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Abstract: Nutritional strategies are needed to aid people with type 1 diabetes (T1D) in managing
glycemia following exercise. Secondary analyses were conducted from a randomized trial of an adap-
tive behavioral intervention to assess the relationship between post-exercise and daily protein (g/kg)
intake on glycemia following moderate-to-vigorous physical activity (MVPA) among adolescents
with T1D. Adolescents (n = 112) with T1D, 14.5 (13.8, 15.7) years of age, and 36.6% overweight or
obese, provided measures of glycemia using continuous glucose monitoring (percent time above
range [TAR, >180 mg/dL], time-in-range [TIR, 70–180 mg/dL], time-below-range [TBR, <70 mg/dL]),
self-reported physical activity (previous day physical activity recalls), and 24 h dietary recall data at
baseline and 6 months post-intervention. Mixed effects regression models adjusted for design (ran-
domization assignment, study site), demographic, clinical, anthropometric, dietary, physical activity,
and timing covariates estimated the association between post-exercise and daily protein intake on
TAR, TIR, and TBR from the cessation of MVPA bouts until the following morning. Daily protein
intakes of ≥1.2 g/kg/day were associated with 6.9% (p = 0.03) greater TIR and −8.0% (p = 0.02) less
TAR following exercise, however, no association was observed between post-exercise protein intake
and post-exercise glycemia. Following current sports nutrition guidelines for daily protein intake
may promote improved glycemia following exercise among adolescents with T1D.

Keywords: sports nutrition; type 1 diabetes; exercise; physical activity; glycemia; time-in-range;
time-above-range; adolescents

1. Introduction

Type 1 diabetes (T1D) is one of the leading causes of chronic disease in youth, with an
estimated prevalence of 9 million people globally [1]. In 2017, the estimated prevalence
of T1D among youth in the United States was 2.15 per 1000 youth, which represents a
relative increase of 45.1% since 2001 [2]. Type 1 diabetes is associated with numerous health
complications, including a risk of cardiovascular disease approximately ten times that of
those without diabetes [3]. In the Diabetes Complications and Control Trial/Epidemiology
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of Diabetes Interventions and Complications Study (DCCT/EDIC), the extensive health
benefits of intensive insulin therapy were highlighted, reporting a significant 57% and
42% reduction in cardiovascular disease events and mortality, respectively, among people
with T1D. This same study, however, also observed that intensive insulin therapy was
associated with weight gain and, among those classified as excessive weight gainers, the
benefits of intensive insulin therapy were substantially diminished, with no difference in
cardiovascular disease risk or mortality between those on intensive insulin therapy who
gained excessive weight and those on conventional therapy at 6 years follow-up [4,5].

Participation in regular physical activity is a central part of both diabetes and weight
management for adolescents with T1D. The American Diabetes Association recommends
that adolescents with T1D participate in at least 60 min/day of moderate-to-vigorous phys-
ical activity (MVPA) [6]. Systematic reviews of physical activity and exercise interventions
among youth with T1D indicate that regular physical activity is associated with improved
glycemia, cardiorespiratory fitness, metabolic health, and weight management [7–9]. De-
spite these benefits of regular physical activity, research has shown that adolescents with
T1D engage in lower levels of physical activity compared to their peers without diabetes,
with as few as 37.8% achieving the World Health Organization (WHO) recommendations
of at least 60 min of MVPA per day [10–12]. A major barrier to physical activity among
adolescents with T1D is fear associated with the risk of experiencing hypoglycemia during
and up to 24 h following exercise [13–15]. Of particular concern is an increased risk of
hypoglycemia overnight, which may often result in more severe episodes of hypoglycemia
or diabetic ketoacidosis [16–18]. Dietary guidelines, particularly nutrient timing recom-
mendations, are needed to help guide safe participation in physical activity for adolescents
with T1D.

While expert recommendations for carbohydrate intake before or after exercise for
people with T1D have been published [19], less is known regarding the effects of protein
intake on glycemia following physical activity. Sports nutrition guidelines recommend
consumption of 0.25–0.3 g/kg or an absolute dose of 20–40 g of protein following exercise,
as well as the consumption of high protein meals every 3–4 h following exercise to support
recovery from and adaptation to an exercise bout [20,21]. Furthermore, in active individuals,
a higher protein diet (25–30% energy from protein) combined with regular exercise has
been associated with improved muscular strength and reduced soreness, and a significant
decrease in fat mass when paired with a caloric deficit [22–24]. It is possible that similar
protein recommendations may also improve glycemia following exercise for those with
T1D, although minimal data exist in this area.

Among adolescents with T1D, protein intake has been associated with a mild hy-
perglycemic effect which persists for at least 5 h post-prandial [25–27], with one study
suggesting that this effect may persist as long as 12 h following larger meals [28]. Only
two studies, to the authors’ knowledge, have investigated the effects of protein intake on
glycemia during or following exercise. One randomized controlled trial compared the
effects of three different dietary approaches on glycemia during moderate-intensity cycling
exercise among adolescents with T1D (n = 10): (1) a high protein breakfast (consumed two
hours prior to exercise) plus a non-caloric placebo beverage (consumed 15 min prior to
exercise), (2) a standard breakfast plus a carbohydrate beverage, (3) a standard breakfast
plus a non-caloric placebo beverage [29]. The authors demonstrated that, while the carbo-
hydrate beverage approach showed the slowest decline in glycemia during exercise, the
protein-supplemented breakfast was equally effective at preventing hypoglycemia [29].
Additionally, a recent laboratory-based pilot study found that among 6 participants with
T1D with a mean age of 20.2 ± 3.1 years, a 50 g protein whey protein bolus compared to
water provided 3.25 h after 45 min of moderate exercise significantly reduced the glucose
required to maintain euglycemia overnight [30]. While these studies support the theory that
peri-exercise protein intake may reduce the risk of exercise-related hypoglycemia, the sam-
ples for these studies were small, and the highly controlled nature of the study designs may
limit understanding of the efficacy of this nutritional strategy in a free-living environment.
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As such, the primary aims of this study were to conduct secondary data analysis using
data from a randomized trial of an adaptive behavioral intervention among adolescents
with T1D to investigate the role of post-exercise (Aim 1) and daily protein intake (Aim 2)
on glycemia following bouts of MVPA until the following morning. It was hypothesized
that both post-exercise and daily protein intake would be associated with improvements in
TIR and reductions in TBR following exercise among adolescents with T1D.

