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Abstract: Light detection and ranging (LiDAR) is widely used in scenarios such as autonomous
driving, imaging, remote sensing surveying, and space communication due to its advantages of
high ranging accuracy and large scanning angle. Optical phased array (OPA) has been studied as an
important solution for achieving all-solid-state scanning. In this work, the recent research progress in
improving the beam steering performance of the OPA based on silicon photonic integrated chips was
reviewed. An optimization scheme for aperiodic OPA is proposed.
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1. Introduction

LiDAR is a sensing technology that obtains information about the position, velocity,
and other characteristics of a target object by emitting laser and processing the returned
information [1]. Compared to traditional radars such as microwave radar and millimeter
wave radar, LiDAR can greatly improve the ranging accuracy and expand the scanning
range of the radar. It also has advantages, such as being less affected by environmental
lighting [2] and having good resistance to electromagnetic interference. Therefore, LiDAR
is widely used in autonomous driving [3], imaging [4–7], remote sensing surveying [8],
and space communication [9–11]. To meet the needs of free-space optical communication
in fields such as autonomous driving and drones, LiDAR should have a wide range of
scanning angles and long-range detection capabilities [12,13]. In order to distinguish
objects, the beam emitted by LiDAR should also have high resolution. When applied in
fields such as remote sensing measurement and imaging, the higher resolution can achieve
more detailed measurements and present more elaborate images [14]. Nowadays, research
on LiDAR focuses on expanding the scanning field of view (FOV), improving the scanning
resolution, and extending the detection distance, generally moving towards miniaturization
and integration.

LiDAR can be divided into three categories based on whether they contain mechanical
components: mechanical LiDAR [15], hybrid solid-state LiDAR [16], and all-solid-state
LiDAR [17]. OPA is a device that achieves all-solid-scanning by controlling the laser
wavefront through the phase. Compared with mechanical LiDAR and hybrid solid-state
LiDAR, there are no mechanical components in the OPA. OPA can achieve stable, accurate,
fast beam deflection and arbitrary beam pointing [11,18], which can improve the robustness
of LiDAR equipment. The current research on 1-D OPA is already mature and there are
also excellent results on 2-D OPA [19–24]. 1-D OPA is divided into two mechanisms: end
emission and grating emission. Compared with OPA based on liquid crystals (LC) and
a micro-electromechanical system (MEMS), OPA based on silicon photon platforms can
achieve a larger scanning range and faster scanning speeds [18,21,25–27]. In addition,
OPA based on the photonic integrated chip (PIC) is compatible with complementary
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metal-oxide semiconductor (CMOS) technology and can be fabricated on a large scale
by highly mature CMOS technology with the advantages of high production and low
cost [28,29]. With the development of silicon-based optoelectronics in recent years, such as
the development of CMOS compatible germanium–silicon or silicon defect photodetectors,
there is an opportunity to integrate OPA with low-cost receivers on chips [30–35]. This
article reviews the research progress of OPA based on PIC in recent years, mainly focusing
on the grating emission 1-D OPA. In the Section 2, we introduce the parameters affecting
beam quality. In Section 3, we elaborate on the schemes and progress for expanding the
scanning range and improving resolution on the longitudinal and transversal scanning
dimensions. To expand the scanning range, we propose an optimization scheme for
aperiodic OPA. The unidirectionality that affects the output efficiency of OPA is also
introduced in detail.

2. Scanning Principle of PIC OPA

OPA consists of splitter tree, phase shifters, and emitting array as shown in Figure 1.
The incident light is divided into several channels through a cascaded splitter tree, and
the phase of the light in each channel is modulated by a phase shifter. Finally, the light
enters the emission array and radiates outward, forming a scanning beam in the specified
direction. This direction is determined by the structure of the emitting elements, the
wavelength of the input light, and the relative phase among different channels [36,37].
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Figure 1. Schematic of OPA and 2D beam-steering.

The emitting array is a crucial device for beam scanning, consisting of several waveg-
uide grating antennas (WGAs). The typical structure of WGA is shown in Figure 2.
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Figure 2. Schematic of the waveguide grating structure.

