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Abstract: The urban heat island (UHI) represents an anthropogenic modification to the earth’s
surface, and its relationship with urban development, built-up age dependency in particular, is poorly
understood. We integrated global artificial impervious areas to analyze the impacts of built-up age
and urban development intensity (UDI) on land surface temperatures (LSTs) in Hefei, the capital of
Anhui Province of China, from 2000 to 2019. A key finding was that the built-up areas with different
built-up ages were strongly associated with LST, and this relationship does not change significantly
over time, suggesting temporal stability of spatial patterns of LSTs. This finding puts forward a
challenge to the application of the classic concept of space-for-time in LST studies because the premise
of space-for-time is that spatial and temporal variation are equivalent. This result reveals the vital
importance of annual development activities on the urban thermal environment. Another highlighted
result was LST sensitivity to UDI, an effective measure of the impact of urbanization on LST, which
increased significantly from 0.255 ◦C per 10% UDI to 0.818 ◦C per 10% UDI. The more than doubling
of LST sensitivity to UDI should be a major concern for city administration. These findings have
crucial theoretical and practical significance for the regulation of LSTs and UHI.
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1. Introduction

The urban heat island (UHI) is a common phenomenon in which land surface temper-
atures (LSTs) are higher than in surrounding rural areas [1,2]. UHI can not only alter urban
environment conditions such as climate [3,4], air quality [5], water environment [6], and
biodiversity [7], but also adversely affect human health and comfort [8,9]. The key factors
affecting UHI are urban population [10–12], impervious surface [13,14], and other factors
brought about by urban development [15–17]. The UHI effect has been a major research
focus of urban ecology [15–17], with many studies analyzing the spatial-temporal hetero-
geneity of UHI [18–20] and influencing factors such as architectural characteristics [21,22],
human activities [23,24], seasonal variability [25,26], and green landscape features [27–30].
Several studies have also focused on the impact of urban form [31] and land use patterns
in built-up areas [32–34] on UHI. However, few studies have examined the continuous
temporal evolution of UHI patterns among different built-up areas and sensitivity over
the course of urban development. A city is not built at once but typically expands over a
time period that can span decades or even longer [35]. It is expected that the UHI and its
controlling factors would change as cities evolve [36,37], and a thorough understanding of
the temporal evolution of UHI can provide valuable information to support future urban
thermal environment mitigation and human adaptive strategies.
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The impacts of urban evolution on UHI remain elusive [38–40]. Previous studies
have rarely examined the relationship between UHI and built-up age directly, but rather
have investigated the UHI differences of the new and old urban areas to infer the impacts
of urban evolution via space-for-time substitution [41,42]. Some studies have shown
significantly higher UHI in new urban areas compared to old urban areas [31,43], which
has been explained by the greater presence of many large industrial agglomerations (major
anthropogenic heat sources) in new urban areas [44–46]. On the other hand, some other
studies have shown the opposite, with higher UHI intensity in old urban areas [41,47], since
old urban areas, being the center of commercial and human activities [48,49], have a higher
density of impervious surfaces and lower vegetation coverage [35,50,51]. Apparently,
one major weakness of these studies is the vague and nonstandard use of new vs. old
urban areas, which can greatly affect the results [31,52]. As a result, there is a need to use
a physically based metric such as built-up age to measure urban evolution and then to
investigate the impacts of urban development on temporal changes of UHI directly using
time series analysis rather than using space-for-time substitution, the validity of which has
not been examined for UHI.

Urban development intensity (UDI) is the proportion of impervious surface per unit
pixel, ranging from 0% to 100%. The relationship between UDI and UHI, which is a strong
indicator of the impact of UDI on UHI and therefore important to UHI management, has
been investigated extensively in and across different cities [13,15,53]. Current studies have
shown that the impact of UDI on UHI is regulated by a variety of factors, including surface
albedo [54,55] and climate and vegetation conditions [17,56]. It is therefore expected that the
impact of UDI on UHI would change over time as cities evolve since these regulating factors
would change along with urbanization [57,58]. However, a relatively limited number of
studies have focused on spatial trends [56,59], a systematic evaluation of the temporal
change of the effect of UDI on UHI is still lacking, and whether the UHI-UDI relationship
would evolve over time as urbanization intensifies still needs further exploration [60,61].