2. Materials and Methods
2.1. Study Design

To assess the proposed aims, post hoc analyses were performed using data from a
randomized controlled trial of an adaptive behavioral intervention among adolescents with
T1D named the Flexible Lifestyles Empowering Change (FLEX) study (1UC4DK101132-01).
The FLEX study was conducted in accordance with the Declaration of Helsinki and was
reviewed and approved by institutional review boards at clinical sites in Colorado and
Ohio, as well as the coordinating site at the University of North Carolina at Chapel Hill
(IRB #13-2856, Approved 10 March 2013). The FLEX study enrolled 258 adolescents with
T1D between the ages of 13 and 16 years from 5 January 2014 to 4 April 2016. These
participants were randomized to receive either usual care (n = 128) or an 18-month adaptive
behavioral intervention (n = 130) aimed at improving diabetes self-management skills.
The intervention utilized motivational interviewing and problem-solving skills training
to help participants identify strategies to improve glucose control. While the intervention
incorporated behavioral strategies around self-management skills, including insulin dosing,
blood glucose testing, diet, and physical activity, the intervention did not systematically
incorporate guidance for increasing physical activity. Written assent was provided by
study participants, and written informed consent was provided by the study participants’
parents. These post hoc analyses utilize secondary measures from baseline and 6 months
post-baseline visits to evaluate the proposed aims. Full details of the design and main
results of the FLEX study have been published elsewhere [31,32].

2.2. Participants

The FLEX study recruited participants from two clinical sites: the Barbara Davis Center
for Childhood Diabetes in Colorado and Cincinnati Children’s Hospital Medical Center
in Ohio, with the University of North Carolina at Chapel Hill serving as a coordinating
center from 5 January 2014 to 4 April 2016. Eligible criteria for the study included being
between the ages of 13 and 16 years of age at study entry with a hemoglobin A1c (HbA1c)
of 8–13% and diabetes duration of greater than one year. Youth who were pregnant or
had severe concurrent physical, developmental, or psychiatric medical conditions were
excluded from participating in the study. For the secondary analyses reported in this study,
participants were included if they had reported a bout of MVPA at baseline or 6 months
post-baseline visit and had sufficient dietary and glycemia data on the same day as the
reported physical activity. Baseline demographic, clinical, glycemia, dietary, and physical
characteristics among participants included in our analyses (n = 114) were evaluated and
are reported in Table 1. Continuous variables are reported as mean and standard deviation
except for non-normally distributed variables, in which median and interquartile range
were reported. Categorical variables are described with counts and percentages.

Table 1. Baseline characteristics of FLEX participants included in final analyses (n = 114).

Demographic Mean ± SD or n (%)

Age 14.5 (13.8, 15.7)
Female 61 (54.0)
Male 52 (46.0)
Race/Ethnicity

Non-Hispanic White 91 (80.5)
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Table 1. Cont.

Demographic Mean ± SD or n (%)

Non-Hispanic Black 2 (1.8)
Hispanic 14 (12.4)

Multiracial/Other 6 (5.3)
Maximum Education of Parents

High School or Less 11 (9.8)
Some College 31 (27.7)

Four-Year College Degree 50 (44.6)
Graduate Degree 20 (17.9)

Clinical
Diabetes Duration 5.4 (3.1, 9.0)

Insulin Pump User (n = 111) 81 (72.3)
Previous Day Insulin Dose (units/kg) (n = 110) 1.0 ± 0.3

Anthropometric
Weight (kg) 58.8 (51.3, 69.2)

BMI Z-Score 0.7 ± 0.9
Estimated Body Fat % 28.1 (20.1, 33.1)

Glycemia
No Personal CGM Use in Past 30 Days (n = 103) 72 (69.9)

Baseline HbA1c (%) 9.3 (8.6, 9.9)
Percent Time in Range (n = 106) 36.4 ± 13.7

Percent Time Below Range (n = 106) 2.1 (0.3, 5.6)
Percent Time Above Range (n = 106) 59.7 ± 16.0

Diet
Daily Caloric Intake (kcal) 1623.3 (1315.6, 2062.0)

Percent of Daily Calories from Protein 16.0 ± 3.5
Percent of Daily Calories from Carbohydrates 49.0 ± 7.7

Percent of Daily Calories from Fat 36.2 ± 6.4
Daily Fiber Intake (grams) 13.4 (10.2, 18.2)

Physical Activity (n = 109)
Meet WHO Guidelines of ≥60 min MVPA/day 101 (92.7)

Daily Minutes of MVPA 165.0 (105.0, 225.0)
Daily Minutes of Vigorous Physical Activity 45.0 (0.0, 90.0)

Continuous variables are reported as mean and standard deviation except for non-normally distributed vari-
ables, in which median and interquartile range are reported. Categorical variables are described with counts
and percentages.

