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Abstract: Remote sensing technologies are critical for analyzing the escalating impacts of global
climate change and increasing urbanization, providing vital insights into land surface temperature
(LST), land use and cover (LULC) changes, and the identification of urban heat island (UHI) and
surface urban heat island (SUHI) phenomena. This research focuses on the nexus between LULC
alterations and variations in LST and air temperature (Tair), with a specific emphasis on the intensified
SUHI effect in Kharkiv, Ukraine. Employing an integrated approach, this study analyzes time-series
data from Landsat and MODIS satellites, alongside Tair climate records, utilizing machine learning
techniques and linear regression analysis. Key findings indicate a statistically significant upward
trend in Tair and LST during the summer months from 1984 to 2023, with a notable positive correlation
between Tair and LST across both datasets. MODIS data exhibit a stronger correlation (R2 = 0.879)
compared to Landsat (R2 = 0.663). The application of a supervised classification through Random
Forest algorithms and vegetation indices on LULC data reveals significant alterations: a 70.3%
increase in urban land and a decrement in vegetative cover comprising a 15.5% reduction in dense
vegetation and a 62.9% decrease in sparse vegetation. Change detection analysis elucidates a 24.6%
conversion of sparse vegetation into urban land, underscoring a pronounced trajectory towards
urbanization. Temporal and seasonal LST variations across different LULC classes were analyzed
using kernel density estimation (KDE) and boxplot analysis. Urban areas and sparse vegetation
had the smallest average LST fluctuations, at 2.09 ◦C and 2.16 ◦C, respectively, but recorded the
most extreme LST values. Water and dense vegetation classes exhibited slightly larger fluctuations
of 2.30 ◦C and 2.24 ◦C, with the bare land class showing the highest fluctuation 2.46 ◦C, but fewer
extremes. Quantitative analysis with the application of Kolmogorov-Smirnov tests across various
LULC classes substantiated the normality of LST distributions p > 0.05 for both monthly and annual
datasets. Conversely, the Shapiro-Wilk test validated the normal distribution hypothesis exclusively
for monthly data, indicating deviations from normality in the annual data. Thresholded LST classifies
urban and bare lands as the warmest classes at 39.51 ◦C and 38.20 ◦C, respectively, and classifies water
at 35.96 ◦C, dense vegetation at 35.52 ◦C, and sparse vegetation 37.71 ◦C as the coldest, which is a
trend that is consistent annually and monthly. The analysis of SUHI effects demonstrates an increasing
trend in UHI intensity, with statistical trends indicating a growth in average SUHI values over time.
This comprehensive study underscores the critical role of remote sensing in understanding and
addressing the impacts of climate change and urbanization on local and global climates, emphasizing
the need for sustainable urban planning and green infrastructure to mitigate UHI effects.

Keywords: land surface temperature; land use/land cover; Landsat; MODIS; air temperature; urban
heat island; surface urban heat island; linear trend
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1. Introduction

It is now widely accepted that the significant increase in global temperatures over
the recent fifty years is largely due to human activity rather than a result of natural vari-
ation. Many studies support this view, [1–6] collectively highlighting the anthropogenic
contributions to the warming climate. The accelerating effects of global climate change
and the widespread increase in urbanization across the globe underscore the importance
of enhancing our understanding of how heat stress affects humans within urban environ-
ments [7–11].

Intensive urbanization significantly affects natural ecosystems. The swift pace of
urban expansion, which strains essential infrastructure, coupled with the escalation in
the frequency and severity of weather events linked to global climate change, intensifies
the effects of environmental hazards [12–17]. Long-term changes in land use/land cover
(LULC) [18,19], stemming from the conversion of natural green spaces and arable lands into
impermeable surfaces, are contributing to the formation of urban heat islands (UHI) [20–23]
and the elevation of land surface temperatures (LST) [24–31]. Consequently, understanding
the interactions between land surface temperature fluctuations and land use/land cover,
facilitated by remote sensing technologies, becomes imperative for refining urban planning
and management practices [32–35].

The methodological basis for studying the spatial patterns and temporal dynam-
ics of land surface temperature and land use/land cover is the analysis of satellite data,
specifically thermal infrared data for LST [8–13,15,35]. The sensors and satellites most
frequently used to derive land surface temperature are NOAA, MODIS [17,36–42], ASTER,
AATSR, SLSTR (Sentinel-3 A/B), and Landsat, which are all freely available [17,22,43,44].
For calculating LST from Landsat satellite imagery, various validated algorithms are em-
ployed as well as diverse methodologies for enhancing the accuracy of LST retrieval and
modelling [45–49].

Approaches to obtaining LST are generally divided into four types: mono-window
algorithms, which are based on individual atmospheric parameters such as ambient temper-
ature, humidity, and mean atmospheric temperature [46,50–54]; single-channel algorithms,
which take the Earth’s emissivity into account and are conditioned by the water vapor
content in the atmosphere [40,45,51,55]; split-window algorithms, which use the differ-
ent absorptions in two thermal infrared bands, with or without linearizing the radiance
transfer equation with respect to the temperature or wavelength [20,23,37,39,45]; and the
application of the radiative transfer equation, which involves the calculation of brightness
temperature, proportion of vegetation based on NDVI, and emissivity [31,52–56].

Many studies are specifically dedicated to comparing the performance of existing meth-
ods for obtaining and improving land surface temperature data [15,31,51,57]. The main
statistical approaches and methods commonly used in the study of land surface temperature,
especially land use/land cover interdependence, are supervised and unsupervised tech-
niques [9,19,24,54–58]; Mann-Kendall statistics [13,24,59,60]; cellular-automata [20,31]; and,
the most commonly used, linear and multiple linear regression analyses [9,16,27,31–37,61,62].
Particular attention is merited by studies focused on establishing dependencies between land
surface temperature, UHI effects, and various vegetation indices [29,54,63–69].

Most studies using satellite imagery highlight the complex relationship between
changes in land surface temperature and land use/land cover, as well as UHI and SUHI
(surface urban heat island, referring specifically to the land surface) phenomena, offering
insights into the dynamics of the thermal environment in cities [70–76]. The exploration of
UHI effects within various global cities, notably Munich in Germany, Shanghai in China,
and Tokyo in Japan, reveals a consistent mitigation impact provided by urban vegetation
and water bodies [7,13,30]. An increase in land surface temperature is observed as areas
transition from dense vegetation to sparser vegetation or bare land, with moisture content
being a pivotal factor in this process [8,9,35,69,77,78]. The reduction of urban greenery
directly correlates with the expansion of bare land and built-up surfaces, further increasing
urban temperatures [57,60,79]. Research into the spatial distribution of land surface temper-
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ature across various urban and rural settings reveals that populated areas exhibit the highest
land surface temperature across all seasonal phases, with agricultural lands, vegetation,
and water bodies following in descending order of LST intensity [18,23,25,67,70].

