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Abstract: Soil moisture plays a crucial role in determining the yield of winter wheat. The Huang-
Huai-Hai (HHH) Plain is the main growing area of winter wheat in China, and frequent occurrence
of drought seriously restricts regional agricultural development. Hence, a daily-scale Non-stationary
Standardized Precipitation Evapotranspiration Index (NSPEI), based on winter wheat crop coefficient
(Kc), was developed in the present study to evaluate the impact of drought characteristics on winter
wheat in different growth stages. Results showed that the water demand for winter wheat decreased
with the increase in latitude, and the water shortage was affected by effective precipitation, showing a
decreasing trend from the middle to both sides in the HHH Plain. Water demand and water shortage
showed an increasing trend at the jointing stage and heading stage, while other growth stages showed
a decreasing trend. The spatial distributions of drought duration and intensity were consistent, which
were higher in the northern region than in the southern region. Moreover, the water shortage and
drought intensity at the jointing stage and heading stage showed an increasing trend. The drought
had the greatest impact on winter wheat yield at the tillering stage, jointing stage, and heading stage,
and the proportions of drought risk vulnerability in these three stages accounted for 0.25, 0.21, and
0.19, respectively. The high-value areas of winter wheat loss due to drought were mainly distributed
in the northeast and south-central regions.

Keywords: daily NSPEI; winter wheat crop coefficient; actual water demand; drought risk; Huang-
Huai-Hai Plain

1. Introduction

With global warming, the water cycle is accelerating and extreme weather events such
as droughts and floods are becoming more frequent and intense [1]. Droughts are triggered
by prolonged water scarcity, with severe agricultural and socio-economic impacts [2]. China
is a country vulnerable to agricultural drought, with an annual loss of about 30 billion
kilograms of all grain due to drought [3]. The Huang-Huai-Hai Plain (HHH) is one of the
most important agricultural production areas in China, accounting for 36% and 37% of the
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country’s arable land and grain output [4]. However, the winter wheat growth period in
this region is a water-deficit period, and the water expenditure during the wheat growth
period is greater than the water input. Therefore, drought monitoring during the growth
period of winter wheat is important for drought prevention and resistance for winter wheat.

The shortage of water resources has become one of the key factors restricting the
sustainable development of agriculture. Crop coefficient and crop water demand are
important parameters in water-saving irrigation of winter wheat in this region [5]. Vicente
proposed to estimate the crop water loss due to evapotranspiration, which is of great
significance for the rational allocation of irrigation water and the improvement of water
use efficiency [6]. Mirgol used evapotranspiration and crop coefficients to estimate crop
water use and analyze the impact of climate change on crop yield [7]. Zhang proposed
that effective precipitation and crop water demand reflected the supply and demand of
agricultural water under precipitation conditions [8]. The joint risk of effective precipitation
and crop water demand is the basis for regional water allocation and irrigation planning.
Recep found that drought at different growth stages had different effects on crop phenology
and yield, and crop yield loss was not only related to stress intensity, but also to the growth
stage of crops [9]. Hence, both crop coefficient and crop water requirement were important
parameters for evaluating crop yield. However, agricultural drought is caused by the
imbalance between crop water demand and supply. Potential evapotranspiration was used
instead of crop water demand in previous drought indices, which limited the applicability
of evaluating agricultural drought. Therefore, it is necessary to consider the crop coefficient
Kc in the calculation of the drought index, and replace potential evapotranspiration with
the crop’s water demand, to improve the monitoring of the drought situation for the crop.

In previous studies, several drought indices were constructed to characterize the
duration and intensity of drought. The most widely used meteorological drought indicators
are the Palmer Drought Index (PDSI) [10], the Standardized Precipitation Index (SPI) [11],
and the Standardized Precipitation Evapotranspiration Index (SPEI). Vicente-Serrano et al.
(2010) added potential evapotranspiration to the SPI and constructed SPEI for drought
monitoring and evaluation that integrated the joint effects of precipitation and temperature
changes [12]. However, previous drought indices were calculated under the assumption
of stationarity, which is questioned in changing environments. Under global warming,
the assumption of stationarity of factors, such as future precipitation and temperature, is
being challenged [13]. Many studies have found that hydrometeorological variables change
linearly or nonlinearly with time. Therefore, it is necessary to construct a non-stationary
drought index to identify droughts under non-stationary conditions [14–20].

Crops are more sensitive to drought response during critical growing seasons, and
several days of drought can cause them to wilt [21,22]. Previous studies generally under-
estimated the intensity of short-term continuous strong droughts and overestimated the
intensity of long-term weak droughts when monitoring drought intensity [23,24]. There-
fore, identifying short-duration drought processes is necessary to monitor crop drought.
In addition, the daily-scale SPEI captures the drought process in more detail than the
monthly scale SPEI [25–29]. The previous meteorological drought index seldom considered
the crop coefficient and effective precipitation which have a greater impact on the actual
drought process of crops, which made it difficult for drought indicators to monitor the
actual drought process of crops.