2.3. Demographics and Health History

Demographic questionnaires were completed at baseline, from which self-reported age,
sex, and race/ethnicity were reported. Health history questionnaires were completed at
baseline, from which participants reported their date of diabetes diagnosis, insulin regimen,
and total previous day insulin dose, among other measures. Follow-up health history
questionnaires were administered 6 and 18 months post-intervention to report any changes
in health history or diabetes care since their baseline visit. Age, sex, race/ethnicity, diabetes
duration, insulin regimen, previous day insulin dose, and previous day insulin dose per
kilogram of body weight were considered as potential covariates in our statistical models.

2.4. Continuous Glucose Monitoring (CGM)

Participants in the FLEX study were asked to wear a blinded Medtronic iPro2 continu-
ous glucose monitor with an Enlite sensor for 7 days at baseline, 6 months, and 18 months
post-intervention. As dietary and physical activity data were collected at baseline and
6 months, but not 18 months, CGM data from the 18-month visit are not included in these
analyses. To enhance compliance and improve the quality of CGM data collection, an iPro2
compatible meter (OneTouch Ultra2) was provided to the participant along with 50 test
strips for calibration 1 and 3 h after insertion, pre-meal, and before bed. Utilizing consensus
report definitions [33], our outcomes of percent time in range (TIR, 70–180 mg/dL), percent
time above range (TAR, >180 mg/dL), and percent time below range (TBR, <70 mg/dL)
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were calculated from the cessation of a bout of MVPA until 6:30 am the following morning
to prevent confounding by dietary intake the following day. As the hyperglycemic effect
of protein is known to last at least 5 h, observations with fewer than 5 h of CGM data
following activity were excluded from our analyses.

2.5. Dietary Measures

During the 7-day CGM wear time, two unannounced 24 h dietary recalls were col-
lected at baseline and 6 months post-intervention by certified interviewers from the UNC
NIH/NIDDK Nutrition Obesity Research Center (NORC) staff (P30DK056350, MPI Mayer-
Davis, Shaikh), using the Nutrient Data System for Research software and the multiple pass
interviewing method [34,35]. For these analyses, participants with relative daily protein
intake greater than three standard deviations above the mean (>3.21 g/kg) were excluded
as potential outliers. Our Aim 1 exposure of post-exercise protein intake was defined
as protein intake consumed between the end of a bout of MVPA and the end of the day
(midnight) in both grams and grams/kg of body weight. Furthermore, as sports nutrition
guidelines recommend daily protein intakes of 1.2–2.0 g/kg body weight to promote posi-
tive physiological adaptation to exercise [20], we further explored the effect of daily protein
intake levels on glycemia for our Aim 2 analyses by comparing CGM metrics of TIR, TAR,
and TBR from the cessation of MVPA bouts until the following morning between those
who consumed <1.2 g/kg body weight and those who consumed ≥1.2 g per kilogram
bodyweight.

2.6. Physical Activity Measures

At baseline and 6 months following the baseline visit, two previous day physical
activity records (PDPAR) were collected during the 7-day CGM wear time by certified
interviewers in conjunction with the 24 h dietary recalls. The PDPAR is a validated ques-
tionnaire that asks participants to describe the dominant activity and approximate intensity
of activities they performed during the previous day in 30 min time blocks [36]. Intensi-
ties are described in categories as very light (slow breathing with little or no movement),
light (normal breathing with regular movement), medium (increased breathing and quick
movement for short periods of time), or hard (hard breathing with quick movement for
≥20 min). Each activity and perception of effort are matched to a corresponding metabolic
equivalent (MET) value [36,37]. From these records, bouts of MVPA were defined as 30 min
or greater of physical activity at a MET of greater than or equal to 3 METs. Average inten-
sity (METs), bout duration (minutes), and bout volume (MET-minutes) were considered
potential covariates in our statistical models.

2.7. Anthropometrics and Body Composition

Height, weight, and natural waist circumference were measured utilizing a wall-
mounted stadiometer, calibrated electric scale, and a flexible fiberglass or steel tape measure,
respectively, at baseline, 6, and 18 months post-intervention. From these measures, body
fat percentage was estimated using validated age, race, and gender-specific equations [38].
Estimated body fat percentage was considered a potential covariate in our statistical models.

2.8. Statistical Analysis
2.8.1. Model Selection

All statistical analyses were performed using SAS 9.4 (Cary, NC, USA). To account for
repeated measures, mixed effect regression models were utilized for both our Aim 1 and
Aim 2 analyses utilizing the Proc Mixed command. Potential covariates were introduced
into our models in groups of design (study site, intervention group), demographic (age,
sex, race/ethnicity), clinical (diabetes duration, insulin regimen, total previous day insulin
dose, previous day insulin dose per kilogram body weight), body composition (estimated
body fat percentage), physical activity (average bout intensity (METs), bout duration
(minutes), bout volume (MET-minutes), other daily physical activity (MET-minutes)),
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dietary (daily carbohydrate intake, pre-exercise protein intake), and timing variables (hours
until midnight). Covariates that caused a ≥10% change in the point estimate or standard
error of associations were included in our final models.