This seasonal variability underscores a pronounced dependency on land use/land
cover changes, especially during warmer months, with topography and albedo being more
important in colder seasons [11,42,56]. Seasonal analyses further delineate the dependency
of land surface temperature on land use/land cover changes, underscoring the significant
influence of vegetation cover and topography on temperature variations [47,80]. The intri-
cate link between urban development patterns and land surface temperature variations has
been further elucidated through studies focusing on the configuration of urban spaces [49].
Multitemporal analyses across European cities reveal significant land surface temperature
differences between urban centers and their rural counterparts, with the SUHI effect exhibit-
ing maximum variation [10,26,80]. The SUHI intensity is found to decrease with distance
from urban centers [32,33], establishing a clear correlation between land surface tempera-
ture and biophysical surface parameters. The role of deforestation alongside urbanization
in elevating land surface temperature in urban areas has been identified, highlighting the
necessity to consider population density, construction, and landscape changes [37,49,59].

The study of local climate zones can provide a clearer view of urban thermal behav-
ior, highlighting the temperature differentials across different urban zones influenced by
specific planning and land use patterns [17,64,65]. Research underscores the relationship
between urban zones, land surface temperature, and air temperature, highlighting veg-
etation and tall buildings as major factors influencing land surface temperature, while
construction density has a lesser impact [49]. Recent advocacies for integrating land surface
temperature analysis into broader climate change research emphasize the significance of
employing additional climatic data and validation methods to refine our understanding of
UHI and SUHI effects [16,20,36]. This approach is supported by evidence suggesting that
satellite-derived LST estimates can effectively represent trends in near-surface air temper-
ature, supporting their use in urban climate studies [12,38,48]. In summary, this body of
research collectively underscores the intricate interplay between urban vegetation, land
use/land cover and land surface temperature changes, and urban planning in modulating
urban temperatures.

The primary goal of this research is to investigate the interactions between land
use/land cover changes, land surface temperature, and air temperature within the urban
context of Kharkiv. This study focuses on how these interactions contribute to the observed
increase in land surface temperature and the emergence of SUHI effects. Specifically, the
main objectives addressed here are as follows: (1) to examine the global trend of increasing
land surface and air temperatures in Kharkiv’s urban environment; (2) to analyze spatial
and temporal changes in Kharkiv’s urban cover, identifying the main classes undergoing
transformation; (3) to explore variations in land surface temperature and trends in land
use/land cover classes in Kharkiv; and (4) to understand the relationships between land sur-
face and air temperatures, urbanization, vegetation, and UHI. Note that this study applies
only to the city of Kharkiv; other cities would require additional data for similar analyses.

2. Materials and Methods
2.1. Study Area

Kharkiv is located in northeastern Ukraine (Figure 1). It is the second-largest city in
the country with a pre-invasion population of around 1.4 million. The city covers more than
306 km2 and is divided into nine districts [81]. The climate is temperate continental, with
mean temperatures ranging from −6.1 ◦C in January to +20.5 ◦C in July, and an average
annual rainfall of 520 mm [82]. As a major industrial center of the country, Kharkiv is
heavily influenced by urbanization, which changes its microclimate, making it warmer than
in rural areas and increasing air pollution. Green spaces in Kharkiv cover 15.4 thousand
hectares and nature reserves cover 467.7 thousand hectares [81,82]. Kharkiv’s vulnerability
of climate change highlights serious concerns regarding heat stress and the fragility of its
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urban green spaces. This is mostly due to the city’s energy-intensive heavy industries,
which add to the urban atmospheric heat and increase the risk of heat stress. Green spaces
are particularly scarce in the city’s northeastern, eastern, and southeastern districts, which
are predominantly occupied by industrial zones [83].
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Figure 1. The spatial location of Kharkiv, Ukraine.

It is now well known that the conflict with Russia, ongoing since February 2022, has
seriously affected Kharkiv’s demographics, economy, and industrial structure, further
complicating its environmental challenges [84]. Nevertheless, our study aims to assess
the city’s thermal environment and climate adaptability using remote sensing, which is
especially important during military conflicts when ground-based methods are not possible.

2.2. Data

This study used Landsat imagery, accessed via the Google Earth Engine (GEE) cloud
platform, spanning a period of 40 years from 1984 to 2023. The dataset comprises atmo-
spherically corrected surface reflectance and land surface temperature values. These were
derived from data produced by the Landsat 5, 8, and 9 Operational Land Imager/Thermal
Infrared Sensor systems. The imagery encompasses four (Landsat 5) or five (Landsat
8–9) visible and near-infrared bands, along with two short-wave infrared bands. These
bands were processed to yield orthorectified surface reflectance. Additionally, there was a
thermal infrared band (specific to Landsat 8–9) processed to provide orthorectified surface
temperature data. The dataset also includes intermediate bands pivotal in the computa-
tion of surface temperature products, complemented by quality assessment bands [85–87].
The selection interval for the imagery was strategically determined to mitigate the im-
pacts of cloudiness and snow cover, which significantly influence the accuracy of LST
measurements. The presence of even minimal cloud cover can notably distort LST data
acquisition. Therefore, imagery selection was confined to the months of April through
September, with a stipulation for cloud cover to be less than 10%, ensuring weather clarity.
This selection criterion, however, meant that imagery for certain months or years was not
always available.



Remote Sens. 2024, 16, 1637 5 of 27

In addition to the Landsat data, LST data were obtained from the MOD11A1 V6.1
product from 2000 to 2022. This product provides daily LST and emissivity values on a
1200 × 1200 km grid, derived from the MOD11_L2 swath product. The MOD11A1 V6.1
product includes both day-time and night-time surface temperature bands along with
their quality indicator layers. LST pixel values are generated using the split-window
algorithm with clear-sky conditions and are averaged in areas with overlapping pixels with
overlapping areas of weight [41].

In the context of this study, the use of average monthly temperature data, sourced
from the Climatic Research Unit (CRU) Time-series (TS) Version 4.07, enhances the preci-
sion in examining LST changes. The CRU TS 4.07, a product of the meticulous research
conducted by the Climatic Research Unit at the University of East Anglia and financed by
the UK National Centre for Atmospheric Science (NCAS), a NERC collaborative center,
offers month-by-month climatic variations spanning from 1901 to 2022. These data are
presented on high-resolution grids of 0.5 × 0.5 degrees, enabling a detailed and nuanced
understanding of climatic patterns. The variables encompassed within the CRU TS4.05
dataset are comprehensive and diverse, including cloud cover, diurnal temperature range,
frost-day frequency, wet-day frequency, potential evapotranspiration, precipitation, daily
mean temperature, monthly average daily maximum and minimum temperature, and
vapor pressure. The granularity of this dataset, with its high-resolution grid format, allows
for a detailed spatial analysis of climatic variables, offering insights that are critical in
understanding the nuanced variations in land surface temperatures [88].

Table 1 summarizes the datasets used in this study. The full Landsat datasets are
presented in Supplementary Table S1.

Table 1. Summary of the datasets in this study.