Hence, in this study, the effective precipitation closer to the crop irrigation water
deficit was used to calculate the crop water deficit. Then, based on the water requirement
and effective precipitation of winter wheat, a daily NSPEI drought index (NSPEI-Kc)
considering the crop coefficient was constructed to realize real-time dynamic monitoring of
the regional agricultural drought. Besides, the effect of crop coefficients in different growth
stages on the drought index was comprehensively considered, and a machine learning
model was used to evaluate the quantitative impact of drought on different growth stages
of crop. Finally, the drought risk zoning analysis of winter wheat was carried out through
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the yield disaster loss risk index. This is conducive to improving the refined monitoring
and drought risk assessment of winter wheat drought in the HHH Plain.

2. Data and Methods
2.1. Study Area

Huang-Huai-Hai Plain, the study area (Figure 1), is located in the east-central part
of China, between 32◦00′~40◦24′N, 112◦48′~120◦45′E. The topography of the region is
mainly plain, the land is flat, and the soil is mostly loam and sandy loam. Located south of
Yanshan Mountain and north of Huaihe River, it is an alluvial plain of Yellow River, Huaihe
River, and Haihe River and part of a hilly mountainous area. This region is a semi-arid
and semi-humid region, with annual precipitation of 500–900 mm, high annual variability
of precipitation, and uneven seasonal distribution. A total of 60% of the precipitation is
concentrated in summer [30], but the growth period of wheat (autumn, winter, and spring)
is a dry period of water deficit, which aggravates the drought degree of the winter wheat
reproductive period, and the water deficit of winter wheat growth period is 180–350 mm.
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Figure 1. Location of the study area.

2.2. Data

The meteorological data used in this paper were obtained from the National Climate
Center of the China Meteorological Administration. In order to ensure the integrity and
continuity of the data series, stations with missing data greater than 1% were excluded
from analysis. A total of 280 meteorological stations in the Huang-Huai-Hai Plain from
1970 to 2019 were selected for analysis. Meteorological variables included precipitation
and temperature, wind speed, air pressure, sunshine duration, relative humidity, and other
variables which were needed to calculate potential evapotranspiration. The crop coefficient
(Kc) was calculated using the single value average method of FAO segment which is a
relatively simple method and does not require a large amount of data and can be widely
used to calculate the crop water requirement [31]. However, this method requires a longer
time period and does not adequately consider the effect of soil. The conditions in most areas
of the Huang-Huai-Hai Plain cannot meet certain standard conditions, so the corrected
crop coefficient value of Liu Jia et al. [32] was adopted in this study, as shown in Table 1.
Liu Jia’s revised crop coefficient was determined, based on the research results of the wheat
water demand contour map in Anhui Province, the crop coefficient and correction formula
of 84 crops recommended by FAO, and the irrigation experimental data of Xinmaqiao



Remote Sens. 2024, 16, 1625 4 of 22

Agricultural and Water Comprehensive Experiment Station of Anhui Water Resources
Research Institute of recent years. The winter wheat yield data used were unit annual
yields (kg/ha) from 2000 to 2019 for each province within the Huang-Huai-Hai Plain and
were taken from the provincial statistical yearbooks.

Table 1. Growth time of winter wheat and Kc value of crop coefficient.

Sowing Tillering Jointing Heading Maturing

Start-stop time 9.15–11.30 12.01–3.12 3.13–4.10 4.11–5.3 5.4–5.25
Duration 77 102 29 23 22
Kc value 1.164 1.1555 1.115 1.0145 0.865

2.3. Methods

The framework shown in Figure 2 describes the overall process of constructing the
daily NSPEI-Kc index of winter wheat based on weather station data, crop coefficient, and
yield data, and evaluating the drought risk of winter wheat at different growth stages.

 

2 

 

Figure 2. A framework of drought risk assessment in different growth stages of winter wheat.
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2.3.1. Calculation of Required Water Shortage

In the first step, the Penman–Monteith method recommended by 1988FAO was used
to calculate daily potential evapotranspiration ET0, which was calculated as follows [31]:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where ET0 is the potential evapotranspiration (mm·d−1); Rn is the net radiation (MJ·m−2·d−1);
G is the soil heat flux; T is the mean daily air temperature (◦C); u2 is the wind speed at
2 a m height (m·s−1); es is the saturated water vapor pressure (kPa); ea is the actual water
vapor pressure (kPa); ∆ is the slope of saturated water vapor pressure–temperature curve
(kPa); and γ is dry and wet table constant (kPa/◦C).

In the second step, the daily potential evapotranspiration was multiplied by the Kc
factor for each reproductive period to obtain the actual water requirement:

ETc = ET0 ∗ Kc (2)

where ETc is the actual evapotranspiration of the crop (mm/d), and Kc is the crop coefficient.
The third step was to calculate the effective precipitation which is the amount of

rainfall that can be consumed to meet crop evaporation in arid areas, excluding runoff,
seepage to areas beyond the root zone, and the deep seepage portion required for leaching
salts, so it was calculated using the method of effective precipitation recommended by the
USDA Soil Conservation Service, whose expression is as follows [33]:

Pe =

{
P(4.17 − 0.2P)/4.17 (P < 8.3mm/d)
4.17 + 0.1P (P >= 8.3mm/d)

(3)

where Pe is the effective daily precipitation (mm/d) and P is the total daily precipitation
(mm/d).

