-wrangling operation
to verify the extracted metadata’s accuracy and pertinence. The refined data are then
systematically organized within a relational database, supporting structured storage and
facilitating efficient retrieval. Following the organization phase, we develop an index for
each document based on the curated metadata, serving as a foundational element. Em-
ploying keyword filtering techniques on these metadata enables our system to discerningly
segregate the requisite PDF documents from a comprehensive document corpus. As shown
in Figure 3, the pipeline of our PDF pre-processing is succinctly segmented into three core
components: metadata extraction, data wrangling, and keyword filtering. This methodical
and structured approach not only simplifies the retrieval process but also markedly en-
hances the accuracy and velocity of accessing pertinent data, underscoring the effectiveness
of our data management strategy.

(A) Metadata Extraction

Documents

<title> Creating…
<author> Mam…
<journal> Scien…
<date> 2020…
<abstract> Re…

Keywords 
Query

……

<XML>

Metadata 
Extraction

(B) Data Wrangling

Data Cleaning

Database
Construction

(C) Keywords Filtering

Building Index

Figure 3. PDF prep-process pipeline.

4.1.1. Metadata Extraction

To enhance the organization and structuring of literature within GeoKnowledgeFusion,
we implement Grobid [57] for the automatic parsing of documents. GROBID utilizes an
advanced cascade of sequence labeling models designed to optimize document parsing.
This modular approach enables precise adaptation to the varied hierarchical structures of
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documents, ensuring data, features, and textual representations are aptly adjusted. Each
model in this framework is equipped with a specific set of labels, facilitating a system
where the collective application of these models produces detailed and structured outcomes.
Notably, the segmentation model is critical in delineating primary document sections,
such as the title page, header, body, headnotes, footnotes, and bibliographical sections.
Through the processing capabilities of GROBID, textual areas within PDF documents are
methodically classified and labeled. A thorough parsing of the content follows this initial
step. Subsequently, by integrating the content with the structured labels generated from the
model cascade, it is transformed into an Extensible Markup Language (XML) document,
organized according to the specific labels obtained.

This intricate process highlights GROBID’s efficacy in converting unstructured data
into well-structured and accessible digital formats. As depicted in Figure 4, this method-
ology ensures the accurate extraction and conversion of critical metadata—such as titles,
abstracts, author details, publication information, and paragraph content—into XML docu-
ments. Moreover, for each PDF document, a relational data table is constructed, housing all
pre-processed and parsed metadata, thereby enhancing the accessibility and management
of document metadata within GeoKnowledgeFusion. This structured approach to metadata
extraction underpins the efficient organization and retrieval of literature in our system.
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Contrasting Granite Metallogeny 
through the Zircon Record: A Case 
Study from Myanmar
Nicholas J. Gardiner  1,2, Chris J. Hawkesworth3, Laurence J. Robb1, Martin J. Whitehouse4, 
Nick M. W. Roberts5, Christopher L. Kirkland2 & Noreen J. Evans6

Granitoid-hosted mineral deposits are major global sources of a number of economically important 
metals. The fundamental controls on magma metal fertility are tectonic setting, the nature of source 
rocks, and magma differentiation. A clearer understanding of these petrogenetic processes has been 
forged through the accessory mineral zircon, which has considerable potential in metallogenic studies. 
We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset from the paired 
Cu-Au (copper) and Sn-W (tin) magmatic belts in Myanmar. Copper arc zircons have juvenile εHf 
(+7.6 to +11.5) and mantle-like δ18O (5.2–5.5‰), whereas tin belt zircons have low εHf (−7 to −13) 
and heavier δ18O (6.2–7.7‰). Variations in zircon Hf and U/Yb reaffirm that tin belt magmas contain 
greater crustal contributions than copper arc rocks. Links between whole-rock Rb/Sr and zircon Eu/Eu* 
highlight that the latter can monitor magma fractionation in these systems. Zircon Ce/Ce* and Eu/Eu* 
are sensitive to redox and fractionation respectively, and here are used to evaluate zircon sensitivity 
to the metallogenic affinity of their host rock. Critical contents of Sn in granitic magmas, which may 
be required for the development of economic tin deposits, are marked by zircon Eu/Eu* values of ca. 
≤0.08.