Collection/Product LULC LST Cloud % Period Total Data

Landsat 5 Level 2,
Collection 2, Tier 1 SR_B1-SR_B7 (30 m) ST_B6 (100 m) 0–10 April–September

1984–2011 61

Landsat 8/9 Level 2,
Collection 2, Tier 1 SR_B2-SR_B7 (30 m) ST_B10 (100 m) 0–10 April–September

2012–2023 45

MOD11A1.061 - LST_Day (1 km) - April–September
2000–2022 138

CRU TS Version 4.07 - Tair - Average monthly
1984–2022 456

The available dataset spans four decades, which is suitable for elucidating long-term
trends and fluctuations in LST and land cover modifications. Moreover, most of the imagery
exhibits minimal cloud coverage and is coincident with periods of zero precipitation
readings. This pattern suggests that the recorded LST values are less prone to alterations
by immediate moist conditions, thereby reflecting the actual land surface conditions more
accurately as opposed to ephemeral meteorological variations.

2.3. Methods
2.3.1. Retrieval of Land Surface Temperature Using the Radiative Transfer Equation

The radiative transfer equation is one of the most used methods of LST retrieval;
it involves the calculation of brightness temperature, proportion of vegetation based on
NDVI, and emissivity (E). It was calculated on the GEE platform [31,51,52,89]. In the first
step, the brightness temperature (Tb) was obtained from the Landsat surface reflectance
(SR) collection using Equation (1).

Tb = ST × 0.00341802 + 149.0 (1)
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where Tb is the brightness temperature; ST is the pixel value from thermal band 6 (ST_B6)
for Landsat 5 and band 10 (ST_B.*) for Landsat 8/9. This formula converts the digital pixel
values of band 6 (band 10) into brightness temperature. The factor 0.00341802 and the
constant 149.0 are calibration parameters that transform the digital values into temperature
in Kelvin or Celsius (depending on the original settings of the sensor).

The next step involves using the reduceRegion method in the GEE platform to calculate
the minimum (NDVImin) and maximum (NDVImax) NDVI values within the specified study
area, which in our case was the shapefile of the city of Kharkiv. These values are used
to calculate the proportion of vegetation cover (pv) in the region of interest [55]. Pv is
calculated using Equation (2).

pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(2)

where NDVImin and NDVImax are the NDVI values for pixels without vegetation and pixels
with vegetation, respectively.

The emissivity (E) is calculated from pv using Equation (3).

E= 0.004pv+0.986 (3)

Emissivity values near 1.0 are typical for natural surfaces like bare land and vegetation,
while slightly lower values are often associated with water bodies or urban areas. This
is a common approach in remote sensing to estimate surface emissivity using vegetation
information [48,89].

The LST in Celsius can then be calculated from Equation (4).

LST =

 Tb

1+
(

0.00115× Tb
1.438 × ln(E)

)
− 273.15 (4)

where Tb is the (Kelvin) brightness temperature, obtained from the thermal band of the
satellite imagery; E is the emissivity (Equation (3)); and the constants 0.00115 and 1.438 are
derived from Planck’s function [51,52,54].

To calculate LST values using MODIS, a script in GEE was written, and then MODIS/
006/MOD11A1 LST_Day_1km product was filtered for the appropriate period and the
shapefile of the study area. Then, the obtained LST was converted from K to Celsius [38,41].

2.3.2. Land Use/Land Cover Classification and Change Detection

The Random Forest (RF) algorithm, implemented on the GEE platform, was used
to classify LULC from Landsat imagery [90,91] into five classes: water, dense vegetation,
urban areas, bare land, and sparse vegetation The generation of training samples involved
careful digitization of image pixels from each LULC class. Following established recom-
mendations [90], a minimum of 50 training samples for each class were generated, totaling
1,045 training samples. These samples were distributed proportionally to the prevalence
of each LULC class within the study area. The RF algorithm was implemented with a
configuration of 100 trees [90]. We created 376 additional samples for accuracy assessment.

Classification was based not just on spectral bands but also multiple vegetation indices
and similar indices, including NDVI, NDBSI (Normalized Difference Bare Soil Index),
BAEI (Built-up Area Extraction Index), NDWI (Normalized Difference Water Index), NDBI
(Normalized Difference Built-up Index), BRBA (Band Ratio for Built-up Area), NBAI
(Normalized Built up Area Index), IBI (Index-Based Built-up Index), NBI (New Built-up
Index), and UI (Urban Index), to enhance the differentiation of spectral similarities among
classes [92–96].

Accuracy of the LULC maps was assessed using a confusion matrix to calculate overall
accuracy (OA), producer’s and user’s accuracy (PA and UA), and the Kappa coefficient [97].
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Additionally, the advanced change detection algorithm within ArcGIS PRO was used
to analyze temporal changes in LULC categories from 1984 to 2023, enabling precise
monitoring of spatial variations [95]. For the Landsat 5 imagery classification from 1984 to
1990, significant challenges in distinguishing urban areas from bare land were addressed
using topographic maps of Kharkiv (sheets M-37-073 and M-37-061, Soviet Union General
Staff) from 1986 to 1990. These maps were merged, georeferenced, and incorporated into
our GEE project after cropping with the area shapefile [98].

2.3.3. Trend Analysis Methods and Statistical Distribution

To determine the trend of increase or decrease in Tair, LST, linear regression analysis
was used, with the determination of the slope, coefficient of determination (R2), level of
significance (p-value), and Mann-Kendall test (τ), p(τ) [9,11,31,99,100]. For comparison of
Tair, LST by Landsat and MODIS was also used, along with the root mean square error
(RMSE) [61,62]. For correlation analysis between SUHI mean and Tair, LST, urban area, and
vegetation area, we used Pearson’s (rx,y) and Spearman’s (ρ) coefficient of correlation and
standard error (SE) [97].

The relationship between LULC classes and LST was analyzed using Kernel Den-
sity Estimation (KDE) and boxplot techniques to assess distribution, identify patterns,
and evaluate variability in LST across different land covers. KDE helped visualize LST
distributions, showing common values (mode), data variance, and skewness, indicating
multimodal distributions within classes as well. Boxplots provided insights into the me-
dian, interquartile range, and outliers, highlighting central tendency, data spread, and
potential anomalies [61,80,101,102].

To quantitatively assess statistically significant departures from the expected nor-
mal distribution of LST across various LULC classes, the Shapiro-Wilk and Kolmogorov-
Smirnov tests were employed with two primary indicators: the test statistic (St) and the
p-value [103,104].

2.3.4. Statistical Distribution of Urban Heat Island and Surface Urban Heat Island Value

To determine the UHI index for each point on the surface, Equation (5) was used.

UHIindex =
(LST − µLST)

σLST
(5)

where LST is the LST at each point on the surface, measured in ◦C; µLST is the mean LST
for the entire area, measured in ◦C; and σLST is the standard deviation of the LST for the
entire area [17,30,73,74].

The calculation of pixel-wise SUHI can be represented mathematically by Equation (6).

SUHI(i,j) = LSTurban(i,j) − LSTveg (6)

where SUHI(i,j) is the value for the pixel located at the i row and j column of the urban
area, LSTurban(i,j) is the LST at the pixel located at the i row and j column of the urban
area, LSTveg is the average LST across all pixels classified as vegetation (dense vegetation,
sparse vegetation) [10,26,34,76,79]. The urban mask was applied to the resampled LST
data to extract the temperatures for urban areas, while the vegetation mask was applied
for vegetation areas to perform the same task. Then, the average vegetation temperature
was subtracted from the urban temperature for each corresponding pixel, resulting in the
SUHI map.

