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Abstract: Crop mapping using satellite imagery is crucial for agriculture applications. However, a
fundamental challenge that hinders crop mapping progress is the scarcity of samples. The latest
foundation model, Segment Anything Model (SAM), provides an opportunity to address this issue,
yet few studies have been conducted in this area. This study investigated the parcel segmentation
performance of SAM on commonly used medium-resolution satellite imagery (i.e., Sentinel-2 and
Landsat-8) and proposed a novel automated sample generation framework based on SAM. The
framework comprises three steps. First, an image optimization automatically selects high-quality
images as the inputs for SAM. Then, potential samples are generated based on the masks produced
by SAM. Finally, the potential samples are subsequently subjected to a sample cleaning procedure
to acquire the most reliable samples. Experiments were conducted in Henan Province, China, and
southern Ontario, Canada, using six proven effective classifiers. The effectiveness of our method is
demonstrated through the combination of field-survey-collected samples and differently proportioned
generated samples. Our results indicated that directly using SAM for parcel segmentation remains
challenging, unless the parcels are large, regular in shape, and have distinct color differences from
surroundings. Additionally, the proposed approach significantly improved the performance of
classifiers and alleviated the sample scarcity problem. Compared to classifiers trained only by field-
survey-collected samples, our method resulted in an average improvement of 16% and 78.5% in
Henan and Ontario, respectively. The random forest achieved relatively good performance, with
weighted-average F1 of 0.97 and 0.996 obtained using Sentinel-2 imagery in the two study areas,
respectively. Our study contributes insights into solutions for sample scarcity in crop mapping and
highlights the promising application of foundation models like SAM.

Keywords: crop mapping; automated sample generation; medium-resolution satellite imagery;
machine learning

1. Introduction

Accurate and timely crop mapping can provide basic data for agricultural applications,
such as crop growth monitoring, yield prediction, and decision-making processes [1,2]. Tra-
ditionally, obtaining crop distribution information involves farmers self-reporting and
ground surveys, which are labor-intensive and costly [3]. In recent years, medium-
resolution satellite imagery, such as Sentinel-2 and Landsat-8, has been widely employed
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in crop mapping due to their high spatial and temporal resolution, in conjunction with
supervised classification algorithms [1,4–6]. However, developing a robust and efficient
model is challenging because of the difficulty of collecting sufficient crop samples [7].
Therefore, it is important to find solutions to collect abundant training samples.

There are two commonly used methods for crop sample collection. The first one is
collecting training samples from available crop mapping products, which can save efforts
for fieldwork [5,8,9]. For example, Wen et al. [6] extracted representative samples from
the Cropland Data Layer (CDL) to map the corn dynamics in the main corn districts of
the United States. However, existing products are developed by classification algorithms,
inevitably containing misclassification and uncertainties [10]. Additionally, these products
only cover specific crop types and certain regions, potentially excluding the crops and
research areas of interest. Their releases also often exhibit a time lag, making it challenging
to use them for real-time crop mapping [11].

Another sample collection approach is through field surveys. Although samples col-
lected through field surveys are highly reliable, it is difficult to gather sufficient samples
due to factors such as adverse weather, safety concerns during outdoor sampling, and
associated costs [12,13]. One solution to this problem is to generate training samples based
on the Tobler’s First Law of Geography, which posits that neighboring pixels are likely to
belong to the same type [14]. For example, Liu et al. [15] generated samples by extracting
neighboring pixels within a 5 × 5 region based on field-collected samples, yet the selection
of different region size may lead to overestimation or underestimation. Generating samples
from the corresponding crop parcels is a better choice. For instance, Zhou et al. [16] utilized
object-based multiscale segmentation to extract parcels from 2.1 m ZY-3 imagery, achieving
effective sample generation and deep learning model training. Nevertheless, this segmenta-
tion method for crop parcels requires extensive parameter adjustments and exhibits limited
performance on medium-resolution imagery, whereas high spatial resolution imagery is
typically commercial and entails additional costs [17]. Additionally, developing segmenta-
tion models tailored specifically for crop parcels necessitates a substantial amount of parcel
boundary data, which is not conducive to large-scale and efficient applications [18]. Fortu-
nately, recent advancements of foundation models in the computer vision (CV) community
have provided a promising solution to address these issues.

Most recently, Meta AI released their CV foundation model, i.e., Segment Anything
Model (SAM), which is a groundbreaking achievement and powerful tool for image seg-
mentation [19]. SAM was trained over a large dataset containing one billion masks and
more than 11 million images. Massive training data provide SAM with impressive zero-shot
generalization ability, making it possible to be applied to images and objects that it has
never seen before. SAM can perform object segmentation on unseen images based on input
prompts such as points and bounding boxes, without the need for prior knowledge of the
object class [20]. Considering that crop samples collected by field surveys naturally possess
a “point” attribute, SAM offers an opportunity for efficient crop parcel segmentation by
receiving samples as point prompts. A few studies have already explored how SAM can be
applied to satellite imagery. Wang et al. [21] developed an efficient method based on SAM
to create a large remote sensing semantic segmentation dataset, and their research pro-
vides an excellent paradigm for automated annotation of satellite remote sensing imagery.
Chen et al. [22] developed an automated instance segmentation approach for remote sens-
ing images based on SAM and incorporating semantic category information. Their method
proved to be effective for ship and building detection. Although several studies [23,24]
have evaluated the performance of SAM in crop segmentation, they mainly focused on
high spatial resolution imagery and individual crop plants. Currently, there is a lack of
assessment of SAM’s performance in parcel segmentation using medium spatial resolution
imagery, primarily Sentinel-2 and Landsat-8. Additionally, there is a deficiency in eval-
uating SAM’s performance under different planting patterns. Exploring the application
of SAM on medium-resolution images remains highly significant, as continued iterations
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and advancements in visual foundational models will enhance their capabilities, thereby
assisting in agricultural remote sensing research and applications.