Granitoid-hosted mineral deposits are global sources for Cu, Mo, Sn, W, Au, U, Ta and Nb. Magmatic genesis and 
evolution exerts a fundamental control on the propensity of granitoids to be metal-fertile1. A revolution in our 
understanding of granite petrogenesis has been forged through mineral-based tools, principally the accessory 
mineral zircon2, 3. Zircons are chemically robust, they can be precisely dated, they are reliable monitors of the 
evolution of their parental magmas, and they survive a range of geological processes that can impinge upon the 
reliability of whole-rock data4. Advances in micro-analysis have resulted in the routine in-situ measurement of 
key geochemical and isotopic traits in zircons formed within a range of tectonic settings5, and these techniques 
are increasingly applied to metallogenic problems. Over the past decade there has been increased interest in the 
use of accessory minerals as so-called pathfinders to prospective areas of granite-hosted mineralization, largely 
focusing on Cu-Au(-Mo) porphyry deposits, and the role of zircon rare earth elements as oxy-barometers6–8.

Magmatic source, redox state, and the degree of magma fractionation, are petrogenetic factors that control 
the development of metal-fertile magmas leading to magmatic-hydrothermal mineral deposits9. Identification 
of traits in zircon sensitive to these factors may potentially be developed into exploration tools, however what 
is required is a better understanding of how the traits respond to different types of granite metallogeny. One 
approach is to contrast zircon chemistry in granite suites that host distinct types of mineral deposits. The paired 
magmatic belts of Myanmar offer an ideal case study since they host contrasting metallogeny: vein-and-pegmatite 
Sn-W and porphyry-type Cu-Au.

We present new zircon data from the Myanmar belts, focusing on geochemical and isotopic traits that fin-
gerprint source, redox, and the degree of magma differentiation. Evaluating their sensitivity to these controls, 
we consider the extent to which magmatic, and by implication detrital zircons offer new ways to constrain the 
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Figure 4. An overview of the metadata extraction process.

4.1.2. Data Wrangling

The Data Wrangling phase entails a meticulous process to normalize the metadata ex-
tracted from PDF documents and subsequently store these refined data within a MySQL [58]
database, adhering to a meticulously predefined schema. This phase involves adopting a
sequence of preprocessing measures influenced by the methodologies suggested in [59].
These measures include a series of transformations aimed at enhancing the uniformity and
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clarity of the data. Such transformations encompass the conversion of all textual tokens to
lowercase, the substitution of non-alphanumeric characters with spaces, the elimination of
stop words (for example, “the”, “a”), and the elucidation of common abbreviations (e.g.,
substituting “Lat.” with “Latitude”). The primary objective of these preprocessing activities
is to achieve the standardization and normalization of entity names, thus facilitating a
heightened level of consistency and comparability for future search endeavors.

Moreover, regarding PDF documents subjected to the Metadata Extraction process,
should the parsing operation be unsuccessful (manifested by the return of null values in
PDF metadata), such data entries will be excluded from further consideration. In instances
where null values are encountered in specific critical fields, these instances will be systemat-
ically addressed by populating the fields with “NaN” (Not a Number), thereby maintaining
the integrity and continuity of the dataset.

Subsequent to these preparatory actions, we establish a relational database schema
tailored specifically for the organization of academic papers, as delineated in Figure 5.
The sanitized metadata are methodically cataloged within this structured framework in the
MySQL database. Drawing upon the cleaned metadata, we meticulously construct four
interrelated tables that revolve around the central entity of paper. These tables—Paper,
Journal, Author, and Affiliation—serve as repositories for information pertinent to their
respective domains, arranged according to the schema showcased in the figure. This
strategic organization optimizes data retrieval and manipulation and lays a solid foundation
for subsequent analytical tasks, exemplifying a coherent and scholarly approach to data
management within academic research contexts. To date, our database has successfully
processed and extracted metadata for 1,161,959 documents, which are now cataloged within
the Paper table. This cumulative figure is subject to continuous growth as our efforts to
process further PDF documents proceed. This ongoing database expansion underscores
the dynamic and evolving nature of our data collection and management efforts.

Paper
paper_id
title
doi
date
year
issue
first_page
last_page
journal_id
volume

Journal
journal_id
name
publisher

Author
paper_id
author_id
author_name
affilation_id

Affilation
affilation_id
name

Figure 5. The schema of the metadata database.