3. Results

Since the overall goal of this study was to elucidate the dynamics between changes in
LULC, LST, and air temperature (Tair), and how these interactions contribute to the linear
growth of LST and the manifestation of SUHI effects in urban environments, our results
are presented in a stepwise manner in the following sections.
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3.1. Establishing a Global Trend of Increasing Air Temperature and Land Surface Temperature
3.1.1. Analysis of Air Temperature

While investigating climatological dynamics, we utilized the CRU TS to construct a
heatmap representing the temporal progression of air temperature and monthly average
temperatures (Figure 2).
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Figure 2. Monthly average Tair in ◦C, over a 42-year period from CRU TS, Kharkiv, Ukraine.

This figure summarizes the thermal variation within the city of Kharkiv. The coldest
month observed over the study period was December 1996, (−10.7 ◦C), and the warmest
month was July 2006, (24.9 ◦C). A consistent pattern of warmer temperatures is evident
during the mid-year months, particularly in the recent decade, suggesting a potential shift
towards higher summer temperatures. The data underscore the necessity for scrutinizing
the extremities within the climatic sequence to understand the breadth and implications of
temperature variability over the span of the recent decades.

Upon analyzing the created climate data table, the results reveal notable seasonal
patterns and statistically significant trends in Tair (Table 2). Particularly, the months of June,
July, August, and November exhibit substantial and statistically significant positive slopes
in Tair trends (0.059, 0.059, 0.074, and 0.082, respectively), as indicated by their low p-values
(0.003, 0.001, 0, and 0.003, respectively). This is further substantiated by the high τ values
for these months, especially August (0.493), which, coupled with their low p (τ), suggests a
robust upward trend in Tair (Table 2).

Table 2. Results of linear trend analysis for Tair.

Month 1 2 3 4 5 6 7 8 9 10 11 12 Yearly

Slope 0.009 0.076 0.066 0.036 0.023 0.059 0.059 0.074 0.045 0.029 0.082 0.063 0.052

p-value 0.788 0.077 0.057 0.119 0.292 0.003 0.001 0 0.028 0.097 0.003 0.047 0

R2 0.002 0.076 0.088 0.059 0.028 0.204 0.234 0.405 0.115 0.068 0.200 0.095 0.414

τ −0.039 0.205 0.187 0.113 0.097 0.334 0.359 0.493 0.259 0.160 0.324 0.188 0.487

p (τ) 0.712 0.056 0.083 0.298 0.368 0.002 0 0 0.016 0.139 0.003 0.083 0

These findings underscore the importance of these months in the context of rising Tair.
The analysis of the annual trend in Tair elevation yielded statistically significant outcomes,
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with R2 = 0.414 and τ = 0.487, respectively (Table 2). This relationship is illustrated in
Figure 3.
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3.1.2. Analysis of Land Surface Temperature Based on Landsat

We constructed LST maps encompassing all available temporal data points
(Figures 4 and 5). This analysis was aimed at examining the trajectory of changes specif-
ically pertaining to the rise in surface temperatures. The method used to create these
LST maps allows for a detailed analysis of temperature patterns and changes over time,
which is important to reveal climate change impacts, particularly in the context of surface
temperature variations over the studied period. Since the climate data showed a sufficient
trend showing an increase in air temperature in the months of June, July, August, and
November (Table 2), further analysis was focused on these months.
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Trends in July LST. Due to significant cloud cover during the observation period, our
July image collection comprises only 17 observations. Analysis of July trends from 1984 to
2023 reveals that areas with the highest LST are predominantly located in the city center,
extending to the northeast and southeast (Figure 4). Annual analysis indicates a notable
thermal anomaly in 2016, where the average LST peaked at 45 ◦C. Similarly, high LST
values were recorded in 2018 and 2020, reaching 41.4 ◦C, in contrast to the 1980s and 1990s,
when LST values were observed at 32.8 ◦C and 34.9 ◦C, respectively. Trends in August
LST. Analysis of LST in August, based on 20 observations, highlights a warming trend.
It is particularly noteworthy that recent years have exhibited a gradual increase in LST.
For instance, in 1986, 1992, and 1996, LSTs were recorded at 35.9 ◦C, 32.5 ◦C, and 31 ◦C,
respectively. In contrast, the period from 2017 to 2023 experienced a higher average LST,
exceeding 40 ◦C. This trend suggests a continuous rise in mean LST for August across the
years. Elevated values in certain years signify extreme LST occurrences. Trends in June LST.
The June image dataset comprises 14 observations, yet it similarly reveals a general trend
of increasing LST over the years. For instance, the average LST in June was 37.3 ◦C in 1986,
which rose to 40.7 ◦C by 2020. The peak average LST reached 44.5 ◦C in 2019, denoting
exceptionally high temperatures in recent years (Figure 5). Although variability in LST is
observed throughout the studied period, the overall trend indicates a continuous increase
during the summer months.

The statistical results for April (Month 4) and May (Month 5) exhibit a decreasing
trend but statistically insignificant trend. June (Month 6) and September (Month 9) display
a slight increasing trend (slope: 0.052 and 0.070), but one which is, again, not statistically
significant (p-value: 0.547 and 0.531). July (Month 7) indicates a moderate increasing trend
(slope: 0.0910) and nearing statistical significance (p-value: 0.131). August (Month 8) shows
a more pronounced increasing trend (slope: 0.133), which is statistically significant (p-value:
0.041). The number of observations for each month, ranging from 11 to 20, impacts the
reliability and statistical significance of the trend analysis (Table 3). More observations, as
seen in August, tend to provide more statistically significant results. Fewer observations
can lead to weaker statistical support for any identified trends. However, it is also evident
that even with a greater number of observations, the trend might not always be significant
if the natural variability of the data is high, as seen in April and May. This suggests that
while the quantity of data is important, the quality and inherent variability of the data are
also crucial in determining the significance of trends.
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Table 3. Results of a linear trend analysis for the LST obtained from Landsat.

Month, Observations 4 (11) 5 (16) 6 (14) 7 (17) 8 (20) 9 (15)

Slope −0.102 −0.089 0.052 0.091 0.133 0.071

p-value 0.199 0.246 0.545 0.131 0.042 0.531

R2 0.176 0.102 0.031 0.146 0.213 0.031

τ −0.273 −0.124 0.231 0.309 0.295 0.181

p (τ) 0.283 0.559 0.279 0.091 0.074 0.380

3.1.3. Analysis of Land Surface Temperature Based on MODIS

Analysis of monthly mean LST trends using MODIS provides an in-depth view of the
April to September mean LST trends for the period of 2000 to 2022 (Figure 6).
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The linear trend analysis reveals varied trends across the months. April (Month 4)
shows a slight increasing trend (slope: 0.045) but not a statistically significant one (p-value:
0.544). May (Month 5) indicates a negligible decreasing trend (slope: − 0.019), with no
statistical significance (p-value: 0.843). The significance of the trend monitored in June
(Month 6) and September (Month 9) presents a notable increasing trend (slope: 0.202 and
0.131), which is statistically significant (p-value: 0.023 and 0.116). The fact that July (Month
7) and August (Month 8) show a moderate increasing trend, but not a statistically significant
one, is intriguing (Table 4).