To address the temporal changes of the UHI-UDI relationship, we used Hefei as a case
to investigate the evolution of the relationship between built-up age, UDI, and UHI from
2000 to 2019. Hefei, one of the typical fast-growing cities in China and the capital city of
Anhui province, has experienced rapid urban growth in recent decades [62,63]. It is one of
the star cities in central China and known as one of China’s ten representative cities suffering
from a pronounced summertime UHI effect (China Meteorological Administration (CMA)
(https://www.cma.gov.cn/en/) (accessed on 15 February 2024). Therefore, it is an ideal
place to conduct such a study. The overarching goal of this study was to understand the
spatial patterns and temporal evolution of UHI characteristics as cities expand. Specifically,
the objectives of this study were to: (1) explore the impact of built-up age on UHI and the
evolution of UHI among various aged built-ups over time; (2) investigate the temporal
change of UDI impact on LST. Our research hypotheses were: (1) UHI is independent of
built-up age, and therefore no temporal change could be detected on UHI as built-ups
get older; (2) the impact of UDI on UHI does not change over time; (3) LST, along a
chronosequence of built-up age cohorts, does not show a clear tendency toward change. In
addition, we also explored whether there is temporal stability in the LST patterns along the
chronosequence (i.e., high or low LST would be signatures of some fixed built-ups) across
years. Even without a clear tendency toward change in LST along the chronosequence, a
temporal stability of LST patterns would suggest strong location-based physical controls of
LST that might not change over time.

2. Materials and Methods
2.1. Study Area

Hefei is the capital of Anhui Province and the sub-center of the Yangtze River Delta
Urban Agglomerations. It is located in the east of China, between 30◦57′–32◦32′N and
116◦41′–117◦58′E (Figure 1), with a total area of 11,445.1 km2. Hefei has a typical subtrop-
ical monsoon climate, with an average annual temperature of 15.7 ◦C, average annual
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precipitation of about 1000 mm, and average relative humidity of 77%. Hefei is a typical
fast-growing city in China with impressive economic growth and rapid urban expansion,
and the urbanization rate (ratio of urban population to total population) increased from
32.64% in 2000 to 74.97% in 2018 (Hefei Statistical Bureau, 2019). Hefei topped the list of
extreme hot days during 2000–2019 among provincial capitals with 210 days of high tem-
perature (>35 ◦C) and humidity (>50%) according to an inventory conducted by Weather
China (China weather news, http://www.weather.com.cn/) (accessed on 25 March 2020).
This suggests that Hefei is an ideal place to conduct UHI research.
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Figure 1. Maps showing the location of Anhui Province in China (a); Hefei, the capital of Anhui
Province (b); the spatial distribution of built-up age in 2018 in the study area (c). The largest polygon
with the blackline boundary in (c) is the main urban area, and gray means natural areas.

2.2. Data

Major data layers used in this study are shown in Table 1. Aqua MODIS 8-day
composite products (version 5) of land surface temperature (LST) from 2000–2019 with
a spatial resolution of 1 km were collected from United States Geological Survey (USGS:
https://lpdaacsvc.cr.usgs.gov/appeears/) (accessed on 15 March 2020). Global Artificial
Impervious Area data [64] with a spatial resolution of 30m (http://data.ess.tsinghua.edu.
cn/) (accessed on 15 March 2020) were used to calculate built-up age, urban expansion
rate, and urban development intensity. A land use and land cover map from Tsinghua
(http://data.ess.tsinghua.edu.cn/) (accessed on 15 March 2020) was used to define the
main urban area and calculate landscape indices. Night light data DMSP/OLS (https:
//www.ngdc.noaa.gov/eog/dmsp/) (accessed on 10 May 2020) and VIIRS (https://www.
ngdc.noaa.gov/eog/viirs/) (accessed on 10 May 2020) and albedo (https://eos.com/find-
satellite/modis-mcd43a4/) (accessed on 1 June 2020) were used to perform attribution
analysis on the relationship between LST and built-up age. Landsat Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+) images were downloaded from USGS
(https://earthexplorer.usgs.gov/) (accessed on 15 March 2020) to calculate NDVI and
landscape metrics. All data were acquired around 2018 to match the newly updated maps
of GAIA in 2018 and minimize the temporal mismatch.