The effective refractive index of the WGA is modulated periodically through the
periodic grating [38]. When passing through the grating region, the guided mode in the
WGA excites a diffraction field and emits energy to free space through diffracted light. The
optical path difference between two beams diffracted by adjacent periodic gratings satisfies
the following formula [39]:

ne f f − ncsinθ =
λ

Λ
, (1)
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The maximum value of diffracted light appears in the θ direction. Where neff and nc
are the effective refractive index of the waveguide fundamental mode and the refractive
index of cladding, respectively. Λ is the period of the WGA and λ is the wavelength of
the incident light. θ is defined as the angle between the emitted light and the vertical
direction, which is the longitudinal scanning angle of OPA; the range of θ modulated by
the wavelength is called the longitudinal scanning range of OPA. The near-field electric
field intensity of periodic structured gratings follows an exponential decay of e−2αx, where
α is the perturbation intensity of the grating and x is the direction of light propagation in
the WGA. The effective emission length of a WGA is the length at which the diffraction
intensity decays to e−2 of its initial value, that is L = 1/α [40]. When the radiation intensity
remains consistent, the longitudinal divergence angle of the beam is expressed by the
following formula [39]:

∆θ ≈ 0.886λ

NΛcosθ
(rad), (2)

The ratio of the upward part of the light emitted from the WGA to the sum of the up
and down directions is called unidirectionality and is described as follows [41]:

D =
Pup

Pup + Pdown
, (3)

Ignoring the longitudinal scanning of OPA and only considering the transverse scan-
ning determined by the phase relationship of array emitters, the scanning principle of OPA
can be described by a 1-D periodic OPA with N units as shown in Figure 3.
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Assuming that the directional function of the emitters is isotropic (i.e., the directional
factor f = 1), the amplitude of the emitters is A, the interval between emitters is d, and the
phase of each emitter unit is (i − 1) ∆φ. At an observation point r0 away from OPA, the
field intensity is as follows:

E =
N

∑
i=1

A f e−j(i−1)∆φ e−j 2π
λ ri

r0
, (4)

When the observation point is far from the optical phased array, the distance from
the observation point to each array element can be approximated by r0. However, when
considering the phase, approximation cannot be used. The distance from the observation
point to each array element is ri. When d < λ

2 , the OPA can achieve aliasing-free beam
steering with 180◦ FOV in the transversal direction of the far field. When d > λ

2 , periodic
grating lobes appear in the far field. When the main beam deflects to the angle where a
grating lobe with an amplitude equal to it appears, the range is defined as the FOV range of
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the periodic OPA and ΦFOV = 2arcsin
(

λ
2d

)
. The transversal divergence angle of the beam

is expressed by the following formula [42]:

∆Φ ≈ 0.886λ

Ndcosθ
(rad), (5)

According to Equation (5), the divergence angle of a beam is inversely proportional
to the aperture of the OPA (Nd). Therefore, for an OPA with uniform spacing, when the
spacing between emitters is fixed, the divergence angle of the beam can be reduced by
increasing the number of emitters.

3. Schemes and Review for Improving OPA Device Performance

This section summarizes the technical solutions for improving the beam quality of OPA
in both longitudinal and transverse dimensions. In Section 3.1, we review the solutions
to improve the quality of longitudinal scanning by expanding the scanning range and
reducing the divergence angle. In Section 3.2, we classify the OPA into periodic distribution
OPA and aperiodic distribution OPA. The transversal scanning range and divergence angle
in these two technical schemes are also reviewed.

3.1. Improving Beam Quality of Longitudinal Dimension
3.1.1. Expanding Scanning Range of Longitudinal Dimension

According to Section 2, the longitudinal scanning angle of OPA is determined by
the structure of the WGA and the wavelength of incident light, with a resolution of ∆θ
determined by the effective emission length of the WGA. For WGA with a determined
structure, the longitudinal scanning angle of OPA varies approximately linearly with the
working wavelength [43,44], and the longitudinal scanning range is also limited due to the
limited working bandwidth of the light source. An OPA expanding the scanning range by
polarization multiplexing was proposed in 2021 [45]. The OPA switches the input light
between TE0 mode and TM0 mode through cascading an MZI with a polarization splitter
rotator (PSR). The grating is formed by a 340 nm thick Si waveguide with an etching depth
of 70 nm. By reasonably designing the cross-sectional size of the waveguide, the difference
in effective refractive indices between TE0 mode and TM0 mode in the waveguide is
reduced, and ultimately achieves a longitudinal continuous scanning of 28.2◦ within the
bandwidth of 1500–1600 nm. In 2022, Zhao et al. added an optical switch in front of the
OPA to control the forward/reverse input of light in the array [46]. Combined with the
polarization multiplexing scheme described in [45], a continuous scanning range of 54.5◦

was achieved on the 340 nm SOI platform. In the same year, a polarization multiplexed
OPA based on a 220 nm SOI platform was demonstrated as shown in Figure 4a [47]. Due to
the significant difference in effective refractive indices between TE0 mode and TM0 mode
in a 220 nm thick single-mode Si waveguide, although a longitudinal scanning range of
two times was achieved during the experiment, continuous scanning could not be achieved.
Zhao et al. proposed in 2023 a polarization multiplexing OPA in which TE0 and TM0
modes are transmitted in two staggered arrays [48]. The light is switched to the TE0 or
TM0 mode by the optical switch after coupling to the OPA. A superlattice waveguide
grating composed of two WGAs with different widths then forms an array. After the TE0
or TM0 mode, light passes through power splitters; it passes through the PSR and enters
its respective array, achieving a 28◦ scanning range. The research and design of PSR is
extensive and mature [49,50], giving polarization multiplexing an enormous potential in
the field of OPA.