Step four is to calculate the water deficit, also known as irrigation water demand,
which is the difference between water demand and effective precipitation during each
reproductive period of winter wheat and was used to indicate the surplus or deficit of
water supply. A positive deficit indicated a water deficit, while a negative deficit indicated
a water surplus.

W = ETc − Pe (4)

where W is the crop water deficit during the reproductive period, ETc is the crop water
requirement during the reproductive period, and Pe is the effective precipitation during the
reproductive period.

2.3.2. Construction of Non-Stationary Precipitation Evapotranspiration Index (NSPEI-Kc)
Based on Kc

In this study, the R language was used to construct the daily NSPEI index. The
improved daily NSPEI drought index calculation process was similar to the monthly NSPEI.
The specific calculation process is as follows:

The first step was to calculate the difference, Dt, between daily effective precipitation,
Pe, and actual daily evapotranspiration (PETt):

Dt = Pe − PETt (5)

Dt was fitted by Smoothing Splines to determine the linear or nonlinear trend fitting of D.

SSDt(h) =
n

∑
t=1

[Dt − f (Dt)]
2 + h

∫ tmax

tmin

[ f n(Dt)]
2dt (6)
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where f is the linear fitting function of time series Dt; h is a smooth parameter, similar to
the amplitude estimated by a local polynomial; t is the time series, t = 1, . . ., n, tmax is the
highest temperature; and tmin indicates the minimum temperature.

The position parameters of log-logistic distribution were replaced by the trend values
fitted with smooth splines. The shape and scale parameters of the distribution were
unchanged, and only the influence of time changes on time series D was considered.
Therefore, information such as extreme values and data distribution of time series D
was not lost. The advantage of the smooth spline function was that it combined the
characteristics of the data itself, and it did not need to choose a linear or nonlinear model
to fit the D time series, nor did it need to judge the stationarity of the D time series.

According to Formulas (5) and (6), the parameters of a time-varying position were
obtained as follows:

γDt = loess(Dt) (7)

Time-varying Dt-based distribution function:

f (Dt | α, β, γDt) =
a
β

(
Dt − γDt

α

)β−1
[

1 +
(

Dt − γDt

α

)β
]−2

(8)

where α, β, γ are the scale, shape, and position parameters, respectively. In this paper, the
probability weighted moments method (PWMs) with empirical frequencies was used to
estimate the parameters α, β, γ. The PWMs were calculated as follows:

ws =
1
N

N

∑
t=1

(N − t + 0.35)sDt

N
(9)

where ws is the PWN of order s, where s = 4; N is the length of the data.

F(x) =
∫ x

0
f (Dt | α, β, γDt)dt

[
1 +

(
α

Dt − γDt

)β
]−1

(10)

NSPEI = W − C0 + C1 + C2W2

1 + d1W + d2W2 + d3W3 , W = −2 ln(P) (11)

where F is the frequency estimate, when P ≤ 0.5, P is the cumulative probability, P = 1 −
F(x); when P ≥ 0.5, then P = 1 − P. The other parameters were as follows: C0 = 2.515517,
C1 = 0.80285, C2 = 0.01028, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308. Table 2 presents the
classification table for NSPEI-Kc.

Table 2. Classification of the NSPEI-Kc index corresponding to drought grade and yield reduction rate.

Drought Grade NSPEI-Kc Index Yield Reduction Rate

Mild drought −0.99 ≤ NSPEI-Kc < 0 10 ≤ yd < 0
Moderate drought −1.49 ≤ NSPEI-Kc < −1 20 ≤ yd < 10
Severe drought −1.99 ≤ NSPEI-Kc < −1.5 30 ≤ yd < 20
Extreme drought NSPEI-Kc ≤ −2 yd ≤ 30

2.3.3. Calculation of Drought Characteristics

The drought process was considered to have occurred when NSPEI-Kc had been in
the mild drought category or above for 10 consecutive days. The beginning date of the
drought process was the date when the NSPEI-Kc index reached mild drought or above
on the first day. During the drought period, the drought was relieved when the NSPEI-Kc
index reached no drought grade for 10 consecutive days, while the end date of the drought
process was the date when the drought grade reached for the last time.

The run course theory is usually used to identify drought events and calculate drought
characteristic variables [34]. The run course theory was used to identify drought duration
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(D) and drought intensity (I) from the NSPEI-Kc index of the daily scale. As shown in
Figure 3, the time from the beginning to the end of the drought process was the duration of
the drought (D), and the drought intensity (I) was the sum of drought categories whose
NSPEI-Kc index was mild drought or above during all days of the drought process.
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NSPEI-Kc at the jointing stage, heading stage, and maturity stage was used at the 30-
days (1 month) time scale [35]. Due to the effects of precipitation and evapotranspiration in
the first 90 days (about 3 months) during the planting stage in Huang-Huai-Hai Plain [36],
the NSPEI-Kc at the 90 days (about 3 months) scale was used during the sowing stage,
tillering stage, and whole growth stage.