Given the aforementioned problems, using medium-resolution satellite imagery
(Sentinel-2 and Landsat-8), this study investigated the qualitative performance of SAM
with single point prompts on parcel segmentation and proposed a novel automated sample
generation method based on SAM to collect sufficient samples for crop mapping. The
method contained three steps: image optimization, mask production, and sample cleaning.
Image optimization automatically selected an optimal image as the input for SAM, then
potential samples were generated through the mask produced by SAM. Finally, we applied
a filtering approach to clean the potential samples for deriving the most reliable samples.
To verify the effectiveness of our method, Henan Province of China and southern Ontario
of Canada were chosen as our study areas, as they represent areas with different kinds
of agricultural parcels. To evaluate the effectiveness of the generated samples, six widely
used crop mapping classifiers were selected. This study provides insights into solutions to
sample scarcity and the application of SAM, offering valuable references for future research
in the context of foundation models.

2. Study Areas and Datasets
2.1. Study Areas

We chose Henan Province of China and southern Ontario of Canada as our study areas
because crop parcels in these two places have different characteristics. Henan Province
has climate conditions ranging from continental monsoon to warm temperate. Winter
wheat and winter garlic are the main crop types in Henan. Winter wheat accounts for more
than 50% of the total cultivated area within the province and contributes to approximately
25% of the national wheat production. Consequently, Henan plays an important role in
Chinese food security protection. Winter wheat and winter garlic have similar phenological
characteristics and are generally sown in October and harvested in late May to June of the
following year. Unlike North America, most crop production in Henan is implemented
by smallholder farmers, resulting in a relatively small and fragmented nature of the crop
parcels, making it challenging for crop identification [13,25,26].

Southern Ontario of Canada is a part of the Mixedwood Plains Ecozone and an
important crop planting region (Figure 1b). It has a temperate continental humid climate.
The main crop types in this region are soybean, corn, and winter wheat [27]. Soybean and
corn are usually seeded in April and May, ripened in September, and harvested in October.
By contrast, winter wheat is usually seeded in autumn from October to November, matured
and harvested from June to August the following year. Agriculture in North America is
mainly a large-scale commercial agriculture with high levels of mechanization, leading to
mostly regular-shaped and large-sized parcels [26,28].

2.2. Medium-Resolution Satellite Imagery

Given the long temporal span of Landsat satellites since 1970s and the higher spa-
tial and temporal resolution of Sentinel-2, they are the two most widely used medium-
resolution satellite imagery platforms for crop mapping [8,29]. Therefore, we selected
Sentinel-2 and Landsat-8 images as the satellite data sources for our research.

Preprocessed products of Sentinel-2 and Landsat-8 are archived in the Google Earth
Engine (GEE) platform, allowing users to access them conveniently and free of charge [30].
According to the sample collection time, we obtained Sentinel-2 orthorectified surface
reflectance products with cloud cover lower than 10% from GEE for Henan from October
2019 to June 2020, and for southern Ontario from the entire year of 2019. Since the training
data of SAM primarily comprise RGB composite images and to align with the requirements
of our designed sample generation method, we utilized the red, green, blue, and near-
infrared bands of Sentinel-2.
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Figure 1. Study areas and collected samples distributions. (a) Henan Province of China, Sites A–E 
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represent regions dominated by crops. Sites C, D exhibit interference from buildings and rivers. (b) 
Southern Ontario of Canada, Sites F–J indicate selected regions for mapping validation. Sites G, J, I 
involve disturbances like forests. Sites F, J contain uniformly shaped parcels and a wide distribution 
of crops. 
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Figure 1. Study areas and collected samples distributions. (a) Henan Province of China, Sites A–E
indicates selected regions for mapping validation. Site A represents mountainous regions. Sites B,
E represent regions dominated by crops. Sites C, D exhibit interference from buildings and rivers.
(b) Southern Ontario of Canada, Sites F–J indicate selected regions for mapping validation. Sites G, J,
I involve disturbances like forests. Sites F, J contain uniformly shaped parcels and a wide distribution
of crops.

Similar to Sentinel-2 acquisition but considering the longer revisit time of Landsat-8,
which is 16 days compared to 5 days of Sentinel-2, resulting in lower data availability,
we derived the Landsat-8 corrected surface reflectance products with cloud cover lower
than 30% from GEE covering the same periods for study areas. Red, green, blue, and near-
infrared bands were also selected for experiments. All Sentinel-2 and Landsat-8 images
were reorganized into 10 km × 10 km blocks [31].
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2.3. Ground Truth Samples

The ground truth samples used in this study for Henan were collected from 7–21
December 2019, through field surveys using global positioning system [32]. The samples
included the main crop types of Henan (i.e., winter wheat and winter garlic) and other
land-cover types (e.g., forests and buildings). To ensure the credibility of the samples, we
performed a secondary verification for samples using visual interpretation through Google
Earth. The number of final selected samples (Figure 1a) can be seen from Table 1.

Table 1. The types and numbers of collected samples used in two study areas.