In 2019, Tyler NA proposed an OPA consisting of four sub arrays. By switching the
working status of each sub array, the OPA achieved a longitudinal scanning range of 3◦ at
the same input wavelength [51]. We proposed an OPA increasing the longitudinal scanning
dimension through two subarrays with different grating periods as shown in Figure 4b [52].
The WGA is dual-layer fabricated on an Si-Si3N4 integration platform. Light is transmitted
by Si waveguides, and the proportion of upward radiation is increased by the silicon
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nitride (Si3N4) grating above the waveguide. The OPA switches the working states of two
subarrays by an optical switch, concatenating the longitudinal ranges of the two subarrays,
and achieves a longitudinal scanning range of 32.6◦ through wavelength multiplexing
within the light-source bandwidth range of 1500–1600 nm.

The structure of wavelength multiplexing OPA is simple, but it requires multiple
sub arrays, resulting in a large chip size. Polarization multiplexing OPA can improve the
utilization efficiency of the array. Combined with the mature design of PSR, polarization
multiplexing OPA is a more efficient solution to expand the longitudinal scanning range
of OPA.
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3.1.2. Reducing Divergence Angle of Longitudinal Dimension

According to Equation (2), it is necessary to extend the effective emission length of WGA
to reduce the longitudinal divergence angle and improve the beam resolution [41,53–55]. For
periodic WGA, the diffraction intensity exhibits an exponential decay, leading to a widening
of the divergence angle. Designing apodized gratings to enhance the perturbation intensity
along the WGA has been a mainstream scheme in recent years [41,54,56]. In 2021, Chen
et al. designed two apodized gratings based on an Si-Si3N4 integration platform [41]. Offset
etching was fabricated on the upper and lower surfaces of 340 nm thick Si3N4 to achieve the
dual-level chain WGA and dual-level fishbone WGA. The etching width at both surfaces of
the grating was expanded along the WGA to enhance the radiation intensity and ultimately
achieved an effective emission length of 3 mm. In 2022, an apodized side-wall grating
fabricated on 200 nm thick Si3N4 was demonstrated [54]. As shown in Figure 5a,b, from the
beginning to the end of the grating, the width of inward etching gradually increases from
75 nm to 550 nm, achieving the aim of enhancing the radiation intensity. As can be seen
from Figure 5c,d, the increase in perturbation intensity along WGA leads to uniformity
of the radiation intensity. The effective emission length of the grating measured in the
experiment was 3.16 mm, which was consistent with the simulation results. A longitudinal
divergence angle of 0.04◦ was measured.

Another scheme to extend the effective transmission length is to weaken the per-
turbation of the waveguide grating. In 2023, Qiu et al. proposed a method of shallow
etching of 10 nm on the 220 nm Si surface and fabricated a 2 mm long WGA as shown in
Figure 6 [55]. Gaussian apodization design was applied to the duty cycle of the grating
along the propagation direction. The divergence angle measured in the experiment was
0.07◦. In the same year, Luo et al. fabricated an OPA whose array was composed of periodic
gratings [53]. The WGA was dual-layer with an Si waveguide and upper Si3N4 grating.
The radiation intensity of the WGA theoretically decays exponentially with the propagation
length because of the periodic structure, causing the actual effective length to be only
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1.5 mm. Therefore, the experimental result of the longitudinal divergence angle was 0.05◦,
which is wider than the theoretical value of 0.016◦.
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The length of the WGA needs to be designed reasonably to achieve the goal of reducing
the longitudinal divergence angle. Blindly extending the length of the WGA may lead
to other issues. Extending the effective emission length of the WGA requires reducing
the perturbation intensity. When the perturbation intensity of the WGA decreases to a
certain extent, the impact of manufacturing errors cannot be ignored, and may actually
lead to an increase in the divergence angle. For apodized gratings, if the etching width
and period cannot be precisely controlled along the WGA direction, it may also lead
to a decrease in beam quality. Compared to Si, the refractive index contrast between
Si3N4 and the cladding is smaller, having a larger process tolerance. The WGA with Si
waveguide and Si3N4 grating has become a feasible solution for achieving longer emission
length. Table 1 summarizes the OPA designed in recent years to improve the longitudinal
beam performance.
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Table 1. OPA for improving the longitudinal beam performance.