http://www.weather.com.cn/
https://lpdaacsvc.cr.usgs.gov/appeears/
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
https://www.ngdc.noaa.gov/eog/dmsp/
https://www.ngdc.noaa.gov/eog/dmsp/
https://www.ngdc.noaa.gov/eog/viirs/
https://www.ngdc.noaa.gov/eog/viirs/
https://eos.com/find-satellite/modis-mcd43a4/
https://eos.com/find-satellite/modis-mcd43a4/
https://earthexplorer.usgs.gov/
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Table 1. Characteristics of the data used in this study.

Dataset Spatial
Resolution Year Pre-Processing Purpose

Aqua MODIS 8-day composite
products LST 1 km 2000–2019 MVC, Mosaic To calculate the annual maximum

LST from 2000 to 2019
Global artificial

Impervious surface 30 m 1985–2018 Reclassify, Resample, Mosaic To calculate the built-up age and UDI

Land Use/cover 30 m 2017 Resample, Mosaic To extract the main urban area and
calculate the landscape metrics

DMSP/OLS Night light 1 km 2000–2013 Resample, Mosaic To conduct attribution analysis
VIIRS Night light 500 m 2013–2018 Resample, Mosaic To conduct attribution analysis

Landsat Thematic Mapper (TM)
and Enhanced Thematic Mapper

Plus (ETM+) images
30 m 2018

Interpolation, Atmospheric
Correction, De-cloud, Band

Data Scaling
To calculate NDVI

MODIS MCD43A4 500 m 2018 Resample, Mosaic To conduct attribution analysis

2.3. Land Surface Temperature (LST), Urban Expansion Rate, and Urban Development Intensity

We analyzed the spatial and temporal changes of annual maximum LST from 2000 to
2019. To derive the annual maximum LST maps, 160 daytime MODIS MOD11A2 images
from June to August were superimposed and maximum values were calculated for each
pixel using the Maximum Value Composite (MVC) approach [65] by Python 3.8.5. This
approach effectively eliminates the effect of cloud cover and surface dynamics on image
quality [66–68] and also can effectively capture extreme high-temperature features.

The annual urban expansion rate (AER) and urban development intensity (UDI) were
respectively calculated using the annual maps of the global artificial impervious area
(GAIA). UDI is defined as the proportion of built-up area within a 1 km × 1 km grid and
was calculated using Fragstats 4.2 [5,56]. The annual urban expansion rate, represented by
the expansion of impervious surface, was calculated as follows [69]:

AER = 100% × ( d

√
Uend
Ustart

− 1) (1)

where Ustart is the urban area at the initial time, Uend is the urban area at the end time, and
d is the time span of the period in years.

2.4. Built-Up Age and Its Relationship with LST

The built-up age of a pixel is defined as the length of time (in years) since a pixel
was converted from natural to impervious surface. The annual built-up age maps were
calculated from the maps of GAIA [64,70]. The age values in the maps ranged from 0 to 34
years, with 0 being natural pixels and values from 1 to 34 indicating natural surfaces that
were converted into built-up in years from 2018 to 1985, respectively. For convenience and
subsequent built-up age chronosequence analysis, we used the concept of built-up cohorts
and defined a built-up age cohort as the assembly of all pixels converted to a built-up in a
given year. Effectively, a total of 34 built-up cohorts were identified using the time series
data available in this study. Thiessen polygons derived from built-up age cohorts, effective
in indicating the agglomeration and dispersion of spatial points [71], were used to analyze
the spatial characteristics of some built-up age cohorts with obvious features.