2.3.4. Mann–Kendall (M-K) Test

The M-K test is a climate diagnostic and prediction technique that is widely used as
a statistical test for analyzing trends in climate and hydrologic time series, which avoids
local maxima in the data series [37]. The M-K test is also often used to detect trends in
precipitation and drought frequency under the influence of climate change. A positive
value of the M-K statistic Z A positive value indicates an upward trend and vice versa
indicates a downward trend. If Z > 1.96, it indicates a significant trend of change.

2.3.5. Winter Wheat Yield Reduction Rate

There are many factors affecting the formation of the crop yield, and the relationship
between the constraints is also very complex [38,39]. Crop yields are usually made up
of three components: trend, climate fluctuation, and randomness. The variation trend
of output reflects the contribution of factors affecting product development, and the cli-
matic fluctuation component of output is the contribution of climate fluctuation, which is
mainly related to meteorological disasters. The key to studying the relationship between
drought intensity and winter wheat yield is to isolate this trend from the effects of climate
fluctuations. The calculation was as follows:

y = yt+yw + ∆y (12)

where y is the crop yield, yt is the trend yield, and yw is the meteorological yield. The
“noise” ∆y term accounts for a small percentage and is often ignored and disregarded in
practical calculations. This study used HP filtering to eliminate trends in winter wheat
yield [40]. HP filtration has been widely used in hydrology, meteorology, and other fields.
HP filtering is a complex signal separation method that captures not only the trend of a
time series, but also the time variation of the series [41].

The winter wheat yield reduction rate was assigned using year-by-year deviations of
actual yield from trend yield relative to meteorological yield, and the final formula was
calculated as follows:
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yd =
y − yt

yt
× 100% (13)

In Equation (13), yd is the crop yield reduction rate; y is the actual grain yield; yt is
the trend grain yield in kg/hm2. The yield reduction rate was classified as mild, moderate,
severe, and very severe drought according to the drought level in Table 2.

2.3.6. Drought Risk Index

Due to significant geographical differences, the extent of drought impact on yield
varies from region to region, with more significant differences in the vulnerability, resilience,
and proportional impact of drought on yield across fertility periods. Disaster risk is the
result of the interaction between the intensity and frequency of the causative event and the
carrier sensitive to that type of causative factor. In this paper, a risk index reflecting four
risk elements was used as a partitioning indicator, which was related to the vulnerability
index, disaster loss rate, resilience, and weight of drought impact on yield in different
fertility periods. The risk assessment from the perspective of winter wheat yield disaster
loss was carried out with the following equation:

R = (SP/SC)× (1 − X/Xm)×
(

m

∑
i=1

Yi/Pi

)
× (1/(K/SP))× G (14)

In Equation (14), where R is the yield disaster risk index; SP is the sown area; Sc is the
total cultivated area; X is the average yield of wheat; Xm is the maximum yield; Yi is the
multi-year average yield reduction rate; Pi is the frequency of drought; K is the effective
irrigated area; and G is the weight of drought affecting yield in different growth stages.

2.3.7. Random Forest (RF)

RF was based on Classification and Regression Trees (CART), which generated several
independent trees by two stochastic methods of selecting training samples and selecting
variables at each node of the tree to reach the final decision [42]. This randomness alleviated
the typical drawbacks of CART, such as overfitting problems and sensitivity to training
sample configurations [43].

2.3.8. Support Vector Machine (SVM)

Support vector machine (SVM) is a machine learning method, which is suitable for
problems with small sample sizes, nonlinear relationship between variables, and multi-
dimensional pattern recognition [44]. Support vector classification and regression relies
on the theory of statistical learning and classifies based on the principle of structural risk
minimization. Because of its powerful classification and regression ability, SVM has been
widely used in image classification, handwriting recognition and remote sensing.

2.3.9. Linear Regression (LR)

Linear regression (LR) can be divided into simple linear regression (single linear
regression) or multiple linear regression (multiple linear regression), depending on the
number of independent variables. A linear regression model is a common linear regression
model used to predict the linear relationship between a continuous target variable and one
or more independent variables. The goal of the model is to find the best line so that the
error between the predicted result and the actual result is minimal.

3. Result
3.1. Applicability Evaluation of Daily NSPEI-Kc

In this study, the daily NSPEI and daily NSPEI-Kc indices of the Huang-Huai-Hai
Plain were input into each machine model and evaluated in combination with the actual
yield reduction rate. Drought intensity and trend yield in different growth periods of the



Remote Sens. 2024, 16, 1625 9 of 22

Huang-Huai-Hai Plain from 2000 to 2019 were taken as input variables, and the grade of
yield reduction rate was taken as output variables. All samples were randomly divided
into training sets and test sets, in which the training set accounted for 80% and the test set
accounted for 20%. Five machine learning models, including random forest (RF), linear
regression (LR), stepwise regression (STEP), Ridge regression (RIDGE), and support vector
machine (SVM), were selected. The prediction accuracy of all models was mainly judged
by the following indicators: Root mean square error (RMSE), mean square error (MSE),
mean absolute percentage error (MAPE), and coefficient of determination (R2). It can be
seen from Figure 4 that the daily NSPEI-Kc index was better than the daily NSPEI index,
which proved that the daily NSPEI-Kc index was closer to the actual drought process, and
the random forest model performed the best among the evaluation indexes. Therefore, the
random forest had a better learning ability than other models in this study.
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each evaluation index).