Ref Platform Scheme Divergence Length of WGA Scanning Rang

Expanding
scanning range

[45] Si Polarization Multiplexed / / 28.2◦

[46] Si Polarization Multiplexed / / 54.5◦

[54] Si Polarization multiplexed / / 15.62◦ + 16.08◦

[48] Si Polarization multiplexed 2.0◦ / 28◦

[52] Si-Si3N4 Wavelength multiplexing 0.067◦ / 32.6◦

Reducing
longitudinal

divergence angle

[56] Si3N4 Apodized WGA / 3 mm /

[57] Si Subwavelength WGA 0.081◦ 1 mm 0.17◦/nm

[41] Si3N4 Apodized WGA 0.029◦ [44] 3 mm /

[54] Si3N4 Apodized WGA 0.04◦ 3.16 mm 0.064◦/nm

[55] Si Gaussian apodized WGA 0.07◦ 2 mm 13.2◦

[53] Si- Si3N4 Uniform periodic WGA 0.05◦ 5 mm 15.1◦

3.2. Improving Beam Quality of the Transversal Dimension
3.2.1. Distributing Array Periodically with Small Spacing to Expand the Transversal
Scanning Range

The scanning range of the periodic OPA gradually expands as the channel spacing
decreases [58–60]. In 2014, A. Yaacobi et al. reduced the channel spacing to 2 µm and a
16-channel periodic OPA was designed. The scanning angle of phase control was increased
to 51◦ with a divergence angle of 3.3◦ [60]. With the channel spacing d < λ

2 , the OPA can
achieve non-aliasing beam scanning within a 180◦ range. At the same time, the crosstalk
between adjacent channels increases with the reduction of the channel spacing. When
the emission length of the grating is long, the crosstalk between adjacent channels will
seriously affect the optical power of each channel. Therefore, it is an enormous challenge
to suppress the crosstalk between the densely distributed optical phased array channels.
In 2015, Song et al. proposed a superlattice structure consisting of five non-uniform
waveguides [61]. The impact of the arrangement of waveguides with different widths in
the superlattices on the suppression of crosstalk was analyzed in detail and the structure
is shown in Figure 7a [62]. Specific sorting was performed on waveguides with unequal
widths to enhance phase mismatch between adjacent channels and suppress directional
coupling. Phare C T et al. proposed a 64-channel end face emitting OPA [63]. Waveguides
were designed with different widths and cycled in groups of three. In this case, even if
the channel spacing is 775 nm, low crosstalk between adjacent channels is achieved. Even
when steered up to 60◦ off-axis, the single diffraction-limited beam can carry more than 72%
of the power. Superlattice structures exhibit excellent performance in OPA emitted from
the end facet [63,64], but face significant challenges when used for grating emission. In
order to maintain consistent longitudinal radiation angles of each channel, the period of the
grating needs to be adjusted according to the width of the waveguide [65]. It requires high
precision in fabrication and is sensitive to manufacturing deviations. Sinusoidal silicon
waveguides can be used to achieve ultra compact and low crosstalk OPA [66]. Liang et al.
conducted research on densely distributed waveguides modulated by periodic bending,
and an end facet emitting OPA with an FOV of 120◦ was achieved through sinusoidal
waveguides in 2023 [67].

OPA with a plate interference coupling region was designed and an OPA with a
shallow etched Si slab was demonstrated in 2020 [59,68]. The OPA had 32 channels with
a periodic spacing of 1.65 mm and achieved a horizontal scanning range of 96◦. First the
light in each channel interferes with the other after entering the Si slab, and then radiates
outward through the grating formed by a 70 nm shallow etching. The proposed antenna
operates as a whole device to achieve beam steering without crosstalk and there is no
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need to optimize the width of the WGA to reduce crosstalk. In 2022, Liu et al. proposed a
trapezoidal slab emission array with half-wavelength-pitch periodic channels, combining
the advantages of superlattice waveguides and planar emission arrays [69]. The structure
of superlattice waveguides was used in front of the trapezoidal slab to suppress crosstalk
during waveguide convergence, achieving a dense channel spacing of 775 nm. Grating was
formed by etching 10 nm downwards on the surface of a 220 nm thick Si flat plate. This
OPA achieved a non-aliasing FOV of 180◦, as shown in Figure 7b.
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The combination of superlattice input waveguides and planar emission gratings can
achieve periodic dense integration while avoiding the challenges posed by superlattice
emission gratings to the process. Si3N4 gratings can be used, instead of the gratings
formed by shallow etching of Si, to further extend the emission length. When the number
of channels is small, the transversal aperture of the OPA with half-wavelength periodic
distribution is not large, and the resolution of lateral scanning is limited as a result. For
an OPA with small spacing and periodic distribution, in order to achieve a smaller lateral
divergence angle, it is necessary to achieve a larger transversal aperture and increase the
number of channels. In this case, how to achieve a densely integrated phase-shifting
structure becomes a challenge.