To test the first research hypothesis (i.e., UHI is independent of built-up age), the
following procedures were performed. First, the interannual variability and change in
the observed LST in the urban areas that were not related to urbanization were removed.
This was accomplished using LST data from reference areas where the LST fields were
mainly affected by natural climatic variation and change, not by urbanization. In this study,
Dafangying Reservoir and Dashu Mountain Forest Park were selected as reference areas
(Figure A1) because of their large sizes, nearby locations, and almost uniform coverage
of water and vegetation that make them ideal to represent the temporal change of LST
under natural conditions [52]. The background climate signal was removed using the
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ratio approach [72] by dividing the annual average temperature of each age cohort by the
corresponding annual average temperatures of the two reference areas, respectively, from
2000–2019. Finally, the relationship between LST and built-up age was analyzed using
linear regression analysis, and the first hypothesis was rejected if the slope of the regression
was significantly different from 0 (α = 0.05). The regression analysis was only performed
on built-up age cohorts older than 20 years to ensure enough data points for regression. In
addition, bootstrapping was used to sample the LST ratios 500 times for each age cohort to
increase the reliability of the regression analysis [73].

To test the second hypothesis (i.e., the impact of UDI on LST does not change tempo-
rally), we examined the significance of the temporal change of LST sensitivity to UDI. As
LST has a strong linear relationship with UDI [56], LST sensitivity to UDI can be represented
by the slope of the regression between these two variables. The second hypothesis was
therefore rejected if the slope of the regression between the sensitivity and time (in year)
was significantly different from 0 (α = 0.05).

Our third research hypothesis was that the LST along a chronosequence of built-up
age cohorts does not have a clear tendency toward change. To test this hypothesis, the
annual LST anomalies were first calculated as the differences between the annual average
LSTs of each built-up age cohort and the long-term average of the annual LSTs of all cohorts
from 2000 to 2019. To examine the LST tendency along the chronosequence, the regression
slope between annual LST anomalies and built-up cohort age was assessed and tested to
see if it is significantly different from 0 (α = 0.05). In addition, the temporal stability in the
LST patterns along the chronosequence was assessed by examining the consistency of LST
anomaly ranking orders among all cohorts from 2000 to 2019 using the 95% confidence
interval of the mean rank of each cohort [74]. To understand the implicit factors of the
LST tendency or fixed LST pattern along the chronosequence, we selected human impact
indicators (night light), physical indicators (albedo, building density, floor area ratio) and
landscape indicators (NDVI, Aggregation Index (AI), mean area of patches (area mean),
Landscape Shape Index (LSI), Number of Patches (NP), Patch Density (PD)) for attribution
analysis and standardized LST anomalies and indicators in order to unify the scale of these
variables before attribution analysis (Figure 2).
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3. Results
3.1. Urban Expansion and Built-Up Age

The overall trends of urban expansion can be broadly characterized into slow growth,
rapid growth, turbulent change, and rapid decline from 1986 to 2018 for both the main
urban area and the administrative region (Figure 3). For the main urban area, the annual
newly added built-up area increased from 0.588 km2 to 4.319 km2 during the slow initial
growth period from 1986 to 2003, rapidly increased to 17.906 km2 from 2003 to 2010, then
fluctuated turbulently from 2010 to 2015, and finally declined rapidly from 25.233 km2 in
2015 to 9.828 km2 in 2018. In the administrative regions, a turbulent change in the annual
newly added built-up area appeared from 7.366 km2 in 1986 to 12.929 km2 in 2003, and
then urban expansion increased significantly to 78.826 km2 until 2013 but rapidly declined
from 78.976 km2 in 2016 to 20.257 km2 in 2018.
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The urban expansion rates of different years also show a similar pattern of change
with those of expanded areas (Figure 3). It is worth noting that the urban expansion rates of
the main urban area were obviously higher than those of the administrative regions, but the
increase in annual newly added built-up areas was smaller than that of the administrative
regions. Compared with the growth of built-up areas, the urban expansion rate of the
main urban area was much higher than that of the administrative area for most of the time
due to its much smaller total area. The expansion rates of the main urban area and the
administrative region were similar and relatively low before 1992. The development of
the main urban area started earlier in 1992, while the development of the administrative
regions lagged behind and were not started until 2004.