2.8.2. Aim 1 Analyses—Post-Exercise Protein Intake and Glycemia Following MVPA

Figure 1 provides an illustrated example timeline of exposures and outcomes relative
to a bout of MVPA for both our Aim 1 and Aim 2 analyses. Post-exercise protein intake
was defined continuously as protein intake (grams and grams/kg) from the cessation of a
bout of MVPA until midnight. Mixed effects regression models assessed the association
between post-exercise protein intake and TIR, TBR, and TAR from the cessation of a bout
of MVPA until 6:30 am the following morning. Final models adjusted for the intervention
group, study site, age, sex, race/ethnicity, diabetes duration, insulin regimen, estimated
body fat percentage, MVPA bout volume (MET-minutes), other daily MVPA (MET-mins),
daily carbohydrate intake, protein intake consumed within 4 h prior to exercise, and hours
until midnight.
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Figure 1. Example timeline of exposures and outcomes relative to a bout of moderate-to-vigorous
physical activity using multiple measurements (baseline and 6 months). Individuals may report
multiple bouts of moderate-to-vigorous physical activity (MVPA) per day.

2.8.3. Aim 2 Analyses—Overall Daily Protein Intake and Glycemia Following MVPA

To align with sports nutrition guidelines which recommend intakes of 1.2–2.0 g/kg/day
of dietary protein to support exercise training, observations were categorized by daily pro-
tein intake into those with <1.2 g/kg/day of protein and those with ≥1.2 g/kg/day of
protein utilizing a binomial variable. The relationship between protein intake category
and CGM metrics of TIR, TBR, and TAR were assessed, with observations classified as
<1.2 g/kg chosen as the reference group. The final analytic model adjusted for the in-
tervention group, study site, age, sex, race/ethnicity, diabetes duration, insulin regimen,
estimated body fat percentage, bout volume (MET-minutes), other daily MVPA (MET-mins),
daily carbohydrate intake, and hours until midnight.

2.9. Exploration of Interaction Effects

Interaction effects were explored by sex, weight status, insulin regimen, MVPA bout
volume (MET-mins), and whether a bout was vigorous (average bout MET-value ≥ 6.0)
or moderate (average bout MET-value <6.0). The decision to include these terms was
based on previous studies which have indicated that, among adolescents with T1D, those
who utilize multiple daily insulin injections, those who have overweight or obesity, those
with higher physical activity loads, and also female adolescents may experience more
difficulties in managing glycemia which may then influence the association of protein
intake on post-exercise glycemia in a free-living environment [39–44]. Interaction terms
were added to the final Aim 1 and Aim 2 mixed effects regression models to assess for
potential differences in response to post-exercise protein intake or daily protein intake
category on glycemic metrics from the end of a MVPA bout until the following morning.
Tanner score was also added as a covariate in statistical models assessing for differences by
sex. Weight status was defined using BMI z-score to categorize participants by whether
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they had overweight/obesity or not at the time of their most recent study visit. Statistical
significance for interaction effects was determined at a p-value <0.10.

3. Results
3.1. Final Sample Size

Of the 258 participants in the FLEX study, 135 participants reported at least 1 MVPA bout,
with a total of 645 MVPA bouts identified. From these 162 bouts reported, 56 participants
had insufficient or missing CGM data. Additionally, 7 bouts reported from 1 participant
were excluded for reporting protein intakes above 3 standard deviations about the mean
(>3.21 g/kg/day). Furthermore, 11 bouts (n = 5) were excluded for missing data on weight,
10 bouts (n = 1) were excluded for missing insulin regimen data, and 1 bout (n = 1) was
excluded for missing sufficient data to estimate body fat percentage. As participants may
have reported multiple bouts at both baseline and 6-month study visits, exclusion of a
bout does not necessarily indicate full exclusion of a participant. Our final analytic models
included 454 bouts from 114 participants, as detailed in Figure 2. In sensitivity analyses,
we explored differences between FLEX participants included in our analyses and those not
included (n = 114 vs. n = 144) in regard to the baseline characteristics provided in Table 1,
and no significant differences were observed. Additionally, in the exploration of potential
differences between bouts that were included versus those excluded for insufficient or
missing CGM data (bouts = 454 vs. bouts = 162), no significant differences were observed
for post-exercise or daily protein, carbohydrate, fat or calorie intake, any demographic
variables included in Table 1, or any other variable included in our analytic models.

3.2. Baseline Characteristics

The baseline characteristics of FLEX participants included in our analyses are provided
in Table 1. The median age, diabetes duration, and estimated body fat percentage for
participants at baseline were 14.5 (IQR: 13.8, 15.7), 5.4 (IQR: 3.1, 9.0), and 28.1% (20.1%,
33.1%), respectively. There was similar inclusion of male (46.0%) and female (54.0%)
participants. Most participants reported meeting WHO guidelines of achieving at least
60 min MVPA per day (97.3%). Furthermore, while the majority of participants (72.3%)
reported using insulin pumps in their diabetes care, a majority of participants (69.9%)
reported not using a continuous glucose monitor in their diabetes care in the past 30 days.
Additionally, at baseline, participants had a median HbA1c of 9.3% (8.6%, 9.9%) and spent
36.4% ± 13.7% TIR, 59.7% ± 16.0% TAR, and 2.1% (IQR: 0.3%, 5.6%) TBR during their 7-day
CGM wear time.

3.3. Aim 1 Results

The median bout duration (minutes) and intensity (METs) were 60 (IQR: 30, 90) and
4.5 (IQR: 4.0, 7.0), respectively. The average time from the cessation of MVPA bouts until
midnight and 6:30 am the following morning was 9.0 ± 3.9 and 15.5 ± 10.4 h, respectively.
The median protein intake from MVPA bout cessation until midnight was 34.9 (IQR: 20.9,
52.7) grams or 5.6 (IQR: 31.1, 0.86) grams/kilogram of body weight. The median TIR, TAR,
and TBR from MVPA bout cessation until the following morning were 40.6% (IQR: 21.6%,
59.7%), 56.4% (IQR: 35.4%, 75.7%), and 0.00% (0.00%, 3.2%), respectively.