4.1.3. Keyword Filtering

As shown in Figure 6, to systematically organize and facilitate the retrieval of doc-
uments, we construct an index for each document derived from its extracted metadata,
encompassing the title, authors, abstract, publication venue, and year of publication.
For this purpose, we employ Elasticsearch [60], a text search engine library renowned for its
superior performance and wide acclaim. Elasticsearch provides an extensive suite of query
capabilities, such as keyword, fuzzy, phrase, and aggregate searches, accommodating a
broad spectrum of information retrieval needs.
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Metadata：Adapting Prompt for Few-shot Table-to-
Text Generation

Metadata：Towards controlled table-to-text 
generation with scientific reasoning

Metadata：…….

Sm

143 Nd
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……

Input
OutputElastic Search

Keywords 
Query

……
Build Index for Documents

Candidate 
Documents

Metadata：Contrasting granite metallogeny through 
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Figure 6. An overview of the Keyword filtering process.

In order to realize word-level search capabilities, we meticulously index the entirety
of the data contained within the metadata database on a granular, word-by-word basis.
This indexing strategy is complemented by adopting a predefined list of keywords curated
by domain experts to steer the data retrieval process. When a keyword is detected within
the title or abstract of a document, it is flagged as a candidate, significantly refining the
scope of document selection. This precision in keyword-based filtering enables experts
to efficiently sift through a large repository of potential candidates, isolating documents
that warrant further examination. By leveraging this method, experts are empowered to
pinpoint relevant documents with a high degree of efficacy, streamlining the research and
analysis process in academic and professional contexts.

4.2. Target Element Recognition

To effectively integrate our designed models and algorithms into the system, we
encapsulated them using Fast API and deployed them on a server. Specifically, the text
recognition model along with the image and table detection models were deployed on
a server equipped with an NVIDIA GeForce RTX 3090 GPU to facilitate real-time data
inference. This strategic deployment not only leverages the computational power of
advanced hardware but also ensures efficient and rapid processing capabilities critical for
delivering immediate results in real-time applications.

4.3. Human-in-the-Loop Annotation

To address the accuracy limitations inherent in end-to-end model recognition, we
have integrated a robust human-in-the-loop annotation process into our workflow. This
process capitalizes on the expertise of human researchers to validate and enhance the
precision and accuracy of all data collected and organized by our system. During the
detailed manual verification phase, human annotators refine various components of the
data, including image and table entity region detection, table structure identification, table
content recognition, and the fusion of visual and tabular data. These essential modifications
provide critical feedback that informs iterative updates to our model parameters, thus
driving continuous enhancements in the performance and efficacy of the extraction process.

Specifically, for NER our system enables users to directly modify or remove identified
entities or to highlight new ones within the text. For image and table detection, users can
add, remove, or adjust the bounding boxes of detected objects. Regarding table structure
recognition, the system allows users to add or delete rows or columns, merge table cells,
and compile table contents. These interactive capabilities ensure that our data extraction
methodologies remain dynamic and responsive to user input, significantly improving the
reliability and applicability of the extracted data in various research contexts.

4.4. Sm-Nd Data Extraction

The existence of significant crustal growth during the Phanerozoic Eon has remained
a challenging question within the field of Earth science. Previous studies have proposed
various models to explain crustal growth, yet substantial discrepancies in the estimates
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have arisen due to variations in the chosen study objects and methodologies, leading to
divergent outcomes. Earlier research often relied on limited isotopic data or statistical
analyses of zircon age peaks, resulting in varying interpretations due to dissimilarities
in the spatial and temporal distribution of data samples. Consequently, to accurately
determine the nature and rate of continental crustal growth, particularly the variations in
material composition and crustal growth across major orogenic belts since the Phanerozoic,
it is crucial to gather a comprehensive set of sample data that represent crustal growth in
these belts and reflect the extent of crustal accretion.

The utilization of Sm-Nd isotope data compilation and isotope mapping presents a
valuable approach to address the limitations encountered in previous studies that relied on
a restricted number of isotopes. This method allows for a more effective determination of
crustal volume and growth rates. Therefore, it is crucial to collect and establish a compre-
hensive global isotope database with spatiotemporal information. The accomplishment of
this study requires the extraction of relevant data tables and image data from a vast body
of literature. It also requires the identification and extraction of long-tail data, as well as the
prompt collection, organization, and assembly of relevant data by integrating information
derived from the literature. The discovery and integration of Sm-Nd data encounter signifi-
cant challenges due to the wide range of document types and significant variations in data
formats. These obstacles impede the efficiency of data extraction, leading to a substantial
portion of available data remaining untapped, which exemplifies the occurrence of the
long-tail data phenomenon. To advance research in this area, geoscientists are employing
GeoKnowledgeFusion, a tool capable of compiling Sm-Nd isotope data from an extensive
collection of 1,015,498 geoscientific references.