Urban expansion processes left distinct time stamps on the map since all new built-ups
developed in a given year have left a fixed year stamp (Figure 1c). The annual changes of
the expanded urban areas described above also effectively depict the frequency distribution
of built-up age cohorts (Figure 3). It can be seen that the most dominant age cohorts
were from 3 to 9 years old, accounting for 38.69% of the newly developed urban areas
since 1985; age cohorts from 21 to 30 accounted for just a small proportion of 7.70%; the
built-ups whose age could not be tracked with the available data (i.e., developed before
1985) accounted for 27.99%. Spatially, built-ups in the city demonstrated distinct spatial
agglomerations by age (Figure 1c). Old age cohorts were mainly concentrated in the urban
core area but also spread to the outside along traffic lines, while young built-up cohorts
were mainly distributed on the periphery of the main urban area and in suburban and
rural areas.

3.2. LST Changes along the Chronosequence of Built-Up Age Cohorts

Three major observations can be made from the LST changes along the chronosequence
of built-up age cohorts (Figure 4). First, LST anomalies of different built-up age cohorts
varied greatly in a given year. Overall, the mean LST anomalies varied between 2.92 ◦C (the
highest at age cohort 22) and −2.80 ◦C (the lowest at age cohort 28) during the study period.
Second, LST did not denote a generally upward or downward trend along the built-up age
chronosequence, suggesting the nonexistence of a tendency toward LST change along the
chronosequence; therefore, we failed to reject Hypothesis (3). Third, a temporal stability
in the LST patterns along the chronosequence (i.e., consistently high or low LST for some
fixed built-ups) was present. This was manifested by the relatively stable ranking orders of
the LST anomalies of the age cohorts across years and the small interannual variation of
the ranks for each cohort (Table A1). Age cohort 22 ranked first consistently through all the
years of the LST anomaly, followed by age cohorts 34 and 21. At the bottom of the ranking
order were age cohorts 28 and 29. Ambiguity existed in the order of a few age cohorts (e.g.,
between cohorts 24 and 26, among cohorts 19, 27, and 33) due to small LST differences
among them. Nevertheless, the ambiguity was local as the largest 95% confidence intervals
of the ranks for the cohorts were ±1, which facilitates the capacity to confuse orders with
the ranked neighboring age cohorts but is not enough to change the strong presence of the
overall stability in the LST patterns observed along the chronosequence.

3.3. LST Change with Built-Up Age

Results for the dependence of LST on age are shown in Table A2. Among the 20 built-
up age cohorts analyzed, only 25% of cohorts showed a significant dependence of LST on
age (p < 0.05) when the Dafang Ying reservoir was used as the reference, and the number of
cohorts showing significant age dependence reduced to 5% when the Dashushan reservoir
was used as the reference. The results indicate that the temporal change in most cohorts
did not show significant age dependence.
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3.4. Relationships between LST Change and Driving Factors

At the cohort level, landscape factors (i.e., NDVI, AI, area mean, LSI, NP, PD) and
human impact indicators (i.e., night light) were significantly correlated with LST anomalies
(p < 0.05), while there was no correlation with physical factors (i.e., albedo, building density,
floor area ratio) (p > 0.05) (Figure 5). Coefficients of linear regression were used to indicate
the impact of the variables on LST anomalies. These factors that had a significant positive
impact included Area mean_is (1), PD_green (0.838), NP_green (0.838), Night light (0.804),
LSI_green (0.787), and AI_is (0.768). NDVI (−1.049), AI_green (−0.981), LSI_is (−0.967),
NP-is (−0.965), PD_is (−0.965), and Area mean_green (−0.659) had a significant negative
impact individually.