We observed no association between post-exercise protein intake and TAR, TIR, or
TBR when examined in grams or grams per kilogram (Table 2). Additionally, we observed
no statistically significant interaction effects between post-exercise protein intake and
MVPA bout volume (p-values > 0.36), insulin regimen (p-values > 0.24), or weight status
(p-values > 0.27) for TAR, TIR, or TBR. We did, however, observe a significant interaction
between post-exercise protein intake in grams per kilogram (interaction p = 0.03) but not
grams (interaction p = 0.16) with sex for TBR, indicating a significant association of −1.4%
(95% CI: −1.7%, 0.0%, p = 0.05) TBR per 0.25 g/kg protein among female participants, but
not male participants, −0.1% (95% CI: −0.5%, 0.7%, p = 0.76). Additionally, we observed
significant interaction effects between post-exercise protein intake and sex when examined
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in grams (interaction p = 0.02) and grams per kilogram (interaction p = 0.03) with TIR of
3.6% (95% CI: 0.4%, 6.8%, p = 0.03) per 20 g and 2.3% (95% CI: −0.1%, 4.7%, p = 0.06) per
0.25 g/kg among females, but no association among males, −0.4% (−2.3%, 1.4%, p = 0.63)
per 0.25 g/kg and 0.3% (95% CI: −2.7%, 2.0%. p = 0.78) per 20 g post-exercise protein. We
did not observe a significant interaction effect between post-exercise protein intake in grams
(interaction p = 0.10) or grams per kilogram (p = 0.19) with sex for TAR. Differences in the
association between post-exercise protein and glycemia following exercise are depicted in
Figure 3.

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 2. CONSORT flow diagram for secondary analyses of the flexible lifestyles empowering 

change (FLEX) randomized trial. 

3.2. Baseline Characteristics 

The baseline characteristics of FLEX participants included in our analyses are pro-

vided in Table 1. The median age, diabetes duration, and estimated body fat percentage 

for participants at baseline were 14.5 (IQR: 13.8, 15.7), 5.4 (IQR: 3.1, 9.0), and 28.1% (20.1%, 

33.1%), respectively. There was similar inclusion of male (46.0%) and female (54.0%) par-

ticipants. Most participants reported meeting WHO guidelines of achieving at least 60 min 

MVPA per day (97.3%). Furthermore, while the majority of participants (72.3%) reported 

using insulin pumps in their diabetes care, a majority of participants (69.9%) reported not 

using a continuous glucose monitor in their diabetes care in the past 30 days. Additionally, 

at baseline, participants had a median HbA1c of 9.3% (8.6%, 9.9%) and spent 36.4% ± 13.7% 

TIR, 59.7% ± 16.0% TAR, and 2.1% (IQR: 0.3%, 5.6%) TBR during their 7-day CGM wear 

time. 

3.3. Aim 1 Results 

Figure 2. CONSORT flow diagram for secondary analyses of the flexible lifestyles empowering
change (FLEX) randomized trial.



Nutrients 2023, 15, 1981 9 of 17

Table 2. Results of mixed effects regression models assessing the association between post-exercise
protein intake and glycemia following a bout of MVPA until 6:30 am the following morning among
adolescents with type 1 diabetes (n = 114, bouts = 454).

Post-Exercise Protein (Grams) * Post-Exercise Protein (g/kg) †

Estimate p-Value 95% CI Estimate p-Value 95% CI

Unadjusted Models
Percent Time Above Range 0.5% 0.52 (−1.1%, 2.2%) 0.6% 0.33 (−0.6%, 1.9%)

Percent Time In Range −0.4% 0.58 (−2.0%, 1.1%) −0.6% 0.35 (−1.7%, 0.6%)
Percent Time Below Range 0.1% 0.63 (−0.6%, 0.4%) −0.1% 0.77 (−0.4%, 0.3%)

Fully Adjusted Models ‡
Percent Time Above Range −0.7% 0.56 (−3.0%, 1.6%) −0.1% 0.93 (−1.8%, 1.6%)

Percent Time In Range 0.8% 0.49 (−1.4%, 2.9%) 0.2% 0.31 (−1.4%, 1.8%)
Percent Time Below Range 0.1% 0.79 (−0.8%, 0.6%) −0.1% 0.66 (−0.7%, 0.4%)

* Associations are reported per a 20 g dose of protein; † Associations are reported per a 0.25 g/kg dose of protein;
‡ Models are adjusted for design (study site, intervention group), demographic (age, sex, race/ethnicity), clinical
(diabetes duration, insulin regimen), anthropometric (estimated body fat percentage), dietary (daily carbohydrate
intake and pre-exercise protein intake), physical activity (bout volume, other daily physical activity), and hours
until midnight.
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Figure 3. Differences in association between post-exercise protein intake and glycemia from cessation
bouts of MVPA until the following morning by sex among adolescents with T1D. Estimates are
provided per 20 g or 0.25 g/kg. TAR = percent time above range (>180 mg/dL), TIR = percent time in
recommended glucose range (70–180 mg/dL), and TBR = percent time below range (<70 mg/dL)
following bouts of MVPA. * Indicates an association that is statistically significant (p ≤ 0.05).

3.4. Aim 2 Results

The median daily protein intake reported on days with included bouts of MVPA was
65.4 (IQR: 48.2, 87.9) grams or 1.07 (IQR: 0.76, 1.48) grams/kg. Of the 454 bouts included in
our final analyses, 188 bouts had daily protein intakes >1.2 g/kg/day, and 266 reported
daily protein intakes below 1.2 g/kg/day. Aim 2 results are provided in Table 3. Daily
protein intakes of ≥1.2 g/kg/day were associated with 8.0% (95% CI: 1.6%, 14.5%) less
TAR and 6.9% (95% CI: 0.9%, 13.0%) greater TIR with no significant difference in TBR, 1.2%
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(95% CI: −0.8%, 3.2%). Additionally, we observed no significant interaction effect between
the daily protein intake category and MVPA bout volume (p-values > 0.56) or whether a
bout was vigorous or moderate (p-values > 0.29) for TAR, TIR, and TBR.