Study Area Class Numbers

Henan Province
Winter wheat 1044
Winter garlic 860

Others 290

Ontario

Soybean 165
Corn 216

Winter wheat 38
Others 141

As for southern Ontario, we obtained ground truth samples in 2019 from the Annual
Crop Inventory Ground Truth Data [33]. The samples are collected via crop insurance
data and windshield surveys by Agriculture and Agri-Food Canada (AAFC). We selected
soybean, corn, and winter wheat as three classes of interest and assigned an others label
to other crops. To test the performance of our sample generation method, we only chose
samples from three 10 km × 10 km blocks (Figure 1b). Ultimately, the number of samples
is shown in Table 1. It is worth noting that the samples collected by AAFC do not include
non-crop types such as buildings and forests. The selection of our mapping regions aims to
examine the impact of this omission.

3. Methodology

This paper performed crop mapping with a novel automated sample generation
method based on SAM for medium-resolution satellite imagery (Figure 2). First, a sample
generation framework based on SAM was designed, including three steps: image opti-
mization, mask production, and sample cleaning, to generate more training samples. Next,
the generated samples were fed into classification models to check if they can improve
the accuracy. Then, we conducted crop mapping in selected typical regions of Henan
and Ontario with the trained models. The parcel segmentation performance of SAM on
Sentinel-2 and Landsat-8 was analyzed. Meanwhile, the effectiveness of the proposed
sampling method was demonstrated by comparing the performance of models trained on
field-survey-collected samples and generated samples. The details of each component are
presented in the following figure.

3.1. Automated Sample Generation Based on SAM

Considering the Tobler’s First Law of Geography, which indicates that the pixels
within the same crop parcels are highly likely to belong to the same type of crop, this study
proposed an automated sample generation framework based on SAM relying on field-
survey-collected samples to generate more training samples. SAM was used for extracting
the parcel where the collected sample was located. Due to few explorations of using SAM
directly on medium-resolution satellite imagery, we intended to use time-series information
of satellite images as auxiliary data. Therefore, we employed a variant of the Dynamic Time
Warping (DTW) algorithm and a similarity index to set a threshold for filtering the potential
samples, resulting in a refined set of reliable samples. The procedure of the approach is
illustrated in Figure 3, and the following sections provide a thorough description.
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3.1.1. Image Optimization

To automate the sample generation process, we did not tend to manually select
the input image for SAM. We implemented an automated image selection within the
10 km × 10 km blocks where the samples are located. There exist incomplete images and
cloudy images that cannot provide the entire parcel information (Figure 3a). If these images
are inputted into SAM, the segmentation of the parcels becomes difficult. Therefore, we
automatically performed statistics of cloudy and invalid pixels for all images within the
block using the quality bands of Sentinel-2 and Landsat-8. Subsequently, we selected images
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with the least problematic pixels as the optimal images. Furthermore, considering sizes of
parcels in medium-resolution imagery and computational efficiency, it is unnecessary to
input the whole optimal image into SAM. Thus, we cropped a patch of 200 × 200 centered
around each sample as the input to SAM (Figure 3b). If a sample is located near the
boundary, the cropping range is adaptively adjusted to extract only the portion containing
valid data.

3.1.2. Mask Production

SAM is a foundation model to unify the whole image segmentation task [19]. The
structure of SAM (Figure 4) mainly consists of three parts: an image encoder, a prompt
encoder, and a mask decoder. The most important aspects for users are the prompt settings
and the three mask outputs with confidence scores. SAM can receive points, boxes, and text
forms of prompts for segmentation, among which point prompt is particularly well suited
for field-survey-collected samples that contain coordinate and attribute information. There-
fore, point prompt was adopted for our method. Additionally, although SAM generally
outputs Masks 1–3 with increasing confidence scores, a higher score does not necessarily
indicate better results in satellite image segmentation. This phenomenon is demonstrated
in Section 4.1. We selected only Mask 1 as the candidate region for generating samples
(Figure 3b).
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3.1.3. Sample Cleaning

Based on field-survey-collected samples and SAM, we can generate parcel masks,
which represent the candidate regions for potential samples. However, two reasons hinder
the direct usage of these potential samples: (1) The parcel segmentation performance
of SAM on medium-resolution satellite imagery is questionable and requires evaluation,
leading to possible errors in masks generated. (2) Candidate regions may not only consist
of the crops of interest, because there may be cultivating other types of crops. Therefore, it
is important to introduce a sample cleaning approach to acquire reliable samples out of
these potential samples. The time-series normalized-difference vegetation index (NDVI) is
widely applied for crop sample cleaning, as it can reflect the growing trajectories and canopy
characteristics of different crops [4,5]. Thus, we took the time-series NDVI extracted from
all available satellite images at the field-survey sample location during each generation
iteration as the reference curve for sample cleaning (Figure 3c). We chose not to use
any smoothing method to preprocess the reference curve during sample cleaning. While
smoothing can eliminate potential noise, it can also unintentionally remove some inherent
features of the curve, and some features are quite sensitive [34]. We intended to retain the
potential samples that closely resemble the reference curve of the actual sample. The gaps
caused by cloud and invalid data on the timeline were filled by linear interpolation.

Some studies tended to use mean, standard deviation, and simple distance for curve
similarity measuring [5,6]. However, these methods can lead to filtering out of curves that
exhibit shifts due to variations in sowing time. In addition, simple distance-based methods
would also lead to identification failure of the dynamic change of the tendency [35]. In
this study, we adopted a variant of DTW, i.e., FastDTW [36]. DTW employs a dynamic
programming approach to calculate the minimum distance between two curves. It accom-
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modates variations in the time dimension by warping the sequences through stretching or
shrinking [37]. FastDTW can execute DTW with higher efficiency, making it possible to be
implemented in large scales. We defined a similarity index (SI) to set thresholds for sample
cleaning according to the distance calculated by FastDTW. The SI equation is as follows:

SI =
1

1 + distance
(1)

SI can indicate the similarity between curves, where a value closer to 1 signifies a
higher degree of similarity. Due to the lower spatial resolution of Landsat-8, the issue of
mixed pixels is more pronounced. To ensure the credibility of generated samples, a higher
SI is set for Landsat-8 compared to Sentinel-2. We set SI to 0.7 and 0.9 for Sentinel-2 and
Landsat-8, respectively.