3.5. Urban Development Intensity (UDI) and the Sensitivity of LST to UDI

The LST increased significantly (p < 0.01) with rising UDI in every year from 2000 to
2019, and the increasing rate, representing LST sensitivity to UDI, varied significantly from
0.255 ◦C per 0.1 UDI to 0.818 ◦C per 0.1 UDI (Figure A2). Surprisingly, the LST sensitivity
to UDI showed a trend of undulating upward from 2000 to 2019 (Figure 6a), which rejects
Hypothesis (2), which states that the impact of UDI on LST did not change over time. This
indicates that LST was increasingly more sensitive to UDI over time.
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4. Discussion
4.1. Temporal Stability of the Spatial Pattern of LST

A few studies have attempted to investigate the impact of urban age on LST by
studying the LST difference between new and old urban areas [75–77], but none, to our
knowledge, have used the chronosequence approach demonstrated in this study. Our
chronosequence analysis yielded several important results. One of the main findings was
that the patterns of annual LST anomalies along a chronosequence of built-up age cohorts
remained stable across years. This phenomenon can also be interpreted as the temporal
stability of the spatial pattern of LST since there is a unique age–location relationship for
built-up age cohorts.

The temporal stability of the spatial pattern of LST may be related to human activities,
the spatial distribution of different built-up age cohorts, ground features, and the shape or
size of the landscape patches in different construction periods. First, human activities could
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lead to land use transitions [78] and have varying warming effects on different built-up
areas. Night light is an effective indicator of human activities [36], and the pattern of its
anomaly along the built-up age cohorts chronosequence was very similar to that of the LST
anomaly (Figure A3), probably suggesting a strong influence of human activities on the
LST anomaly. This finding is consistent with the results of some previous studies on the
relationship between nighttime lighting and UHI [79–81]. In addition, the built-up areas of
some age cohorts with high LST were dominated by parks, highways, and industrial and
residential areas. Other studies have also suggested that areas with dense population [8],
human activities [49], and commercial activities [44] would entail high LST.

Second, location exerts a strong impact on LST. Built-up age cohorts with the highest
(age cohort 22) and lowest (age cohort 28) LST anomalies may offer good opportunities to
discern the influence of location. Thiessen polygon analysis shows that age cohort 22 is
mainly concentrated in the main urban area, while age cohort 28 is mainly concentrated in
suburban and rural areas (Figure A4). In addition, the areas of age cohort 22 are mainly
distributed along the traffic lines, while the areas of age cohort 28 are mostly distributed
in the fringe areas of the city. These results imply that transportation density [82,83] and
urban structure [32,84] are influential factors in the spatial pattern of LST.

Third, the shape and size of built-up areas and surrounding green patches also have
impacts on the LST of different built-up age cohorts. Urban areas exhibit a variable LST
pattern that can be linked to albedo variations [85–87]; the increase in building density and
floor area ratio will also cause LST to rise with urban construction [61,88–90]. In contrast
to previous studies, our results show that landscape plays a leading role in determining
the LST pattern among built-up age cohorts (Figure 5). For example, the larger the patch
area of the impervious surface, the higher the degree of aggregation, and the more obvious
the warming effect. Similarly, the larger the patch area of vegetation and the higher the
degree of aggregation, the more significant the cooling effect, and all are in agreement
with the general observation that patch characteristics have a certain mitigation effect on
LST [27,91,92].