Table 4. Results of a linear trend analysis for the LST based on MODIS.

Month 4 5 6 7 8 9

Slope 0.045 −0.019 0.203 0.043 0.083 0.131

p-value 0.545 0.844 0.023 0.567 0.221 0.116

R2 0.018 0.002 0.222 0.016 0.071 0.113

τ 0.107 −0.004 0.281 0.209 0.170 0.304

p (τ) 0.497 1 0.064 0.172 0.271 0.044

The analysis indicates a general trend of increasing LST in Kharkiv during the summer
months from 1984 to 2023. Notably, recent years have experienced higher LST, as seen in
2016 and 2019. This trend could be attributed to factors such as the UHI effect and climatic
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change. Factors such as urbanization, land use change, and environmental factors could also
be contributing to these observed changes in LST patterns. This analysis suggests a need
to consider broader climatic trends and local environmental changes to fully understand
these LST patterns.

3.1.4. Comparison of Air Temperature and Land Surface Temperature by Landsat
and MODIS

Comparing air temperature with land surface temperature from Landsat and MODIS
satellites helps to understand the UHI effect in cities, such as Kharkiv, revealing temperature
fluctuations caused by urban infrastructure. On the one hand, high-resolution Landsat data
are critical for locating hot spots in urban areas. Analysis of the relationship between Tair
and LST coupling analysis helps to elucidate how urbanization affects the local microclimate
at different scales of observation, from local (30 m with Landsat) to regional (1 km with
MODIS) (Figure 7).
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In summary, both datasets show a statistically significant (p < 0.05) positive corre-
lation between Tair and LST, with MODIS data showing a slightly stronger relationship
(R2 = 0.879) than Landsat data (R2 = 0.663). The MODIS data also has a lower RMSE = 1.476,
indicating a more accurate model in terms of prediction error (Figure 7, Table 5).

Table 5. Results of linear regression between Tair and LST based on Landsat and MODIS.

Slope Intercept R2 p-Value τ RMSE

LST Landsat 1.261 9.82 0.663 2.18 × 10−13 0.626 3.815

LST MODIS 0.94 11.289 0.879 1.27 × 10−24 0.711 1.476

The statistical analysis demonstrates a clear pattern of rising temperatures within
Kharkiv’s urban environment. This trend is not solely attributable to urbanization and its
associated modifications to land surfaces, which is reflected in the increasing LST. It is also a
manifestation of the broader phenomenon of global warming, as indicated by the significant
correlation between Tair and LST. These findings underscore the intricate interplay between
localized urban development and overarching climatic shifts, emphasizing the dual impact
on the thermal dynamics of the region and the need to consider broader climatic trends
and local environmental changes to fully understand these LST patterns.

3.2. Land Use/Land Cover Transformation

Temporal classification analysis of satellite-derived land cover datasets from 1984 to
2023 reveals substantial alterations in various land class areas (Figure 8). Subsequent to the
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implementation of image classification techniques, confusion matrices were generated, pro-
viding a detailed representation of classification accuracy on an annual basis. Consequently,
it was observed that the user’s and producer’s accuracy in water classification, denoted by
UA and PA, attained a remarkable 99%. In contrast, the dense vegetation class exhibited
a UA of 90% and a PA of 86%. The urban area class displayed a high level of accuracy,
with a UA of 92% and a PA of 97%, an achievement likely attributable to the integration
of additional spectral indices within the classifier, enhancing the identification of artificial
structures. The bare land class demonstrated a UA of 87% and a PA of 84%. Notably, the
sparse vegetation class exhibited the lowest accuracy rates, with a UA of 78% and a PA of
77% Table 6. It is important to highlight that the overall accuracy of these classifications
exhibited a range between 80% and 95%.
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Table 6. Accuracy assessment of classification results.

July, Year 1984 1990 1996 2001 2006 2011 2018 2023

Class UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

Water 1 1 1 1 1 1 1 0.98 1 1 1 1 1 0.99 1 0.99
Dense
vegetation 0.88 0.99 0.95 0.9 0.96 0.95 0.96 0.93 0.94 0.77 0.86 0.89 0.87 0.74 0.88 0.9

Urban area 0.98 0.95 0.99 0.96 0.99 0.94 0.99 0.96 0.98 1 0.91 1 0.72 1 0.93 0.95
Bare land 0.83 0.83 0.94 0.75 0.91 0.98 0.86 0.9 0.94 0.73 0.85 0.85 0.96 0.82 0.78 0.98
Sparse
vegetation 0.81 0.73 0.71 0.9 0.92 0.94 0.89 0.91 0.64 0.87 0.76 0.64 0.8 0.63 0.87 0.67

OA 0.91 0.91 0.95 0.94 0.89 0.88 0.84 0.9
Kappa 0.88 0.89 0.94 0.92 0.85 0.85 0.8 0.87

Analysis showed that the water area increased by about 65%, while dense vegetation
decreased by 15.5%. Urban areas experienced the largest changes and increased by about
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70.3%. Bare land, which usually comprises the least amount of area in urban environments,
showed an increase of about 61%. Moreover, the sparse vegetation class decreased by
62.9% (Figure 8). These changes reflect a significant shift in land use patterns in this
urban area, emphasizing the expansion of cities and the corresponding decrease in natural
vegetation cover.

The largest proportion of about 24.6% of the total area is observed in the transition from
sparse vegetation to urban land (Figure 9). This indicates a significant urbanization trend.
Dense vegetation to urban and sparse vegetation: these transitions are also significant,
with about 5.1% and 3.7% of the total area, respectively, indicating a reduction in dense
vegetation areas (Figure 9).
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Various smaller transitions are noted, such as from water to urban land or from bare
land to urban land, but these represent smaller fractions of the total area. A notable
proportion of 51.8% of the area remained unchanged, indicating stability in certain land
cover types. As shown by Figure 9, this area is mainly located under the central urban
area type.

3.3. Determining Land Surface Temperature Threshold Values for Different Land cover Classes
Based on Temporal and Seasonal Variability

KDE and its metrics were used to analyze the temperature conditions of each LULC
class based on July’s LST from 1984 to 2023 (Supplementary Table S2). LULC classes experi-
enced time-varying LSTs with a general trend towards higher extreme values. Specifically,
urban areas saw median LST fluctuate, rising from 39.39 ◦C in 1984 to 42.46 ◦C in 2020
before dropping to 39.30 ◦C in 2023. Dense vegetation experienced yearly fluctuations with
a significant decrease to 34.65 ◦C in 2023, despite notable increases to 38 ◦C in 2020, 2018,
and 2014. Bare land showed similar trends with median values exceeding 40 ◦C in the same
years as urban areas. Both sparse vegetation and water classes displayed marked increases
in LST, particularly peaking in 2018, with the lowest values noted in 1990.