Table 3. Results of linear mixed-effects regression models comparing continuous glucose monitoring
metrics following cessation of bouts of moderate-to-vigorous physical activity until 6:30 am the
following morning by category of daily protein intake (g/kg/day) among adolescents with type 1
diabetes (n = 114, bouts = 454).

Category of Daily Protein
Intake

% Time above Range % Time in Range %Time below Range
Estimate p-Value 95% CI Estimate p-Value 95% CI Estimate p-Value 95% CI

Unadjusted Models
<1.2 g Protein/kg Body weight

(bouts = 266) Reference

>1.2 g Protein/kg Body weight
(bouts = 188) −6.8% 0.02 (−12.4%, −1.1%) 5.3% 0.05 (0.0%, 10.6%) 1.5% 0.09 (−0.3%, 3.2%)

Fully Adjusted Models *
<1.2 g Protein/kg Body weight

(bouts = 266) Reference

>1.2 g Protein/kg Body weight
(bouts = 188) −8.0% 0.02 (−14.5%, −1.6%) 6.9% 0.03 (0.9%, 13.0%) 1.2% 0.22 (−0.8%, 3.2%)

* Final models were adjusted for design (intervention group, study site), demographic (age, sex, race/ethnicity),
clinical (diabetes duration, insulin regimen), anthropometric (estimated body fat percentage), physical activity
(bout volume (MET-mins), other daily MVPA (MET-mins), dietary (daily carbohydrate intake), and timing (hours
until midnight) variables.

A significant interaction effect was observed between the daily protein intake category
and insulin regimen for TIR (p = 0.03) and TAR (p = 0.08) but not for TBR, which indicated
that adolescents who use multiple daily insulin injections (MDII) for their diabetes manage-
ment may experience greater improvements in TIR, 17.9% (95% CI: 6.1%, 29.7%) and TAR,
−17.9% (95% CI: −30.5%, −5.3%) (Table 4). Additionally, significant interaction effects
were observed between protein intake category and weight status for TIR (p < 0.01), TBR
(p < 0.01), and TAR (p = 0.08), indicating that following a high protein diet pattern may
improve TIR, 18.6% (95% CI: 8.7%, 28.4%), and TAR,−15.6% (95% CI: −26.1%, −5.1%) to
a greater extent for adolescents with overweight/obesity, but may also elevate TBR, 2.7%
(95% CI: 0.6%, 4.9%) among normal weight individuals. Following additional adjustment
for the tanner stage, significant interaction effects were also observed between protein
intake category and sex for TIR (p < 0.01) and TAR (p < 0.01), indicating that following a
high protein diet pattern may improve TIR, 16.3% (95% CI: 8.4%, 24.2%), and TAR, −16.9%
(−25.3%, −8.5%), to a greater extent among female adolescents. Figure 4 shows a com-
parison of the effects of a high protein diet on post-exercise glycemia by insulin regimen,
weight status, and sex.

Table 4. Results of mixed-effects regression models assessing interaction between daily protein intake
category with insulin regimen and weight status.

Interaction Effects *
% Time above Range % Time in Range % Time below Range

Estimate p-Value 95% CI Estimate p-Value 95% CI Estimate p-Value 95% CI

Protein Intake
Category × Insulin Regimen Interaction p-Value = 0.08 Interaction p-Value = 0.03 Interaction p-Value = 0.60

Continuous Subcutaneous
Insulin Infusion (CSII) −5.7% 0.1 (−12.5%, 1.1%) 4.2% 0.19 (−2.2%, 10.6%) 0.5% 0.81 (−3.4%, 4.4%)

Multiple Daily Insulin
Injections (MDII) −17.9% <0.01 (−30.5%, −5.3%) 17.9% <0.01 (6.1%, 29.7%) 1.6% 0.13 (−0.55%, 3.8%)

Protein Intake
Category × Weight Status Interaction p-Value = 0.08 Interaction p-Value <0.01 Interaction p-Value <0.01

Overweight/Obesity −15.6% <0.01 (−26.2%, −5.1%) 18.6% <0.001 (8.7%, 28.4%) −2.6% 0.11 (−5.8%, 0.6%)
No Overweight/Obesity −4.9% 0.18 (−12.0%, 2.3%) 2.2% 0.52 (−4.5%, 8.8%) 2.7% 0.01 (0.6%, 4.9%)

Protein Intake Category × Sex Interaction p-Value <0.01 Interaction p-Value <0.01 Interaction p-Value =0.48
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Table 4. Cont.