4.2. Space-for-Time Substitution Inadequate for Urbanization Study

Space-for-time substitution theory is widely used in a wide range of studies, including
the growth of trees [93], the evolution of community ecological processes [94], and the
impact of climate change on biodiversity [95]. It assumes that spatial and temporal relation-
ships between ecological phenomena and age are equivalent and is used to evaluate the
effects of man-made environmental changes on a variety of ecological processes [93,94,96].
However, there is no research on applying this theory to study the evolution of LST along
urbanization chronosequences. Our chronosequence analysis suggests that LST anomalies
along the age chronosequence did not show any upward or downward trend, which is
different from the significant temporal tendency found in the LST anomalies from a small
fraction of age cohorts. This difference demonstrates that the concept of “space-for-time
substitution” is not applicable to studying the relationship between LST and built-up age.
Future research should pay attention to the inadequacy of space-for-time substitution in
urbanization studies, and we call for more research to verify our results.

4.3. Temporal Change of Sensitivity of LST to UDI

Existing studies have mainly focused on the linear relationship between UDI and
LST [56] without exploring the temporal dynamics of the sensitivity of LST to UDI (mea-
sured by the slope). Our study is the first to address this issue using the proposed concept
of LST sensitivity to UDI. We found that the sensitivity more than tripled, increasing from
0.255 to 0.818 ◦C per 10% UDI during the study period. The result is unexpected and alarm-
ing as it indicates the temperature increase caused by the same amount of urbanization has
escalated more than three times in the past two years. Many factors affect the magnitude
of LST change, including albedo and NDVI [51,55,87,97]. According to our results, the
sensitivity of albedo to UDI did not show an increasing or decreasing trend (Figure 6c),
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suggesting that albedo might not be a major causative factor for the increased LST sen-
sitivity to UDI. On the other hand, the sensitivity of NDVI to UDI showed a significant
downtrend over time (Figure 6b), inversely mimicking the trend of LST sensitivity to UDI.
These mirror images may suggest that NDVI sensitivity change is the key driver of LST
sensitivity change over time. Many studies also indicate that urbanization poses negative
effects on the overall vegetation conditions, and NDVI has been reduced with rising UDI
for most cities in China [5]. Since there is a strong negative correlation between NDVI
and LST [98,99], the reduction of vegetation will weaken the cooling effect and cause an
increase in LST [97,100].

4.4. Limitations and Future Research

There are still some limitations in this study. The first is the study area, as we only
selected Hefei as a representative city, which is flawed in terms of the generalizability of
the study. However, the research methodology and analytical approach of this study are
generalizable, and the datasets used are representative and accurate enough to be replicated
in studies of other regions. Hefei, as a rapidly expanding city, is very similar to cities like
Shenzhen, Hangzhou, and Nanjing. Therefore, future researchers could choose some cities
with high urban development rates as the study area to verify our findings or expand the
study area to typical cities in China as well as select cities overseas for comparative studies.
Extending the time interval of studies could also enhance the timeliness of the research.

As for the limitation in the spatial resolution of data, in the summer when the urban
heat island effect is most obvious and there are a lot of clouds and rain, which affects
the image quality of Landsat, the continuous time series study cannot be carried out.
Therefore, the MOD11A2 product was adopted in this study, but the resolution of the
MOD11A2 image was 1 km × 1 km, and the image precision was not enough to conduct
more detailed research. This may result in the inability to capture micro-scale heat island
effects within cities, as the MOD11A2 product may smooth temperature variations within
urban areas. Future studies could combine the MODIS product with higher-resolution
satellite data or other remote sensing data to capture micro-scale heat island effects within
urban areas more accurately. This can be achieved through the use of additional sensors or
data fusion techniques.

5. Conclusions

To our knowledge, our research represents the first effort to study the evolution of
the relationships among built-up age, urbanization intensity, and LST. Major findings and
conclusions are as follows. First, LST in most urban areas does not change with age as
built-ups get older. A significant temporal tendency of LST was detected only in a small
fraction of urban areas. Second, no upward or downward trend was detected in LST along
a chronosequence of built-up age cohorts. However, strong temporal stability was found in
the LST pattern along the chronosequence, which indicates the presence of strong temporal
stability in the spatial pattern of LST. The temporal stability is likely related to human
activities, as implied by night light information. Third, unexpectedly and alarmingly, LST
sensitivity to UDI increased more than three times from 2000 to 2019, which might be
related to the increased NDVI sensitivity (absolute value) to UDI during the same period.
Lastly, the results of A and B challenge the applicability of space-for-time substitution
theory in urbanization studies.
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Table A1. The ranking orders and SD of the LST anomalies of 16 age cohorts in each year.