The mean LST distributions for various LULC classes from April to September over
1996–2023 are depicted in Figures 10 and 11 and were analyzed using Gaussian KDE.
Figure 10 shows minimal differences in empirical distributions for water (0.010) and bare
land (0.002) compared to the theoretical normal distribution, indicating a close match. In
contrast, dense vegetation (0.017), urban areas (0.021), and sparse vegetation (0.016) have
larger differences, suggesting significant deviations. Monthly RMSE analysis in Figure 11
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indicates that June and July are the months with the highest deviations (RMSEs of 0.032
and 0.045), while April, May, and September show moderate deviations. August has the
lowest deviation (RMSE of 0.018), indicating the closest alignment. Area difference analysis
shows the greatest discrepancies in April and July, while June, May, and August indicate
closer conformity to the theoretical distribution.
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Figure 11. Quantitative assessment of deviations from normal distribution patterns of LST delineated
by average monthly values within various LULC classes (based on Shapiro-Wilk and Kolmogorov-
Smirnov statistical tests). Emp. Exc.—empirical excess; Th. Exc.—theoretical excess; Emp. KDE—
empirical kernel density estimation; Norm. Dist.—normal distribution.

Shapiro-Wilk (S-W) and Kolmogorov-Smirnov (K-S) tests assess normality, revealing
discrepancies. S-W indicates non-normality (p < 0.05), whereas K-S suggests normality
(p > 0.05), highlighting the complexity of interpreting statistical normality in Figure 10.
Moreover, the evaluation of LST distribution normality across each LULC class, segmented
monthly, substantiated the data’s normality through both S-W and K-S tests (p > 0.05),
thereby affirming statistical significance, as shown in Figure 11.

To calculate the thresholds for each class, we used a combination of median, IQR, min
LST, max LST, and skewness (Table 7).
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Table 7. Thresholds of different LULC classes based on Landsat LST over the years.

Class Med LST Lower
Threshold (LT)

Upper
Threshold (UT) St. dev.

Bare land 38.20 32.47 45.49 2.45

Dense vegetation 35.52 27.41 45.45 2.24

Sparse vegetation 37.71 31.93 44.44 2.16

Urban 39.51 33.48 46.51 2.09

Water 35.96 29.61 44.65 2.29

Urban areas and bare land are the hottest LULC classes, with the highest median
LSTs (approximately 39.51 ◦C and 38.20 ◦C) and significant variability, particularly for
bare land. Water bodies are the coolest, with a median LST around 35.96 ◦C and moder-
ate variability. Vegetation is cooler than non-vegetated surfaces, with dense vegetation
(35.52 ◦C) providing more cooling than sparse vegetation (37.71 ◦C). The standard devi-
ation across all classes indicates the degree of variability within each LULC class, with
urban areas showing the least variability, suggesting a more homogeneous temperature
distribution (Table 7).

LST from April to September from 1996 to 2023 was used to determine the seasonal
threshold classes. The statistical analysis was performed using the data presented in
Supplementary Table S3, and it is shown in Table 8.

Table 8. Seasonal LST thresholds for different LULC classes for different years.
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4 21.09 20.85 22.00 21.73 21.82 14.74 27.43 15.7 26.01 17.57 26.42 17.15 26.31 17.41 26.31

5 31.24 30.12 33.8 34.85 32.58 23.05 39.43 22.18 38.07 27.53 40.07 27.01 42.65 25.95 39.2

6 37.29 36.28 40.5 40.54 38.75 28.64 45.94 27.64 44.93 33.58 47.41 32.32 48.76 31.55 45.86

7 37.13 36.71 40.69 39.69 38.72 29.85 44.42 28.62 44.8 33.83 47.54 32.76 46.62 32.17 45.25

8 34.85 34.12 37.21 36.91 35.83 28.18 41.52 27.39 40.85 31.36 43.05 30.24 43.58 30.19 41.45

9 26.58 25.58 27.19 27.95 27.02 20.73 32.45 20.76 30.4 23.12 31.26 22.7 33.21 22.52 31.55

LT—lower threshold, UT—upper threshold.

By analyzing the data in Table 8, it is clear that water and dense vegetation have the
lowest average LST values during all months, starting at 20.97 ◦C in April and reaching
a maximum of 36.79 ◦C in June, and then decreasing again to 34.49 ◦C in August and
continuing through September. Urban areas show the highest average LST during these
months, starting at 22 ◦C in April and reaching a peak of 40.69 ◦C in July. The bare ground
also shows a high average LST with a peak of 40.54 ◦C in June. Mean LSTs in sparse
vegetation are lower, from 21.82 ◦C in April to 38.75 ◦C in June, than in urban areas and
bare land, but higher than in dense vegetation and near water bodies, indicating a moderate
cooling effect due to less-dense vegetation. Lower thresholds (LT) increase from April
to June and decrease towards September for all classes, indicating the onset of warmer
conditions in June and a gradual cooling towards September. Upper thresholds (UT) follow
a similar pattern, peaking in June and July, which represents the height of the summer LST
across all LULC classes. Moreover, the area remained unchanged, indicating stability in
certain land cover types. As shown by Figure 9, this area is mainly falls under the central
urban area type.
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3.4. Land Use/Land cover Transformation Impacts on Surface Urban Heat Island Dynamics

Using LULC and LST data, spatial maps of SUHI effects for 1984–2023 were con-
structed. These maps demonstrate a striking increase in the UHI effect of Kharkiv
(Figure 12a,b). Some of the July maps are presented in Supplementary Figure S4. The
correlation analysis between the SUHI mean and LST and Tair, as well as the proportions of
urbanized and vegetated areas, revealed a moderately strong positive correlation between
SUHI mean and urbanized areas in both July (0.55) and August (0.53). Conversely, there
was a moderately strong negative correlation between the SUHI mean and vegetation
area (−0.52 in July and −0.56 in August). The p-values associated with all three types of
correlation indicate that this relationship is statistically significant (p < 0.05). However, LST
and Tair in July showed weak correlations with SUHI mean, which were not statistically
significant (Table 9).
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Table 9. Correlation analysis between SUHI mean and indicators in July and August.

July rx,y p (rx,y) ρ p(ρ) τ p (τ)

SUHI mean and LST mean 0.167 0.521 0.236 0.359 0.141 0.432

SUHI mean and Tair −0.113 0.664 −0.065 0.804 −0.052 0.772

SUHI mean and urban area 0.511 0.035 0.581 0.014 0.421 0.02

SUHI mean and vegetation area −0.442 0.075 −0.59 0.012 −0.439 0.016

August

SUHI mean and LST mean 0.559 0.01 0.585 0.007 0.423 0.009

SUHI mean and Tair 0.406 0.076 0.415 0.069 0.296 0.069

SUHI mean and urban area 0.539 0.014 0.518 0.019 0.405 0.014

SUHI mean and vegetation area −0.605 0.005 −0.515 0.02 −0.416 0.012

The SUHI mean shows a statistically significant linear trend with a positive slope
(0.022 in July and 0.028 in August), indicating that the average SUHI value is increasing
over time. R2 indicates that about 41% of the variation in the SUHI mean can be explained
by the time variable. This trend is confirmed though the value of τ with a significant
p-value.