Interaction Effects *
% Time above Range % Time in Range % Time below Range

Estimate p-Value 95% CI Estimate p-Value 95% CI Estimate p-Value 95% CI

Female −16.9% <0.0001 (−25.3%, −8.5%) 16.3% <0.001 (8.4%, 24.2%) 0.7% 0.61 (−2.0%, 3.4%)
Male 0.6% 0.88 (−7.7%, 9.0%) −2.4% 0.56 (−10.3%, 5.5%) 2.0% 0.14 (−0.7%, 4.7%)

* Interaction models estimated the combined effect of increasing protein intake category from <1.2 g/kg/day to
≥1.2 g/kg/day and category of insulin regimen (CSII/MDII) or weight status (has overweight/obesity or does
not have overweight/obesity). Mixed-effects regression models were adjusted for design (intervention group,
study site), demographic (age, sex, race/ethnicity), clinical (diabetes duration, insulin regimen), anthropometric
(estimated bodyfat percentage (protein × Insulin regimen), or weight status (protein × weight status)), physical
activity (bout volume (MET-mins), other daily MVPA (MET-mins)), dietary (daily carbohydrate intake), and timing
(hours until midnight) variables. Interaction models for sex and category of protein intake were additionally
adjusted for the tanner stage.
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Figure 4. Differences in the effect of consuming a higher protein diet (>1.2 g/kg/day) on glycemia
from the end of MVPA bouts until the following morning by insulin regimen, weight status, and
sex. CSII = continuous subcutaneous insulin infusion, MDII = multiple daily insulin injections,
OW/OB = overweight or obesity, No OW/OB = no overweight or obesity. TAR = percent time
above range (>180 mg/dL), TIR = percent time in recommended glucose range (70–180 mg/dL),
TBR = percent time below range (<70 mg/dL) following bouts of MVPA. * Indicates an association
that is statistically significant (p ≤ 0.05).

4. Discussion

This study evaluated a unique intersection between nutrient timing and diabetes care
by assessing the effects of post-exercise and daily protein intakes on post-exercise glycemia
among adolescents with T1D. It was hypothesized that increased post-exercise and daily
protein intake would be associated with improved TIR and reduced TBR following cessation
of MVPA bouts until the following morning. No significant associations were observed
between post-exercise protein intake (g or g/kg) and any primary outcome. Further, no
significant interaction effects were observed between post-exercise protein intake and
exercise volume, insulin regimen, or weight status; however, a significant interaction effect
was observed for post-exercise protein intake and sex, which indicated that increased
post-exercise protein intake may be associated with improved TIR and reduce TBR among
female, but not male adolescents. Additionally, daily protein intakes ≥1.2 g/kg/day were
associated with improved TIR and reduced TAR, but not TBR following MVPA bouts,
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with significant interaction effects observed indicating that female adolescents, those with
overweight/obesity, and those on multiple daily insulin injections may experience greater
increases in TIR and greater reductions in TAR with daily protein intakes >1.2 g/kg/day.

The findings of this study did not support the hypothesis that increasing post-exercise
protein intake may improve glycemia following exercise among adolescents with T1D
overall, but it may be a beneficial strategy among female adolescents with T1D. The timing
of MVPA bouts, however, may be important to consider, as most of the reported bouts
of MVPA in this study occurred in the afternoon or evening. As afternoon exercise is
associated with greater post-exercise hypoglycemia risk among people with T1D [15], it
would be expected that if protein had a protective effect against hypoglycemia that it would
be observed following afternoon exercise [15]; however, it is also important to consider that
many adolescents may have their last meal of the day in the early evening, making the size
of post-exercise protein exposure somewhat limited (median intake of 34.9 (IQR: 20.9, 52.7)
g). The few studies which have examined the effects of protein on glycemia over a period
of time similar to that assessed in this study utilized larger protein doses (≥60 g) [28,45].
It is possible that a larger protein dose may be necessary to promote changes in glycemia
overnight. The findings of this study did support the hypothesis that elevated daily protein
intakes, within sports nutrition, recommended daily intake levels of 1.2–2.0 g/kg/day,
may improve the post-exercise glycemic response, especially among individuals utilizing
multiple daily insulin injections for their diabetes care, those with overweight/obesity and
among female adolescents.

While research on the effects of dietary protein intake on exercise-related glycemia
among people with T1D is relatively scarce, a recent laboratory-based pilot study found
that a protein bolus of 50 g following moderate-intensity exercise caused elevated glucagon,
glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP) levels overnight
compared to water following exercise, which collectively led to reduced glucose infusion
requirements to maintain euglycemia [30]. Studies in people with type 2 diabetes (T2D)
have observed similar increases in the gut hormone GLP-1 as well as a pancreatic polypep-
tide (PYY)with high protein diets, which have been shown to suppress the rate of gastric
emptying and, therefore, the rate at which blood glucose concentrations increase following
a meal [46,47]. Additionally, high protein diets have been shown to improve insulin sensi-
tivity via reductions in intra-hepatic liver triglycerides and increases in post-meal glucagon
secretion among people with T2D [48–51]. It is possible that improvements in insulin
sensitivity and reductions in gastric emptying rate associated with elevated protein intakes
may contribute to the improvements in post-exercise glycemia observed in this study.

These prior research findings may also help explain why people on multiple daily
insulin injections, or those with overweight or obesity, experience greater improvements
in post-exercise glycemia with elevated daily protein intakes. Individuals on multiple
daily insulin injections have been shown to experience greater levels of post-exercise hy-
perglycemia compared to their peers who use insulin pumps which may be attributed in
part to greater carbohydrate consumption to avoid hypoglycemia among individuals on
multiple daily insulin injections who have less acute control over insulin dosing compared
to insulin pump users [39]. As such, reductions in gastric emptying rate may slow the rise
in glycemia following meals containing both carbohydrates and protein, which could con-
tribute to less TAR and also more TIR. Additionally, elevated adiposity among individuals
with overweight or obesity has been associated with higher levels of insulin resistance in
youth [52]. In fact, among adolescents and adults with T1D, fat mass has been shown to
be positively related to post-exercise blood glucose, and lean mass has been shown to be
inversely related to post-exercise blood glucose, indicating that body composition may
play an important role in the post-exercise glycemic response [53]. Changes in insulin
sensitivity may have contributed to improved post-exercise glycemia to a greater extent
among this population.