3.2. Classification with Generated Samples

Generating additional training samples theoretically increases the diversity of the
dataset, allowing the model to learn richer features and improving its performance. We
designed experiments to demonstrate that the samples generated through our method can
enhance the performance of classification models.

3.2.1. Samples Division

To ensure the credibility of the experiment, it is crucial to guarantee the independence
of the test set. We randomly extracted a portion of field-survey-collected samples from
two study areas, in a 1:1 ratio, to form the test set (Figure 5a). The number of samples
in the test set can be seen in Table A3. This test set remained separate from the sample
generation process and was solely utilized for evaluating the accuracy of the model. The
rest of the collected samples went through the proposed sample generation method. To
explore the reliability of the generated samples, we divided the rest of the collected samples
and generated samples into three sample repositories. Specifically, the first repository,
namely collected repository, consisted of the remaining field-survey-collected samples that
were not chosen for the test set. The SAM repository only contained samples generated by
our sample generation method. The third repository, composite repository, represented
all samples from the above two repositories. Each repository was randomly divided into
training and validation sets in a 4:1 ratio. In addition, we also sequentially randomly
selected 10%, 30%, 50%, 70%, and 90% of the samples from the SAM repository and added
them to the samples from the collected repository. Through observing the changes in model
accuracy, we could validate the effectiveness of our method.
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Figure 5. The demonstration of the classification process. (a) Sample division that divides samples
into a test set and three repositories. (b) Classification models used in this study.
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3.2.2. Model Establishment

To validate the reliability of the generated samples, we applied six widely used models
for crop mapping, including three machine learning models: random forest (RF), support
vector machine (SVM), and k-nearest neighbors (KNN), as well as three deep learning
models: attention-based bidirectional long short-term memory (AtBiLSTM) [38], Conv1d-
based [39], and transformer [40] (Figure 5b). It is worth noting that the focus of this study
is on evaluating the parcel segmentation performance of SAM on medium-resolution
satellite imagery and the effectiveness of our sample generation method, hence no tricks
and parameter tuning for models were employed. Our primary concern lies in whether the
samples generated by our approach can improve the accuracy and mapping performance of
the models. As a result, for machine learning algorithms, we utilized the default parameters
provided by the scikit-learn library [41]. As for deep learning algorithms, we referred to
the parameters of the above studies, and train and validation sets were used for selecting
the best model in 100 epochs, and test set for testing accuracy. All models were trained on a
server of CentOS Linux 7.9 with an Intel Xeon Gold 6326 CPU and an NVIDIA A100 GPU.
During the classification stage, we generated the complete time-series curves with fixed
time intervals for each pixel. Specifically, we used a 5-day interval for Sentinel-2 time series
and a 16-day interval for Landsat-8 time series. We used models trained on three different
sample repositories to perform predictive mapping on typical regions of the study areas.

3.2.3. Accuracy Evaluation

We used the weighted-average F1 (W-F1 for short) to evaluate the performance of each
model. The W-F1 assigns different weights to per-class F1 considering the actual percentage
of occurrences of each class in the dataset. The W-F1 takes into account class imbalance and
combines producer’s accuracy (PA) and user’s accuracy (UA), providing a comprehensive
evaluation of the multiclass classification models [42,43]. Per-class F1 was used for the
evaluation of each crop type. Additionally, kappa coefficient is used as a supplement [44].
The equations used for the indicators are as follows:

F1 =
2 × (PA × UA)

PA + UA
(2)

Weighted − average F1 =∑ pk × F1k (3)

Kappa coefficient =
p0 − pe

1 − pe
(4)

where k denotes the type of the crop, and p indicates the number of actual occurrences of
the class in the dataset. P0 represents the proportion of correctly classified samples out of
the total number of samples, while Pe denotes the expected accuracy calculated as the sum
of the products of the actual and predicted sample numbers across all categories, divided
by the square of the total number of samples.

4. Results
4.1. The Performance of SAM on Parcel Segmentation

By default, SAM outputs three masks in sequence (i.e., Masks 1, 2, and 3) with
confidence scores, where scores give the model’s own estimation of quality. Generally, a
higher score indicates a better result for natural images used in the CV community, but
this may not hold true for parcel segmentation using medium-resolution satellite imagery.
We selected cases of Sentinel-2 in two study areas to demonstrate this situation (Figure 6).
As the score increased, the results from SAM became worse, and it may even misclassify
the entire image as the target. We found that regardless of scores, the first mask outputted
by SAM on medium-resolution satellite imagery, namely Mask 1, demonstrated relatively
better performance because Mask 1 normally represents the subpart that is closer to the
parcels where the samples are located [19]. Therefore, the mismatch between score and
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performance, as well as the relatively better performance of Mask 1, were the reasons for
only using Mask 1 in Section 3.1.2.
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Figure 6. The outputs of SAM with confidence scores using Sentinel-2 images in Henan and Ontario.
The first column in (a,b) represents RGB composite images of Sentinel-2. The second to fourth
columns represent the masks outputted by SAM with scores. Green regions in (a) and red regions in
(b) denote the mask produced by SAM.