Both months show a statistically significant positive linear trend in SUHI mean growth,
although August has a slightly higher annual increase (Table 10). The statistical significance
of the trends is confirmed by both linear regression analysis and τ. The difference in the
R2 values indicates that the time variable explains slightly more of the variation in the
SUHI mean in July compared to August. The values of τ indicate a positive monotonic
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relationship between time and the SUHI mean in both months, with a slight decrease in the
strength of the relationship in August compared to July.

Table 10. Results of a linear trend analysis for SUHI in July and August.

July Slope Intercept R2 p-Value SE τ p (τ)

SUHI mean 0.022 −43.254 0.409 0.005 0.007 0.459 0.01

August

SUHI mean 0.028 −54.647 0.345 0.006 0.009 0.423 0.009

4. Discussion

In analyzing the results obtained from the study on the dynamics of LULC, LST, Tair
and their interconnections and impacts on the development of SUHI phenomena, several
important points of discussion were identified.

4.1. Climatic Dynamics of the Region

A comprehensive 42-year analysis of Tair for Kharkiv, Ukraine, utilizing CRU TS data,
reveals significant climatic dynamics and a pronounced trend towards higher summer
Tair, which is particularly evident in the recent decade. Anomalies observed during the
study period prompt further research into regional and global factors contributing to such
deviations. The statistically significant upward trends in Tair, especially noted by the
elevated Kendall rank correlation coefficient (τ) values in July and August, necessitate
an in-depth examination of the effects of urban development, land use alterations, and
greenhouse gas emissions on the local climate [3,5]. These observations, especially in
Figure 3, align with global warming trends but underscore the indispensable role of
regional studies in comprehending the nuances of global climate dynamics [1,2,4,6].

4.2. Land Surface Temperature Acquisition and Analysis Using Landsat and MODIS in
Comparison with Air Temperature

A detailed analysis of LST, derived from Landsat thermal bands for April–September,
between 1984 and 2023, illustrates surface temperature trends (Table 3). Utilizing all
available temporal data points (106 scenes), this study focuses on understanding the impact
of local climate change, specifically regarding LST variations [14,24–31]. The accuracy
of LST analysis can vary based on the quantity of satellite images, cloud cover, and the
acquisition method, especially for validations in situ [42,89]. We employed the radiative
transfer equation method, which is noted for its precision in multiple studies [51,53,54].
Nonetheless, incorporating parameters like water vapor into LST acquisition methods
has been shown to enhance relevance [39,45,50]. Consistent with Tair data in Table 2,
Landsat-derived LST shows a significant summer-warming trend with increases in mean
LSTs and recent extreme values, emphasizing the augmented effects of climate change,
human activities, and UHIs during peak heat periods [7,8,10,14,19]. MODIS-derived
LST data analysis indicates a significant increase in June and September, with moderate
and non-significant trends in July and August [37,38]. While not fully aligning with
Landsat and Tair data, it does not contradict them. MODIS’s 1 km resolution tends to
average the LST, limiting the detection of SUHI effects within cities [7,13,26,27]. Some
studies indicate the feasibility of enhancing the Landsat LST resolution to 10 m, promising
advancements for future research [56]. On the other hand, the temporal scope of MODIS
data (since 2000) may not fully capture the trends for certain months. However, Tair and LST
comparisons between Landsat and MODIS demonstrate a good correlation, particularly
highlighting the UHI effect, with MODIS exhibiting a slightly stronger correlation with
Tair, possibly due to the larger dataset [12,16,36,37,65]. Studies reveal a positive correlation
between LST and climatic variables like relative humidity, precipitation, and altitude, as
well as solar radiation and incoming surface longwave radiation [24,38,69]. It is therefore
possible to estimate global temperature trends using Tair data by leveraging the LST
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trends obtained from regional studies in comprehending the nuances of global climate
dynamics [1–6,74,79,83].

4.3. Land Cover Classification

Temporal classification analysis of Landsat-derived land cover datasets from 1984
to 2023 revealed significant changes in LULC, which were highlighted by the high clas-
sification accuracy for water, urban, and vegetation classes. Notably, water classification
achieved an exceptional accuracy of 99%, while urban areas showed high accuracy, likely
improved by the inclusion of additional spectral indices [10,58,59]. Each vegetation in-
dex plays a distinct role in differentiating the classes: NDVI is essential for identifying
dense vegetation and sparse vegetation by measuring the health and density of vegeta-
tion [11,17,29]. NDBSI is effective in distinguishing bare land, highlighting areas with
minimal vegetation cover [93]. BAEI is useful in identifying bare land by isolating areas
devoid of significant vegetation or water [94]. NDWI crucial for detecting water bodies as
it differentiates water features from land by focusing on moisture content [11,18,35]. NDBI,
BRBA, and NBAI are tailored to identify urban areas, emphasizing urban structures and
artificial surfaces [17,18,95,96]. IBI and NBI specifically target urban areas, enhancing the
identification of urban and constructed spaces. UI focuses on the extent and development
of urban areas, aiding in the delineation of urban areas [34,96]. Also, in many papers, it is
the NDBI index that shows the closest correlation with the LST [19,20,25].

The use of the RF algorithm was pivotal in achieving high classification accuracy, espe-
cially when comparing the thermal regimes of different LULC classes [19,58]. This method’s
efficacy is juxtaposed with other classifiers like the support vector machine [8,9,22,25,34]
and maximum likelihood classifier [11,17,20,23,28]. Moreover, these algorithms, despite
their advantages, exhibit varying degrees of effectiveness in LULC classification. Addition-
ally, the incorporation of texture measures and elevation data further enriches the classifi-
cation accuracy and detail. Certain investigations leverage pre-existing LULC classification
frameworks, such as the Corine dataset, which proves advantageous when conducting
comparative analyses with LST data derived from the MODIS due to its compatible spatial
resolution [7,12,24,35].

A significant finding from the analysis is the pronounced increase in urbanized areas
by 70.3% and the decrease in sparse vegetation by 62.9%, indicating a strong trend towards
urbanization. This observation is consistent with numerous studies focusing on industrial
cities, highlighting the global shift towards urban expansion at the expense of natural
landscapes [10,17,20,23,30,66,78].

4.4. Seasonal and Annual Fluctuations in Land Surface Temperature across Different Land Cover
Types and the Determination of Threshold Values

Analysis of LST variations across different LULC classes shows the lowest fluctuations
in urban and sparse vegetation areas of 2.09 ◦C and 2.16 ◦C, respectively, which were
possibly influenced by urban development and climate factors, alongside the impacts of
industrial shutdowns and the conflict that began in 2014. The frequency of LST extremes
has increased, suggesting an intensification of the UHI effect. Water and dense vegetation
displayed slightly higher fluctuations of 2.30 ◦C and 2.24 ◦C, with bare land showing the
highest fluctuation of 2.46 ◦C [7,12,29].