A panel of experts provided 25 carefully selected keywords, including terms such
as Sm, 143 Nd/144 Nd, and Pluton/Formation, to facilitate the filtering process. Using
the provided keywords, we applied a keyword filtering mechanism that resulted in the
selection of over 20,000 articles uploaded by area scientists for Sm-Nd data compilation.
Subsequently, using a careful PDF document parsing procedure, we identified 3959 litera-
ture documents characterized by well-structured content and containing valuable Sm-Nd
information tables. Within this subset of documents, a total of 9138 individual tables
and more than 15,000 images were discovered, each encapsulating pertinent Sm-Nd data.
By integrating and consolidating the extracted information, we successfully generated
a comprehensive dataset containing 10,624 entries of relevant Sm-Nd data. This dataset
serves as a valuable resource for further research and analysis in the field.

To assess the effectiveness of our platform, we performed a quantitative analysis
of time consumption and data fill rate. As a baseline, we used a manually collected and
curated set of 9000 Sm-Nd-related records using the same keywords. The time consumption
provides insight into the time efficiency of our automated data process, while the data fill
rate serves as a measure of the effectiveness of the data extraction process.

Figure 7 illustrates a comparison between human compilation and automatic com-
pilation using the GeoKnowledgeFusion model network in terms of data fill rate and
time consumption. As shown in Figure 7a, the automated processing workflow is able to
accurately extract and merge the majority of fields, especially for metadata such as titles
and other relevant information. However, when dealing with knowledge that requires
joint multimodal data understanding, such as latitude, longitude, and age information,
the current model network faces significant challenges due to the limited availability of
domain-specific training data. As a result, it remains difficult to achieve satisfactory results
in these cases. This observation underscores the importance of human involvement in the
data collection process.

In contrast to the traditional manual approach of searching for the required data within
PDF files, manually copying or entering the data cell by cell into a master spreadsheet,
and then verifying its accuracy, Figure 7b demonstrates the significant improvement in
processing efficiency that our automated workflow provides. The automated process
achieves a significant increase in speed, approximately 27 times faster or more. Using
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our platform for batch data processing has the potential to significantly improve the
effectiveness of data collection, organization, and validation, thereby reducing reliance on
human resources.

Position 
Information
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Information

Meta 
Information

(a) Data fill rate of human compilation and automatic compilation (b) Time-consuming of human compilation and automatic compilation
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Figure 7. Comparison of data fill rate and time consumption between human compilation and auto-
matic compilation via the GeoKnowledgeFusion model network. The left part of the figure illustrates
the data fill rate of human compilation and automatic compilation, while the right part presents a
comparison of the time consumption between human compilation and automatic compilation.

4.5. Debris Flow Data Extraction

In the field of geoscience, the extraction of pertinent data from the literature for geo-
logical disaster monitoring and early warning services is increasingly recognized as critical.
Our approach involves creating a comprehensive spatio-temporal knowledge graph based
on project construction, which integrates diverse data sources including scientific literature
related to geological disaster monitoring, spatial data, IoT sensing, and crowd-sourced intel-
ligence. This integration is facilitated by a spatio-temporal knowledge graph construction
management system, which is utilized to validate and refine techniques for geological disas-
ter monitoring and early warning. This process includes the analysis of patterns, etiological
diagnosis, forecasting, and the development of strategies for emergency response.

In practical application, we have utilized the GeoKnowledgeFusion system to process
16,185 academic articles from 136 journals uploaded by area scientists that pertain to debris
flow disasters. Through this system, we have successfully extracted 14,665 data entries,
specifically targeting nine categories of disaster-related keywords and 18 indicators of de-
bris flow disasters. This targeted extraction process focuses on textual content, contrasting
with the broader distribution of Sm-Nd data across the literature. Such a focused approach
significantly enhances the specificity and relevance of the data extracted, thereby improving
the efficiency and efficacy of our geological disaster knowledge services. This methodology
not only streamlines the data processing workflow but also ensures that the information is
directly applicable to enhancing disaster response and preparedness strategies.

Compared to traditional manual methods of compiling debris flow disaster-related
data, the data collected through our system demonstrates a significant enhancement, ex-
hibiting more than a 20% increase in completeness. Furthermore, our approach significantly
optimizes efficiency, reducing the time required for data compilation by over 80%. This
substantial improvement not only underscores the effectiveness of our system in data ag-
gregation but also highlights its capability to streamline processes and reduce operational
burdens in disaster data management.