3.2. Temporal and Spatial Characteristics of Water Demand (Deficiency)

From the water demand of the whole growing period (Figure 5), the average annual
water demand was 233.6~465.5 mm, which decreased with the increase in latitude. The
annual average water demand was 101.8~189.5 mm, decreasing gradually from southeast
to northwest. The tillering, jointing, heading, and mature stages showed a decreasing trend
from south to north.

As can be seen from Figure 6, the spatial distribution of effective precipitation in each
growth period decreased from south to north. The effective precipitation was larger in the
central and southern regions, but less in the northern part of the Huang-Huai-Hai Plain.
This indicated that the soil of the crop root layer absorbed more water in the central and
southern regions, which was one of the reasons for the greater water deficiency in the
central region.

It can be seen in Figure 7 that the water deficiency range in the sowing period was
73.9~133.5 mm, and the water deficiency decreased from southeast to northwest. The
tillering stage 15.2~34.2 mm, jointing stage 19.4~38.7 mm, heading stage 22.2~39.0 mm,
and maturity stage 21.0~37.8 mm were decreasing from middle to south. The whole
growth period was 157.6~264.1 mm, decreasing from the central part to the northwest and
northeast, showing a relative water deficiency in the central part.



Remote Sens. 2024, 16, 1625 10 of 22

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 5. Spatial distribution of water demand in different growth stages of winter wheat. 

As can be seen from Figure 6, the spatial distribution of effective precipitation in each 

growth period decreased from south to north. The effective precipitation was larger in the 

central and southern regions, but less in the northern part of the Huang-Huai-Hai Plain. 

This indicated that the soil of the crop root layer absorbed more water in the central and 

southern regions, which was one of the reasons for the greater water deficiency in the 

central region. 

 

Figure 5. Spatial distribution of water demand in different growth stages of winter wheat.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 5. Spatial distribution of water demand in different growth stages of winter wheat. 

As can be seen from Figure 6, the spatial distribution of effective precipitation in each 

growth period decreased from south to north. The effective precipitation was larger in the 

central and southern regions, but less in the northern part of the Huang-Huai-Hai Plain. 

This indicated that the soil of the crop root layer absorbed more water in the central and 

southern regions, which was one of the reasons for the greater water deficiency in the 

central region. 

 

Figure 6. Spatial distribution of effective precipitation in different growth periods of winter wheat.

As can be seen from Figure 8, the water deficiency in the sowing period manifested a
trend of fluctuation and decline. It can be seen from Table 3 that the average annual water
requirement during the sowing period was 146.66 mm, the maximum was 165.00 mm,
and the minimum was 130.58 mm. The average water deficiency decreased to 76.67 mm
during the tillering stage (Figure 8b), fluctuated sharply from 1998 to 2002, and reached
the lowest level in 2001 at 14.82 mm. In the jointing stage, the water demand showed a
fluctuating upward trend, and the highest water demand in 2014 was 51.62 mm. The water
deficiency in the heading stage fluctuated and increased, and decreased significantly in
1975, 1990, and 2014. The water deficiency at maturity showed a fluctuating trend and
decreased significantly in 1997 and 2019. The water demand manifested a decreasing trend
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in the whole growth period (Figure 8f), and the average change rate of the water demand
was −7.9 mm/10a.
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Table 3. Average annual water demand and water deficit by growth stage (ETc is the water require-
ment of winter wheat, and W is the water shortage of winter wheat).

ETc (mm) W(mm)

Daily Avg
(mm/d) Annual Avg Max Min Daily Avg

(mm/d) Annual Avg Max Min

Sowing 1.96 146.66 165.00 130.58 1.43 106.88 136.38 58.67
Tillering 0.74 76.67 89.14 57.50 0.51 52.16 79.44 14.82
Jointing 1.50 43.63 56.03 30.91 1.08 31.41 51.62 13.90
Heading 2.06 47.27 54.35 38.45 1.44 33.02 47.51 13.83
Maturing 2.15 47.37 56.12 38.40 1.46 32.10 54.00 8.40
The whole 0.99 361.62 401.59 330.92 0.70 255.58 338.94 187.99

The variation trend of water deficiency in domestic demand was roughly similar in
each growth period, but the variation range of water deficiency was large. The variation
trend of the sowing stage was similar to the tillering stage, except that the jointing stage and
heading stage showed an uptrend, and the other growth stages manifested a downtrend.
The jointing stage and heading stage are the key growth periods of winter wheat, and
irrigation in this period can improve wheat yield and water use efficiency.