Figures 10 and 11 demonstrate the theoretical normal distribution among LULC classes.
Water and bare land classes show minimal distribution differences, indicating stability
due to their high heat capacity. In contrast, dense vegetation and urban areas show larger
deviations, particularly during warmer months, reflecting UHI effects and the impact of
seasonal growth cycles on vegetation. Monthly RMSE analysis confirms these patterns,
with the highest deviations occurring in June and July, aligning with peak temperatures,
and the lowest in August, indicating potential temperature stabilization. Discrepancies
between the results of the Shapiro-Wilk and Kolmogorov-Smirnov tests underscore the
challenges of interpreting LST data. Deviations from the norm could stem from outliers or
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irregularities in the data [103,104]. However, a more detailed analysis necessitates further
in-depth, separate studies to be conducted in the future.

The threshold values are demonstrated in Tables 7 and 8. Although these values
were specifically derived for the city of Kharkiv, they align well with the results of other
studies [7,17,26,32]. It has been established that urban areas and bare lands exhibit the
highest LST, which is particularly evident in industrial and densely built-up districts of
the city [10,13,22]. Water bodies and sparse and dense vegetation exhibit the lowest LST,
confirming their role as cooling factors with a broad radius of effect [9,24,57]. This is
especially noticeable in seasonal LST data, which show lower average temperatures in the
spring, with a gradual increase to a peak in mid-summer, followed by a decrease towards
autumn [11,56,80]. Such an analysis of LST thresholds reflects seasonal climatic changes
and distinct thermal behaviors of each LST class, primarily determined by their properties
and interactions with climatic conditions.

4.5. Expanding the Surface Urban Heat Island Effect

The analysis of the SUHI effect in relation to LST, Tair, and the distribution of urban-
ized and vegetated areas presents useful insights into the dynamics of urban heat. Notably,
the data indicate a moderately strong positive correlation between the SUHI mean and
urbanized areas in both July and August. This relationship underscores the contribution
of urban expansion to the intensification of the SUHI effect. This consistent growth of
urban spaces underscores the pace of urbanization, often occurring at the expense of green
spaces. Many researchers, when examining the SUHI effect within the context of the
relationship between urban area expansion and vegetation reduction, arrive at similar
conclusions [9,20,22,57,73]. Some studies [28,42,74] reveal that urbanization in South Asian
cities, as analyzed through MODIS and Landsat data, is rapidly converting vegetation into
urban areas, with the SUHI trend extending from urban cores to rural outskirts, corrob-
orating our findings. Studies of four megacities in China [75,76] reveal a gradual SUHI
increase, with local variations across urban areas—such as the core, new developments, and
periphery—displaying distinct, continuously increasing trends. Kharkiv and Munich [7],
along with several other European cities [26,65,80], have much in common in terms of
area, population, and building density. However, they differ in terms of geographic and
climatic characteristics, which can influence the formation of a SUHI due to urbanization
as well as climate change. Cities such as Tokyo, Shanghai, Guangzhou, Hong Kong, and
cities in India are facing a more pronounced increase in SUHI impacts because of more
acute urbanization factors [13,17,18,20,35]. Moreover, the analysis of these cities shows
patterns that increasing urban vegetation coverage to 70–80% can significantly mitigate the
intensity of heat waves. This emphasizes the crucial role of vegetation and water bodies in
combating the negative impacts of the SUHI effect, offering a strategic approach to urban
planning [7,13,30]. Our study focused on constructing and investigating the SUHI effect
during the summer months, based on research indicating that this period is most conducive
to such an analysis [10]. Expanding the analysis across different times and seasons could
greatly enhance our understanding of the city’s thermal environment and how it varies
with the seasons [73–77].

Future research will focus on integrating satellite data with ground observations to
validate our findings, which are hindered by the ongoing conflict in Kharkiv, Ukraine.
This approach is essential for understanding microclimatic changes, assessing urban green-
ing efforts, and developing strategies for sustainable urban planning to mitigate adverse
temperatures. Furthermore, this methodology is key for Kharkiv’s post-war reconstruc-
tion, providing insights for rebuilding with environmental sustainability and resilience to
climate-related thermal variations. Satellite-based remote sensing is indispensable in urban
ecological research, offering a scalable and efficient way to monitor and analyze complex
urban environmental dynamics.
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5. Conclusions

A comprehensive assessment of multitemporal LULC changes and their impact on LST
and combined with variations Tair in Kharkiv, Ukraine, using remote sensing technologies,
showed that there is a general gradual trend of increasing temperature conditions in the
city, causing an increase in the SUHI effect.

This study clearly demonstrated a statistically significant trend of Tair increasing in
June, July, and August due to climatic changes, as well as Landsat LST in August and
MODIS LST in June, as a consequence of increased urbanization. This indicates that
warming is observed in the region, which is especially pronounced in the summer season.
It is found that there is a significant positive correlation between Tair and LST, with MODIS
satellite data showing a stronger correlation R2 = 0.879, RMSE = 1.476 ◦C compared to
Landsat R2 = 0.663, RMSE = 3.815 ◦C. This indicates that as the Tair increases, so does
the LST, while satellite observations confirm this relationship with varying degrees of
spatial resolution.

Using supervised classification with RF classifier and incorporating various vegeta-
tion indices, the long-term analysis revealed significant urbanization trends: urban areas
expanded by 70.3%, water bodies by 65%, and bare land by 61%. This expansion came at
the expense of vegetation cover, which saw a 15.5% decrease in dense vegetation and a
substantial 62.9% decrease in sparse vegetation. Change detection analysis reveals that the
most significant land transformation involves a transition from sparse vegetation to urban
land, accounting for approximately 24.6% of the total area, followed by a shift from dense
vegetation to urban areas, which constitutes about 5.1%.

Analysis of LST variations revealed differences across various LULC classes. Urban
areas and sparse vegetation classes presented the lowest LST fluctuations of 2.09 ◦C and
2.16 ◦C, respectively. Despite this, the most extreme LST values were observed in these same
categories. Conversely, water bodies and dense vegetation classes experienced slightly
higher variations of 2.30 ◦C and 2.24 ◦C. The largest fluctuation was noted in bare land
areas (2.46 ◦C), although these areas registered fewer extreme temperature events. The
distribution of LST values tends to shift marginally over time towards higher temperatures,
suggesting an increase in instances of exceptionally high LST readings. The assessment
of data normality conducted using both Shapiro-Wilk and Kolmogorov-Smirnov tests,
indicated a normal distribution (p > 0.05) of LST across various LULC classes on a monthly
basis, with the annual data exhibiting nearly normal characteristics. The LST thresholds
identify urban and bare land as the warmest LULC classes, with LST exceeding 38 ◦C and
39 ◦C. In comparison, water bodies exceeded 35 ◦C and vegetation exceeded 35–37 ◦C.
Seasonal analysis further emphasizes the pronounced UHI effect in urban areas, contrasting
with the cooling influences of water and vegetation. Thus, the increase in the SUHI effect in
Kharkiv over time directly correlates with urban expansion and inversely correlates with
vegetation cover. This trend, alongside the stronger and significant correlation between
the SUHI mean, LST, and Tair indicators underscores the impact of urbanization on local
climate patterns, highlighting the critical need for integrating green infrastructure in urban
planning to mitigate these effects.
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over the years.
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