Several typical patches of Mask 1 in two study areas were also chosen for further
analysis. Results in Henan exhibited subpar performance both on Sentinel-2 and Landsat-
8 images (Figure 7). The parcels in Figure 7A,D are relatively regular and well defined,
demonstrating relatively good performance of SAM on both types of imagery. However, the
performance sharply declined when the parcels were irregular or had unclear boundaries
(Figure 7B,C). The results even exhibited salt-and-pepper noises, rather than being complete
and connected. Moreover, the disadvantage of Landsat-8 with a lower spatial resolution was
clear in Figure 7B. Field-survey samples are typically collected near roads for convenience
rather than at the center of parcels. This may cause samples to shift to road pixels in coarse-
resolution imagery. Consequently, the results may identify roads instead of parcels. As
for buildings, the performances of SAM on Sentinel-2 and Landsat-8 were both acceptable
(Figure 7E), which may be attributed to the distinct texture and color differences between
buildings and the surrounding parcels.

In Ontario, the results were significantly better compared to results in Henan (Figure 8).
This can be attributed to the larger and more regular parcel patterns in Ontario, which
makes it easier for SAM to recognize. Figure 8A,D,F represent the results of rectangular-like
parcels. It can be observed that although results on Sentinel-2 imagery consistently outper-
formed those on Landsat-8 imagery, SAM performed well on both Sentinel-2 and Landsat-8
images. Figure 8B,C represent small and irregular parcels in the region, respectively, and
SAM also derived satisfactory results. One of the cases where SAM did not achieve satisfac-
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tory results is illustrated in Figure 8E, representing parcels adjacent to forests. The results
of SAM on Sentinel-2 and Landsat-8 images both extend beyond the actual boundaries of
the parcels, reaching into the adjacent forest areas.
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Figure 8. A few typical cases of SAM in Ontario. (A–F) indicates the patches chosen for further
analysis. S2 indicates results based on Sentinel-2 images. L8 indicates results based on Landsat-8
images. Red regions denote the mask produced by SAM.

4.2. The Generated Samples and Analysis

A large number of samples in both Sentinel-2 and Landsat-8 imagery can be generated
based on the proposed sample generation method (Table 2). The number of generated
samples was dependent on the collected sample quantity. Compared to the collected
samples, the highest number of generated samples was observed in winter wheat, with a
total of 8.5 times more samples generated using Landsat-8 in Henan. Others generated the
lowest number of samples both in Henan and Ontario, with 368 using Sentinel-2 and 151
using Landsat-8, respectively. While the number of generated samples for the others class
was multiplied compared to its original samples, it remained significantly lower than the
various crops within the same region and data source.
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Table 2. The types and numbers of generated samples with Sentinel-2 (S2) and Landsat-8 (L8) in two
study areas.

Study Area Class Collected
Samples

Generated
Samples (S2)

Generated
Samples (L8)

Henan Province
Winter wheat 522 8141 76,688
Winter garlic 430 1691 6513

Others 145 368 1257

Ontario

Soybean 83 9996 2881
Corn 108 15,897 2922

Winter wheat 19 526 452
Others 70 1757 151

We also selected patches to further analyze the sample cleaning process (Figures 9 and 10).
Overall, our method achieved the desired objectives in both Henan and Ontario: generating
training samples that are the closest to the reference samples. In addition, the comparison
of the results between Figure 9, L8 and Figure 10, L8 also explains the aforementioned
imbalance in the number of generated samples between Sentinel-2 and Landsat-8 in Henan
and Ontario. It can be observed that the number of Landsat-8 time-series images in Henan
was less than half of the quantity in Ontario. This lack of temporal information naturally
posed challenges for sample cleaning.

In Henan, there were cases where no or only a few samples were generated (Figure 9A,B,E).
On the one hand, we set high SI values for high demand. On the other hand, in Figure 9B,
the potential samples themselves were erroneous due to the incorrect results using Landsat-
8. In the case of Figure 9E, as mentioned above, buildings lack standardized time-series
patterns, making it difficult to retain corresponding samples after sample cleaning. As
for situations in Figure 9B,C, they aligned with our desired outcome of generating more
samples based on the reference samples.

In Ontario, the results were consistent with the previous findings that Sentinel-2
outperformed Landsat-8 in sample generation. In Figure 10B represents a soybean sample,
but exhibits a bimodal curve, which can be attributed to crop rotation practices. Similarly,
Figure 10D represents winter wheat and shows a unimodal curve, but crop rotation can
also result in bimodal curves. Such crop rotation introduces challenges and ambiguities to
the representativeness of generated samples.

4.3. Classification with Generated Samples

We trained models by gradually adding different proportions of generated samples
to the collected samples in order to validate the effectiveness of generated samples in
improving accuracies (Figure 11). Overall, as the number of generated samples were con-
tinuously added, the W-F1 of all models showed a consistent improvement until reaching
a stable level. For each model in two study areas, the W-F1 obtained by using Sentinel-2
was higher than that obtained by using Landsat-8 when reaching stability. The fluctuation
of AtBiLSTM was more pronounced compared to other models, especially when 50% and
70% of generated samples were added. This can probably be attributed to the fact that
AtBiLSTM had not reached convergence and can ingest more samples. Nevertheless, our
sample generation method demonstrated a significant enhancement in accuracy compared
to only using collected samples.
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Figure 9. Demonstration of the sample cleaning method based on FastDTW in Henan. (A–E) indicates
the patches chosen for further analysis, corresponding to Figure 7. S2 indicates results based on
Sentinel-2 images. L8 indicates results based on Landsat-8 images. Green regions denote the mask
produced by SAM. The red line denotes the curve of reference sample.
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Figure 10. Demonstration of the sample cleaning method based on FastDTW in Ontario. (A–E) indi-
cates the patches chosen for further analysis, corresponding to Figure 8. S2 indicates results based
on Sentinel-2 images. L8 indicates results based on Landsat-8 images. Red regions denote the mask
produced by SAM. The red line denotes the curve of reference sample.
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Figure 11. Changes of weighted-average F1 with increasing number of generated samples adding to
the collected samples in each model.