Differences in body composition between male and female participants may also help
to explain the differences in the association we observed by sex, as female participants
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in this study had higher estimated body fat percentages compared to male participants
(33.5% ± 5.9% vs. 20.3% ± 4.2%). While we adjusted our models for estimated body fat
percentage, we may not fully account for other differences in body composition, including
differences in lean mass between male and female adolescents. Additionally, previous
studies in adolescents with T1D have shown that female adolescents oxidize more fat and
less carbohydrate during exercise compared to males [54]. In populations without diabetes,
this difference in substrate utilization among women has been attributed in part to differing
progesterone and estrogen levels during the follicular versus luteal phase of the menstrual
cycle and has been shown to yield less hepatic and muscular glycogen depletion during
exercise among women [55]. While speculative, these differences in substrate utilization
during exercise and the potential sparing of hepatic and muscle glycogen may influence the
post-exercise glycemic response among female adolescents. Studies are needed, however,
to elucidate the mechanisms by which protein affects glycemia and the influence of factors
such as insulin regimen, weight status, and sex on this relationship in the unique metabolic
context of T1D.

4.1. Significance for Clinical Practice

As most exercise nutrition studies among people with T1D to date have focused
predominantly on carbohydrate or insulin dosing strategies to improve exercise-related
glycemia, the current study addresses an important gap in the existing evidence and can
inform exercise nutrition guidelines regarding the role of protein intake on exercise-related
glycemia for people living with T1D. Sports nutrition guidelines currently recommend daily
protein intakes of 1.2–2.0 g/kg/day as an effective strategy for improving recovery, athletic
performance, and weight management when combined with exercise training [20,21]. These
guidelines were largely based on healthy populations; however, it is likely that people with
T1D may experience similar benefits following these protein intake recommendations. The
findings of this study suggest higher protein intakes may also help adolescents with T1D
improve their post-exercise glycemic response, especially among female adolescents and
also among those who do not utilize insulin pumps in their diabetes care, and those with
overweight or obesity. We did, however, observe that adolescents without overweight or
obesity may experience higher TBR following a higher protein diet. As such, additional
counseling and monitoring may be needed to support adolescents with T1D who may
choose to follow a higher protein diet to support athletic goals.

4.2. Challenges and Opportunities

It is important to note that data reported in this study are observational and future
work is needed to establish whether a causal relationship exists between dietary protein
intake and post-exercise glycemia among individuals with T1D. Additionally, as this study
relied on self-reported measures of dietary intake and physical activity, it’s important to
note that self-reported measures are prone to recall and social desirability biases [56,57].
Specifically, dietary intake has commonly been shown to be under-reported while MVPA
is often over-reported when compared to accelerometry among adolescents which may
influence the number of MVPA bouts identified in this study [56,57]. The use of the multiple
pass method for dietary recalls, however, has been shown to reduce bias in self-reported
dietary intake, and self-reported MVPA has been shown to be more reliably measured when
collected by trained interviewers, as was done in the FLEX study [35,58,59]. Additionally,
the PDPAR instrument utilized in this study has been validated against accelerometry for
relative energy expenditure of physical activity (r = 0.77, p < 0.01) and has been shown to
provide reliable identification of bouts of MVPA on a previous day (r = 0.63, p < 0.01) [36,60].
Additionally, the lack of time-stamped insulin-dosing data for these analyses limits our
ability to understand the role of insulin-dosing behaviors on the observed associations.
While controlling for daily carbohydrate intake may help to account for bolus insulin
levels, as bolus insulin doses are based on carbohydrate intake, we cannot account for basal
insulin dosing or potential insulin dosing strategies which may have been implemented
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to reduce the risk of exercise-related hypoglycemia. Additionally, we did not collect data
related to hormone levels or menstrual cycle among participants and therefore are unable
to elucidate the role these factors may play in the differing effects of protein intake on
post-exercise glycemia observed in our study. However, the availability of time-stamped
dietary intake, physical activity, and continuous glucose monitoring data from the FLEX
study provided a unique opportunity to assess a temporal relationship between protein
intake and post-exercise glycemia among adolescents with T1D.

The literature on the role of protein intake on exercise-related glycemia for people
living with T1D is scarce. The findings of this study begin to address this gap in the
literature and may encourage future studies to continue to explore intersections between
sports nutrition and diabetes care. While promoting safe exercise through an improved
glycemic response is a priority for people living with T1D, they also chose to participate
in exercise for a variety of reasons, including health promotion, weight management, and
athletic performance. It is important that exercise nutrition guidelines aim to support both
the safety and physiologic benefits of exercise to aid people with T1D in improving their
health and well-being.

4.3. Future Research Directions

Randomized controlled trials are needed to elucidate whether a causal relationship
exists between dietary protein intake and exercise-related glycemia among people with
T1D and to identify potential mechanisms of action for which protein may affect the post-
exercise glycemic response. Additionally, the use of mixed methods research may provide
invaluable insight into practical aspects of this nutritional strategy, such as perceptions
of the feasibility and potential barriers to implementing this dietary approach among
adolescents and adults living with T1D. Additionally, as the fear of hypoglycemia is
a leading barrier to regular physical activity among people with T1D, future research
should aim to further evaluate the effects of following a high protein diet on the risk of
hypoglycemia among people with T1D, specifically following exercise and overnight when
the risk of experiencing severe hypoglycemia is heightened [16–18]. Finally, while the
benefits of elevated protein intake on the adaptive response to exercise have been well-
documented in healthy populations [20,21], research is needed to evaluate whether these
adaptive benefits are similar among people living with T1D.
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