3.3. Spatiotemporal Patterns of Drought Characteristic Variables

It can be seen from Figure 9 that the duration of drought during the planting period
ranged from 32.2 to 44.5 days. The duration of drought ranged from 45.6 to 61.7 days
to tillering stage. The duration of the drought was 8.1–17.5 days in the period of pluck-
ripening (the key growth period). The duration of drought during the whole growth period
ranged from 171.7 to 211.5 days.
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It can be seen from Figure 10 that drought intensity was relatively strong in the sowing
period, and from a spatial perspective, the drought intensity in the west was higher than
that in the east. In the mature period, the drought intensity in the east and the west was
stronger, while the drought intensity in the middle was weaker. The drought intensity in
the sowing period ranged from 28.3 to 42.9. The drought intensity ranged from 39.4 to 65.1
during the tillering stage. The drought intensity ranged from 7.6 to 20.7 in the period of
plucking to ripening. The drought intensity of the whole growth period ranged from 28.3
to 42.9, decreasing from northwest to southeast.
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Figure 10. Spatial distribution of drought intensity in different growth periods.

From the above spatial distribution of drought characteristic variables, the spatial
distribution characteristics of drought duration and drought intensity had a certain similar
rule, the sowing stage decreased from west to east, and the tillering stage, jointing stage,
heading stage and whole growth stage decreased from north to south, and the maturing
stage decreased from east to west to middle. Generally speaking, the duration and intensity
of drought in the north were higher than those in the south.

Figure 11 shows the temporal trend of drought duration from 1970 to 2019. Drought
duration at the sowing stage showed an increasing (decreasing) trend in the south (north)
(Figure 11a), while the spatial distribution of drought duration at the heading–tillering–
maturity stage was opposite to that at the sowing stage and manifested a decreasing
(increasing) trend in the south (north), and the increase and decrease in the number of
sites accounted for 29% of all sites, respectively. The drought duration at the tillering stage
decreased in the central region and increased in the northern and southern regions. The
proportion of decreasing sites increased to 67% throughout the growth stage, and sites with
increasing trends were mainly located in the southern part of the Anhui Province and the
central part of the Huang-Huai-Hai Plain.
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heading–maturity time.

The temporal trends of drought intensity in different fertility periods of winter wheat
during 1970–2019 can be seen from Figure 12. The rising sites accounted for 34% of all sites
and the declining sites accounted for 30% during the sowing period south of the Qinling
and Huaihe Rivers, with the significantly declining sites concentrated in the northern part
of the Huang-Huai-Hai Plain. Stations with rising tillering accounted for 65% of the total,
with declining stations concentrated in the central region. Rising sites accounted for 58% of
the total number of sites in the jointing–heading–maturity period, with decreasing trends
concentrated in the southeast and northwest. The sites with a decreasing trend in the whole
reproductive period accounted for 77% of all sites, of which the obvious decreasing sites
were concentrated in the southwestern part of the Huang-Huai-Hai Plain.

The temporal variation trend of the above drought characteristic variables was similar.
The drought characteristic variables in the sowing period manifested a decreasing trend
in the north of the Qinling Mountains and Huaihe River, and an increasing trend in
the south. Drought characteristics showed an upward trend on the north and south
sides, but a downward trend in the middle part. Only a few stations in the southeast
manifested a decreasing trend in drought characteristic variables during the maturing
period. The duration and intensity of drought during the whole growth period indicated a
decreasing trend.
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3.4. Drought Risk Assessment of Winter Wheat at Different Growth Stages
3.4.1. Ranking and Weighting of Drought Vulnerability at Different Growth Stages

According to the relative importance score of drought intensity in each growth period
in yield prediction in the model, it was standardized to a value of 0–1, and then the change
in the contribution of drought intensity in different growth periods to yield was evaluated.

Rain-fed agriculture in the Huang-Huai-Hai Plain is mainly distributed in Anhui,
Jiangsu, and southern Henan. As can be seen from Figure 13, the tillering stage had a
greater effect on yield, mainly due to the longer duration of the tiller stage. This was fol-
lowed by the jointing and heading periods. Natural precipitation had a greater impact on
the growth of farmland in rainfed agricultural areas compared to non-rainfed agricultural
areas. The soil was in a dry state during the period when overwintering and rewetting
watering were required at the nodulation and tasseling stages, and no artificial irrigation
treatment was performed. Winter wheat was affected by climatic factors, lack of precipita-
tion replenishment, and soil moisture was reduced, but this was the critical period for the
formation of spike numbers of winter wheat, so it led to a reduction in the final yield.

Shandong Province and Hebei Province belong to non-rain-fed agricultural areas, and
the weight of drought vulnerability in different growth periods was similar. This region



Remote Sens. 2024, 16, 1625 16 of 22

was treated with artificial irrigation at the tillering stage, jointing stage, and heading stage,
which resulted in less drought vulnerability than in rain-fed farming areas. Combined with
the results from different provinces and their mean values, it was found that drought had a
great effect on tillering, jointing, and heading.
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provinces.