The W-F1 of each model trained on different repositories is shown in Tables 3 and 4.
The number of samples in each repository can be seen in Table A3. All classification models
achieved significant improvement through our sample generation approach compared with
only using field-survey-collected samples. Even in most cases, models trained only using
generated samples achieved higher accuracy compared to models trained on collected
repository. In Henan (Table 3), among experiments with composite repository, the highest
W-F1 was 0.970, which was achieved via RF with Sentinel-2 images. The lowest W-F1 was
acquired through AtBiLSTM with Landsat-8 images. In Ontario (Table 4), more significant
results were achieved. RF with Sentinel-2 images even obtained a W-F1 of 0.996. These
good results could be attributed to the relatively limited number of collected samples
available in Ontario and the presence of large and regular-shaped agricultural parcels that
can facilitate the performance of our sample generation method. The kappa coefficient of
each model trained on different repositories can be seen in Tables A1 and A2. The kappa
coefficient and the W-F1 score illustrated similar results.

Table 3. Weight-average F1 scores of classifiers on different repositories and satellite images in Henan.
The bolded values indicate the best accuracy of the model across different sample repositories.

Model Satellite Collected
Repository

SAM
Repository

Composite
Repository

RF
S2 0.840 0.930 0.970
L8 0.770 0.909 0.963

SVM
S2 0.796 0.909 0.921
L8 0.829 0.858 0.883

KNN
S2 0.722 0.868 0.917
L8 0.831 0.868 0.904

AtBiLSTM
S2 0.843 0.793 0.904
L8 0.783 0.853 0.859

Conv1d-based
S2 0.714 0.880 0.915
L8 0.665 0.823 0.870

Transformer
S2 0.758 0.847 0.949
L8 0.799 0.859 0.920
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Table 4. Weight-average F1 scores of classifiers on different repositories and satellite images in Ontario.
The bolded values indicate the best accuracy of the model across different sample repositories.

Model Satellite Collected
Repository

SAM
Repository

Composite
Repository

RF
S2 0.822 0.900 0.996
L8 0.679 0.872 0.946

SVM
S2 0.245 0.850 0.942
L8 0.357 0.749 0.797

KNN
S2 0.293 0.720 0.945
L8 0.568 0.785 0.865

AtBiLSTM
S2 0.780 0.763 0.968
L8 0.668 0.674 0.797

Conv1d-based
S2 0.775 0.932 0.979
L8 0.691 0.849 0.913

Transformer
S2 0.733 0.872 0.989
L8 0.594 0.811 0.925

We also analyzed the relative growth achieved by the models using composite repos-
itory compared to using only the collected samples (Figure 12). In Henan, based on
Sentinel-2 and Landsat-8, an average increase of 20% and 16% was achieved, respectively.
The Conv1d-based model achieved the highest increase on both Sentinel-2 and Landsat-8.
SVM, KNN, and transformer showed much greater increases on Sentinel-2 compared to
their increases on Landsat-8. In Ontario, based on Sentinel-2 and Landsat-8, an average
increase of 102% and 55% was achieved, respectively. Significant increases were observed
in SVM and KNN, particularly with Sentinel-2 imagery. In comparison, AtBiLSTM showed
relatively smaller increases in performance. Overall, the generated samples tended to have
a larger impact on models based on Sentinel-2.
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collected samples.

The accuracy of each model in predicting crop types was also analyzed across different
repositories. In Henan (Figure 13), based on Sentinel-2 imagery, all crops achieved the
best accuracy with the composite repository. Only AtBiLSTM exhibited lower accuracy in
identifying winter wheat and others classes when using the SAM repository compared to
the collected repository. The situation is similar for Landsat-8, as in most cases, models
based on the composite repository achieved higher accuracy. In Ontario (Figure 14), most
crops also demonstrated higher accuracy with the composite repository compared to the
collected repository. However, the results of SVM are worth noting. The SVM model
trained with the collected samples achieved W-F1 scores of 0 in the recognition test for
winter wheat and others. This could also be attributed to the relatively small number of
collected samples available in Ontario.
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4.4. The Crop Mapping Performance Analysis

We conducted crop mapping in representative regions of Henan and Ontario using
models trained on different repositories and satellite images. The results obtained from
the RF model, whose numerical accuracy was relatively high, were selected for qualitative
analysis. Results of other models can be found in the Supplementary Materials. In Henan
(Figure 15), as more generated samples were incorporated into models, the mapping
accuracy improved compared to using only the collected samples. Sites A and C represent
mountainous and urban areas, respectively. In Sentinel-2 imagery, it can be observed that
the misclassification of mountains and buildings as crops was reduced after incorporating
the generated samples. This improvement can also be observed in Site D of Landsat-8
imagery, in that the classification of crops has been enhanced in this region. However, the
performance of Sites A and C in Landsat-8 imagery was not satisfactory, as more places
of mountains and buildings were misclassified as crops with the injection of generated
samples. This could be attributed to the coarser spatial resolution of Landsat-8, which is not
conducive to the application in areas like Henan with small and fragmented crop parcels.
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In Ontario (Figure 16), due to larger and more regular parcels, the mapping perfor-
mance was better, and there was also an improvement in mapping with the injection of
generated samples. In Sites G and H of Sentinel-2, when using the collected repository,
RF reduced the misclassification of buildings and forests as crops. Considering that the
collected samples in Ontario do not inherently include buildings and forests, this improve-
ment is significant. However, Site J showed a relatively poor performance. In Landsat-8,
although the mapping performance was improved in Sites F, G, I, and J, similar to the
situation in Henan, there was an increase in the misclassification of buildings as crops with
the injection of generated samples (Figure 16, Site H). This misclassification is probably not
due to the samples themselves but rather the missing crucial temporal information in the
regional images because a number of images were filtered out when considering the cloud
cover factor in the beginning.
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5. Discussion
5.1. The Capability of SAM on Medium-Resolution Satellite Imagery