Age 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mode SE 95% CI

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 0
34 3 2 3 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.09 0
21 2 4 2 3 3 2 4 3 3 3 3 3 3 3 3 3 5 3 3 3 3 0.15 0
25 4 5 15 5 4 5 2 4 4 4 4 4 4 4 4 4 3 4 4 5 4 0.57 1
26 5 6 10 8 6 6 6 9 7 6 8 7 5 5 5 5 4 5 6 4 5 0.36 1
24 9 8 4 4 5 4 5 5 5 5 6 11 6 6 6 7 6 6 5 6 6 0.39 1
20 8 3 5 6 7 8 7 8 9 10 7 5 7 8 9 8 11 7 11 7 7 0.44 1
23 11 7 9 7 9 7 8 6 8 8 9 8 8 7 8 10 9 10 10 13 8 0.37 1
19 7 11 12 11 8 12 9 12 10 12 11 9 9 10 10 6 7 9 7 9 9 0.42 1
27 10 10 6 9 10 11 11 10 11 9 10 6 11 11 7 11 10 8 9 10 10 0.36 1
33 6 9 7 12 13 10 10 7 6 7 5 10 10 9 11 12 8 11 8 8 10 0.50 1
30 12 16 11 10 14 9 16 15 15 14 12 14 15 12 13 9 12 13 13 14 12 0.47 1
31 13 15 13 14 12 13 12 11 14 13 15 15 12 14 12 13 13 12 12 15 13 0.27 1
32 14 14 8 13 11 16 15 14 16 11 13 16 13 13 14 14 15 14 14 11 14 0.44 1
28 15 13 14 15 16 14 13 13 13 15 16 12 16 16 16 16 14 16 16 12 16 0.33 1
29 16 12 16 16 15 15 14 16 12 16 14 13 14 15 15 15 16 15 15 16 16 0.29 1
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Table A2. Trend analysis of annual mean temperature, in reference to those of Dafangying and
Dashu Mountain Forest Park, respectively. Slope, R2, and p-value were derived from linear regression
between LST and built-up age.

Dafangying Dashu Mountain Forest Park
Built-Up Age Slope p R2 Slope p R2

15 0.002 0.150 0.142 0.003 0.058 0.233
16 0.003 0.050 0.232 0.001 0.348 0.059
17 0.002 0.133 0.135 0.000 0.963 0.000
18 0.001 0.285 0.067 0.000 0.674 0.011
19 0.003 0.001 0.477 0.001 0.229 0.084
20 0.015 0.086 0.155 −0.001 0.325 0.054
21 0.017 0.071 0.170 0.000 0.684 0.009
22 0.020 0.044 0.206 0.002 0.225 0.081
23 0.015 0.093 0.149 −0.001 0.165 0.104
24 0.016 0.078 0.162 0.000 0.647 0.012
25 0.018 0.049 0.198 0.001 0.230 0.079
26 0.018 0.042 0.210 0.001 0.176 0.99
27 0.016 0.069 0.172 0.000 0.735 0.007
28 0.015 0.090 0.151 −0.001 0.303 0.059
29 0.015 0.083 0.158 −0.001 0.427 0.035
30 0.016 0.058 0.185 0.000 0.955 0.000
31 0.015 0.078 0.163 −0.001 0.407 0.038
32 0.015 0.075 0.165 −0.001 0.461 0.031
33 0.016 0.074 0.166 −0.001 0.418 0.037
34 0.020 0.038 0.219 0.002 0.017 0.279
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