3.4.2. Spatial and Temporal Distribution of Drought Risk Index

Figure 14 shows that the yield reduction rate of winter wheat in the Huang-Huai-Hai
Plain gradually decreased from south to north, with high-value areas appearing in the south
of Anhui Province, southeast of Henan Province, west and southwest of Jiangsu Province,
and low-value areas appearing in Beijing, Tianjin, northern Hebei Province, Shandong and
eastern coastal areas of Jiangsu Province and northern Henan Province, with low yield.

It can be seen from Figure 15 that the spatial distribution of the annual mean value of
drought risk growth period in the Huang-Huai-Hai Plain was as a whole high in the south
and low in the north. The high-value area included northern Anhui and part of prefecture-
level cities in eastern Henan, northwest Shandong, and northeast Hebei. The risk index of
the sowing stage and the tillering stage was higher than that of other growth stages.

Since the growth time of each growth period is quite different, the daily mean value
of each growth period was obtained to compare the influence of short-duration drought
on the drought risk index. It can be seen from Figure 16 that the daily mean value of the
drought risk index was significantly different from the total value of the growth stage. The
results showed that the average value of the drought risk index at the jointing, heading,
and maturing stage was significantly higher than that at the sowing and tillering stage,
indicating that the disasters at the jointing, heading, and maturing stage were more likely
to increase drought risk and had a greater effect on yield.
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The areas with high drought risk were mainly distributed in three regions: (1) the
border areas of eastern Henan Province and southwestern Shandong Province; (2) the
border areas of western Shandong Province and northwestern Shandong Province and
Northeast of Hebei Province. The natural conditions of these two regions were relatively
poor, and the natural precipitation was less. (3) Northern Anhui is in the transitional zone
of the north–south climate, and the soil is mainly sand and ginger black soil, which has
poor cultivability and is prone to waterlogging and drought, which is not conducive to
stable and high agricultural yield. The low-value areas are mainly distributed in: (1) The
low-value areas along the east coast of Shandong and the east coast of Jiangsu: the average
yield reduction rate of these two areas is low, and they are near the sea area with sufficient
natural precipitation. (2) Northwestern Hebei–Northern Henan low-value region: this
region starts from Handan, Hebei in the south, passes Xingtai and Taihang Mountains,
and reaches the southern foot of Yanshan Mountain in the north. This region is located
on the windward side of Yanshan Mountain in Taihang Mountains, and has sufficient
precipitation in summer, providing sufficient water for winter wheat growth. (3) Low-risk
belt in south-central Henan and south-western Henan: the average yield reduction rate in
this area is low, and drought damage occasionally occurs in wheat sowing.

In terms of the time variation trend of the drought risk index, the annual mean and the
daily mean were consistent. The overall sowing time manifested a downward trend, but it
showed an upward trend in the southwest and northeast. There was an obvious increase
in the risk index of the southeast region during the tillering stage, which was higher than
that in the sowing stage. The risk index of the whole growth stage manifested a downward
trend, except that in the southern part of the Huang-Huai-Hai Plain at the maturity stage,
and the disaster risk index of most prefecture-level cities manifested no great change. The
whole growth period indicated a downward trend, except the central and southern parts of
the Huang-Huai-Hai Plain manifested an upward trend.

4. Discussions

The water deficit at different growth stages of crops also had different effects on
the components of winter wheat yield, so a comprehensive understanding of crop water
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demand changes is crucial for effective agricultural water management [45,46]. Some
studies have shown that the influence of meteorological elements on irrigation water
demand is more complex, and there is a negative correlation with the intensity of the
growth period [47]. The soil’s relative water content of about 80% during the sowing period
is the best for water absorption, germination, and seedling growth. If the water content is
lower than 70%, the emergence of wheat seedlings will be delayed, and there will be a lack
of seedlings, which is not conducive to the growth of wheat seedlings. The tillering stage
was the longest-growing stage of wheat. It is also a crucial period to determine the number
of ears per mu and lay the big ears. During this period, wheat gradually stopped growing
and ETc was the lowest (0.74 mm/d). After overwintering, with the increase in wheat
evaporation demand and the continuous development of canopy, crop evapotranspiration
increased [48], and ETc reached 1.5 mm/d at the jointing stage. From the jointing stage
to the maturity stage, wheat grows rapidly, which is the key period to determine wheat
grain weight and yield, and also the peak of wheat water demand. ETc gradually rose to
2.15 mm/d. The sowing quantity and sowing time also had a great relationship with wheat
yield and wheat quality [49]. The variation trend of ETc in different growth periods was
consistent with the water requirement of wheat crops.

The Huang-Huai-Hai Plain was chosen as the study area because it is a paramount
base for high-quality wheat production in China. However, due to its wide area and large
span between north and south, the planting period of winter wheat in the plain may be quite
different. In this paper, a set of crop planting periods and crop coefficient Kc were used to
calculate the daily NSPEI-Kc index of winter wheat in different growth periods, which may
have an impact on the identification of daily NSPEI-Kc drought process in different regions
of the Huang-Huai-Hai Plain. However, one of the focuses of this study was to explore
the recognition of drought processes in different growth stages of winter wheat with the
addition of daily drought index and crop coefficient. Through comparison of machine
learning model results of daily NSPEI-Kc and daily NSPEI drought index combined with
yield reduction, the results showed that daily NSPEI-Kc was superior to daily NSPEI in
drought recognition. In the current calculation process of the agricultural drought index,
the actual evaporation based on crop coefficient was used instead of potential evaporation,
which can increase the accuracy of actual crop evaporation.