This study analyzed the parcel segmentation capability of SAM on medium-resolution
satellite imagery (Sentinel-2 and Landsat-8) in two study areas with different characteristics
of parcels. For small and fragmented parcels in Henan, SAM performed poorly, struggling
to achieve accurate results with well-defined boundaries even on Sentinel-2 with its higher
spatial resolution, not to mention Landsat-8 imagery. It exhibited difficulties in accurately
identifying the target parcels, and the results often spilled over to surrounding areas.
Moreover, the results occasionally contained salt-and-pepper noises. In Ontario with large
and regular parcels, although the results by SAM on both Sentinel-2 and Landsat-8 were
significantly better than those in Henan, issues persisted. Errors occurred when the target
parcels had small color and texture differences with surrounding objects (such as forests),
which was more obvious when using Landsat-8 images. Furthermore, SAM showed a
relatively better performance in urban areas compared to crop parcels, possibly due to
more distinct color differences between urban areas and surrounding farmland.

In summary, the parcel segmentation capability of SAM on medium-resolution satellite
imagery is influenced by the size, shape, and color differences of parcels with respect to
surrounding objects. Directly applying SAM is feasible when the parcels have regular
shapes, exhibit significant color differences from their surroundings, and are large enough
to occupy a number of pixels in the imagery. However, it may fail to accurately segment
when the parcels are small or have similar colors to surrounding objects, such as green
forests. SAM showed better performance on Sentinel-2 compared to Landsat-8. This is
expected since Landsat-8, with its coarser spatial resolution, suffers more from mixed-
pixel issue.

5.2. The Effectiveness of the Proposed Sample Generation Method

The number of generated samples and optimal accuracy achieved by all classification
models trained with generated samples revealed the effectiveness of the proposed sam-
ple generation approach for crop mapping. Two main factors ensured this effectiveness:
location and temporal information. Based on the reference sample locations, though the



Remote Sens. 2024, 16, 1505 20 of 25

segmentation performance of SAM on medium-resolution satellite imagery is variable, the
mask generated by SAM can cover regions that are highly likely to belong to the same crop
type as the sample. Additionally, the temporal information of the reference sample serves
as a strong constraint to ensure that the latent samples left after filtering are reliable. To
further prove the quality of generated samples, we used t-distributed stochastic neighbor
embedding (t-SNE) to visualize the field-survey-collected samples and generated samples
(Figure 17). It is obvious that the generated samples exhibit clear separability, facilitating
the classification model to derive boundaries distinguishing different crop types on the
hyperplane, consistent with the performance improvements shown in Tables 3 and 4. This
advantage is particularly pronounced in Ontario. The limited and potentially unrepresenta-
tive nature of collected samples leads to poor separability, whereas the generated samples
effectively address this issue.
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Although a large number of reliable crop samples were successfully produced across
different study areas and satellite images, it can be observed from Table 2 that the quantity
of samples generated for the others class is relatively low. This is reasonable because, in
Henan, the others class primarily consisted of buildings, which generally have complex
spectra and no standard temporal patterns, so they were filtered out by sample cleaning. On
the other hand, in Ontario, the crops in the others class were minorities, making quantities
inherently low. Additionally, an evident observation is that, in Henan, even though a larger
SI was set for Landsat-8, the number of samples generated for each category using Sentinel-
2 was lower than that generated using Landsat-8. However, in Ontario, the situation is
reversed. We believed this is related to the spatial resolution and varying characteristics
of agricultural parcels in study areas. In Henan, parcels are small and fragmented, and
the coarser spatial resolution of Landsat-8 exacerbates the mixed-pixel problem. This not
only could result in poorer performance of SAM but also lead to more pixels and more
phonologically similar or same crops being included in the sample cleaning stage. However,
in Ontario, agricultural parcels are predominantly large and regular, which can enable SAM
to achieve more accurate results using Landsat-8. This reduced the inclusion of unnecessary
pixels in the sample cleaning stage. The higher spatial resolution of Sentinel-2 naturally
leads to more pixels within the same parcel, leading to the generation of a greater number
of samples. In general, our experiments demonstrated the applicability of our sample
generation method across different areas and satellite images.

It should be noted that our method has achieved good results relying on the collected
samples, and it has the potential to generate more samples with less effort over large
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areas and multiple years. However, to ensure the effectiveness of actual predictions, we
recommend collecting representative samples that are spatially evenly distributed and
diverse in terms of crop types to mitigate spatial heterogeneity. Moreover, all models used
in this study were not subjected to targeted hyperparameter tuning or feature engineering,
and thus there are potential ways to further improve the classification accuracy.