5. Conclusions

This paper presents GeoKnowledgeFusion, an online platform for the extraction of
visual and tabular data from the scientific literature. By extracting detailed data from tables
and images within PDF documents, the resulting database achieves more comprehensive
coverage across multiple dimensions, facilitating subsequent data analysis and modeling
processes. Our platform offers significant advantages over manual data compilation, signif-
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icantly increasing the efficiency of data collection while reducing the required investment
in human resources. Leveraging the human-in-the-loop annotation paradigm, we strive to
maximize the completion rate and ensure the accuracy of the extracted data.

While our automated processing workflow demonstrates robust performance in nu-
merous scenarios, it is crucial to acknowledge the presence of certain technical limitations.

• The processing of documents that have been scanned and saved as images in PDF
format still poses challenges. The effectiveness of text extraction heavily relies on the
resolution of the scanned images, which makes it challenging to accurately recognize
specific formulas and special characters.

• The current methods are constrained by the limitations of the training corpus. As a
result, achieving satisfactory performance in comprehending complex visual and
tabular data that have not been encountered before remains an ongoing challenge.

• Our current approach encounters difficulties in extracting knowledge from diverse
data types, including text and equations. This particular challenge necessitates access
to expensive and high-quality labeled corpora for training purposes.

We have successfully implemented two application cases: the extraction of elements
related to mountain disasters and global orogenic zones. As a sustainable geoscience data
processing platform, our objective is to create a one-stop, flexible, and universally applicable
multi-modal data processing platform that dismantles the barriers between images, tables,
and text. As shown in Figure 8, by developing customizable keyword lists we enhance the
adaptability and breadth of our data processing capabilities. The continuous preservation
of annotated data facilitates iterative updates to our backend models, progressively aug-
menting the efficiency and capabilities of our data processing operations. This strategy is
designed to cater to geoscience experts across a spectrum of fields, empowering them to
fully exploit our platform for a wide array of research needs. This structured approach is
part of our commitment to delivering a comprehensive and robust toolkit that meets the
intricate requirements of geoscience data analysis and integration.
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ABSTRACT
Debris-flow disaster has caused large casualties and tremendous economic
loss. Check dams, flexible barriers, silt dams and baffle arrays are most
used disaster prevention countermeasures. For a better design strategy, we
made a thorough review and discussion about the achievements and chal-
lenges in four important aspects, including impact force estimation, run-up
height prediction, failure analysis and plain configuration planning. The
impact force exerted by debris flow on structures is the most crucial design
parameter, while most widely used models are based on hydraulic theory
and lack physical mechanisms, especially in accounting for the effect of
nonstationary flow regimes, impact patterns and barrier characteristics.
Current methods of designing protection structures mainly depend on
static and deterministic theory to address dynamic problems that are
highly stochastic, which reveals a great research gap in understanding the
response and failure under impact of structures. In future, physically based
design strategy should be highlighted, for which robust physical modelling
methods and numerical simulation tools are needed for the better under-
standing of flow–structure interaction mechanism and the verification of
structure design strategy. Furthermore, the resilience-based disaster pre-
vention concept should be highlighted for its outstanding ability in pre-
paredness, response, and recovery when threatened by unknown disasters.
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1. Introduction

Debris flow is one of the most catastrophic geological events around all over the word (Dowling & Santi,
2014), especially in mountain areas such as southwestern China (Figure 1a). Strong earthquakes and
heavy rainfall events are the most significant contributors for the frequent occurrence of large debris
flow. Because of strong ground motion, a great deal of landslides and avalanches were triggered with
huge volume of loose material depositing at a marginally stable condition, and under the influence of
heavy rainfall, these loose materials are disturbed and form catastrophic debris flow events. As shown in
Figure 2b, China has suffered several hundred debris-flow disasters every single year, but after 2008
Wenchuan earthquake, the reported debris-flow disasters have increased by about 2–5 times, and highly
frequent debris-flow disasters have lasted many years. Debris-flow disasters have caused tremendous eco-
nomic and human loss mainly through impact, accumulation, and abrasion, while the inpat effect is the
main cause because such disasters carry huge kinetic energy (Hu et al., 2012). For example, the famous
event–Wenjia gully debris flow occurred on August 13, 2010, which is the coupled consequence of
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