The drought process was affected by drought duration in each growth stage, and
there were longer drought durations and more drought processes in the sowing stage
and tillering stage, which led to greater drought intensity. The results indicated that the
drought process during jointing–heading–maturity had a great influence on yield, which
was similar to the previous research results and the actual situation [50]. The calculation
results of the yield disaster risk index also showed that drought risk was more likely to
increase in the disaster period of a shorter jointing–heading–maturity period. From the
relationship between drought risk and yield reduction, the spatial distribution of drought
risk decreased from south to north. Drought risk was affected by drought vulnerability,
and drought vulnerability accounted for a large number of growth stages including the
tillering stage, jointing stage, and heading stage. From the combination of water demand
and drought variables, the water shortage and drought intensity in the jointing stage and
heading stage both indicated an upward trend, and the increase in water shortage increased
drought intensity. Therefore, it is necessary to strengthen irrigation measures in tillering,
jointing, and heading stages to reduce the risk of crop water shortage.

5. Conclusions

In this study, the daily NSPEI-Kc index based on crop coefficient was established, and
the daily NSPEI index and daily NSPEI-Kc index combined with yield reduction were
compared and analyzed, which verified the superiority of daily NSPEI-Kc in drought
monitoring and could better describe the drought process of crops. At the same time, the
daily NSPEI-Kc index and water demand were combined to monitor the water deficit and
drought process of winter wheat in Huang-Huai-Hai Plain. On this basis, the contribution
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of drought intensity in different growth periods to winter wheat yield in different provinces
was evaluated, the influence weights of drought process in different growth periods on the
final yield were analyzed, the drought risk index was constructed, the temporal and spatial
distribution of drought risk in different growth periods of winter wheat in the Huang-
Huai-Hai Plain was analyzed, and the drought process of winter wheat was refined to each
growth period. It is of great significance to ensure the sustainable and stable development
of the agricultural economy in Huang-Huai-Hai Plain. From the analysis, the following
findings and conclusions were drawn:

(1) In terms of the spatial distribution of water demand, water demand, and effective
precipitation generally decreased with the increase in latitude, while water demand de-
creased from north to south under the influence of effective precipitation. In terms of time
variation trend, only the jointing stage and heading stage of the key water demand growth
period manifested an upward trend, while the other growth periods indicated a downward
trend. The fluctuation trend of domestic water deficiency in each growth period was
roughly similar, but the fluctuation of water deficiency was relatively obvious. Due to the
influence of effective precipitation, the central and southern parts of the Huang-Huai-Hai
Plain were short of water, so artificial agricultural measures should be taken to supplement
meteorological conditions, such as temperature and light in different growth periods, to
improve the transpiration rate of crops, increase the effective precipitation, and improve
the water supply capacity of crops.

(2) In terms of the temporal and spatial characteristics of drought characteristic vari-
ables, the spatial distribution characteristics of drought duration and intensity had certain
similar rules. The sowing period decreased from west to east, the maturity period de-
creased from east to west to central, and the other growth periods decreased from north
to south. In general, the duration and intensity of winter wheat drought in the north of
Huang-Huai-Hai Plain were higher than those in the south. The time variation trend of the
drought variable also had a similar law. The sowing time indicated a decreasing trend in the
north and an increasing trend in the south of the Qinling-Huaihe River. The tillering stage
manifested up on both sides of the north and south, but down in the middle. Only a few
sites in the southeast indicated a downward trend during the jointing–heading–maturity
period. The duration and intensity of drought in more than 65% of the whole growth
period manifested a decreasing trend.

(3) On the Huang-Huai-Hai Plain, the main growth stages that affected drought
risk were the tillering stage, jointing stage, and heading stage, the percentage of drought
vulnerability was 0.25, 0.21, 0.19, and the risk of drought was greater during these periods.
From the perspective of the time variation trend, the whole growth period indicated a
downward trend except for the central and southern parts of the Huang-Huai-Hai Plain.
From the perspective of spatial distribution, the high drought risk areas were mainly
distributed in the northeast and central, and southern regions, mainly due to poor natural
conditions, less precipitation, and insufficient water resources utilization capacity. The
low-value areas were mainly distributed in the eastern coastal areas, the northern part of
Northwest China, and the southern part of Henan, mainly because of low yield reduction,
more natural precipitation, and low disaster risk.

The disaster risk of yield in different growth periods can guide the drought resistance
in the later period to reduce the loss caused by drought. The combination of the daily
NSPEI index and crop coefficient can provide a theoretical basis and technical support
for drought monitoring and drought assessment and prediction of winter wheat in the
Huang-Huai-Hai Plain.
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