5.3. Contributions and Future Work

SAM, a foundation model for segmentation tasks in the CV community, has gained
increasing attention. Though some researchers have studied the performance of SAM on
remote sensing images, their focus has mainly been on high spatial resolution imagery, even
reaching submeter resolution [21,24]. This study primarily focused on investigating the
parcel segmentation performance of SAM on Sentinel-2 and Landsat-8 imagery. Our results
indicated that SAM’s performance on Sentinel-2 and Landsat-8 is still not satisfactory,
unless the target parcels are sufficiently large, regular in shape, and have distinct color
differences from the surrounding areas. However, the limited capability does not imply
its inability to assist in applications involving medium-resolution satellite imagery. On
the one hand, as foundation models continue to be upgraded and iterated upon, their
performance is expected to improve. On the other hand, these foundation models, because
of their generalization abilities, can be incorporated as part of a framework and applied
to various domains. Therefore, based on SAM, this study designed an automated sample
generation method and derived satisfactory results. This study provides insights and a
reference for the application of foundation models in the field of remote sensing.

This study has several limitations that warrant further investigation. Firstly, although
a method for automatically selecting the optimal image has been used to choose the input
for SAM, the image with low cloud cover and few invalid values may not necessarily be the
best input to SAM for parcel segmentation. The acquiring time of selected optimal image
may coincide with the time when the parcel and surrounding areas have similar color tones,
posing a challenge for SAM. We will subsequently investigate the impact of different image
acquisition times on SAM’s segmentation of crop parcels. Secondly, the issue of cloud
cover in optical satellite imagery may result in the loss of temporal information, which
can pose difficulties in the filtering process based on time series using FastDTW and any
other filtering approaches. We will consider incorporating weather-independent synthetic
aperture radar (SAR) imagery for our future research. Thirdly, the segmentation capability
of SAM on medium-resolution satellite imagery for crop parcels is limited, constraining its
further application. In future research, we will consider conducting fine-tuning studies on
SAM to improve its performance. Finally, although the results of this study demonstrated
that the accuracy improves as generated samples are progressively added into model
training (Figure 11), the ultimate accuracy converges to a stable level. The determination of
the requisite number and characteristics of samples to achieve this stable level in practical
mapping tasks still relies on experience, necessitating further comprehensive research to
establish a set of standards [13].

6. Conclusions

In this study, we evaluated the parcel segmentation performance of SAM on medium-
resolution satellite imagery (Sentinel-2 and Landsat-8) and designed a novel sample gen-
eration framework based on point-prompt SAM to solve the sample scarcity problem in
crop mapping task and to improve the performance of crop mapping. Experiments were
conducted to validate the effectiveness of the proposed approach with different study areas,
sensors, crop types, and classifiers. Our results indicated that the parcel segmentation
performance of SAM on medium-resolution satellite imagery is still challenging, unless the
parcels are large, regular in shape, and have distinct color differences with the surroundings.
The proposed method could generate a large number of high-quality training samples. The
improvements achieved by each classifier demonstrated that our approach can significantly
enhance the performance of crop mapping. This study explored potential applications of
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foundation models in crop mapping, providing valuable insights for associated studies
and applications.
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Appendix A

In addition to the Weighted-Average F1 score, we also evaluated the classifiers’ results
on different repositories and satellite images using the kappa coefficient. The results are
presented in Tables A1 and A2.

The sizes of each sample set are shown in Table A3.

Table A1. Kappa coefficient of classifiers on different sample repositories and satellite images in
Henan. The bolded values indicate the best accuracy of the model across different sample repositories.

Model Satellite Collected
Repository

SAM
Repository

Composite
Repository

RF
S2 0.735 0.884 0.950
L8 0.608 0.842 0.936

SVM
S2 0.672 0.850 0.868
L8 0.705 0.751 0.796

KNN
S2 0.544 0.783 0.862
L8 0.705 0.772 0.834

AtBiLSTM
S2 0.740 0.677 0.841
L8 0.630 0.745 0.758

Conv1d-based
S2 0.550 0.800 0.859
L8 0.438 0.693 0.773

Transformer
S2 0.598 0.753 0.916
L8 0.652 0.756 0.861

https://www.mdpi.com/article/10.3390/rs16091505/s1
https://www.mdpi.com/article/10.3390/rs16091505/s1
https://github.com/Nick0317Sun/SAM-CropSampleGeneration
https://github.com/Nick0317Sun/SAM-CropSampleGeneration
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Table A2. Kappa coefficient of classifiers on different sample repositories and satellite images
in Ontario. The bolded values indicate the best accuracy of the model across different sample
repositories.

Model Satellite Collected
Repository

SAM
Repository

Composite
Repository

RF
S2 0.751 0.857 0.995
L8 0.525 0.831 0.923

SVM
S2 0.027 0.791 0.918
L8 0.147 0.671 0.727

KNN
S2 0.073 0.607 0.923
L8 0.384 0.728 0.813

AtBiLSTM
S2 0.687 0.664 0.954
L8 0.520 0.614 0.734

Conv1d-based
S2 0.695 0.902 0.969
L8 0.565 0.786 0.877

Transformer
S2 0.626 0.819 0.985
L8 0.409 0.747 0.893

Table A3. Number of samples in each set and repository. Val indicates Validation.

Class Test Set
Collected

Repository
SAM

Repository
Composite
Repository

Train Set Val Set Train Set Val Set Train Set Val Set

Henan
Winter wheat 522 417 105 6513 1628 6930 1733
Winter garlic 430 344 86 1353 338 1697 424

Others 145 116 29 294 74 410 103

Ontario

Soybean 82 66 17 7997 1999 8062 2016
Corn 108 86 22 12,717 3180 12,804 3201

Winter wheat 19 15 4 421 105 436 109
Others 71 56 14 1405 352 1462 366
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