3.2.2. Distributing Array Unevenly with Large Spacing to Expand the Transversal
Scanning Range

Another solution to expand the transversal scanning range is to distribute the arrays
unevenly [43,44,70–74]. In 2009, A Hosseini et al. proposed a design method for a large
angle beam steering OPA with non-equidistant emission units based on a silicon nanomem-
brane. The simulation results show that the array has a deviation angle of ±60 ◦ and ±45 ◦

in two directions, respectively [75]. In 2016, Intel Labs reported a 128-channel non-uniform
OPA that achieved a transversal scanning angle of 80◦ and an average divergence angle of
0.14◦ [73]. The best resolution that could be measured was 0.11◦, which was the highest
resolution at that time. In 2021, a 128-channel large spacing aperiodic OPA based on genetic
algorithm (GA) was demonstrated as shown in Figure 8a [44]. The objective function of the
OPA far-field distribution optimization is set to a gate function at the maximum scan angle.
The cosine similarity between the objective function and the actual intensity distribution is
used as the optimization goal. The average spacing of channels is 29.7 µm. The transversal
aperture of the array is 4 mm, achieving a divergence angle of 0.029◦. The sidelobe level
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of this OPA is −10.2 dB at 0◦ and −6.9 dB at 70◦. In 2023, this OPA was used to achieve
wireless optical communication within a transversal range of 100◦ [9]. In 2022, Dong et al.
proposed a scheme that adjusts the optical power amplitude of each channel by a variable
optical attenuator (VOA), and then designed the array with non-uniform spacing, achieving
sidelobe levels below −24.65 dB within an FOV of 120◦ [71]. The use of VOA is beneficial
for modulating the amplitude of each channel, but also brings the disadvantage of reducing
optical power, which poses a challenge for achieving long-distance detection. In 2023, Wang
et al. fabricated a 256-channel aperiodic OPA achieving a transversal scanning range of
150◦, as shown in Figure 8b [43]. The WGA was composed of two identical sidewall Si3N4
gratings with a displacement. GA was used to optimize the pitches for the non-uniform
OPA and the transversal aperture was 1.8 mm [76]. The transversal divergence angle
was 0.066◦ at φ = 0◦ and the side lobe suppression ratio (SLSR) remained above 2 dB at
φ = ±75◦. Table 2 summarizes the OPA designed in recent years to improve transversal
beam performance.
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Table 2. OPA for improving transversal beam performance.

Ref Platform Scheme Divergence
Angle

Number of
Channels

Scanning
Range

[60] Si Periodic 3.3◦ 16 51◦

[63] Si Periodic 1.2◦ 64 120◦

[77] Si-Si3N4 Periodic 0.69◦ 64 35.5◦

[78] Si-Si3N4 Periodic 1.9◦ 64 96◦

[53] Si-Si3N4 Periodic 0.04◦ 1024 40◦

[68] Si-Si3N4 Si slab array 2.3◦ 32 96◦

[69] Si Si slab array 2.1◦ 64 180◦

[73] Si Aperiodic 0.14◦ 128 80◦

[44] Si-Si3N4 Aperiodic 0.021◦ 128 140◦

[43] Si3N4 Aperiodic 0.066◦ 256 150◦

[72] Si-Si3N4 Aperiodic 0.051◦ 256 140◦

Here we propose an optimization scheme for aperiodic OPA, which is based on the
particle swarm optimization (PSO) algorithm. We take the influence of f (φ) on the intensity
of the main beam during beam deflection into account in the optimization step. This
scheme can predict the actual test results of beam steering to a certain extent. The scheme
is combined with the directional factor f (φ) of the WGA, the number of channels N, and
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the scanning range to be optimized (φmin, φmax). The objective function is determined by
the maximum and minimum of the SLSR within the scanning range as a measure of overall
performance within the scanning range. Assuming the direction function of a WGA is
f (φ) = cos2(φ), φ ∈

[
−π

2 , π
2
]
, the profile factor of each emitter in OPA has a full width

at half-maximum (FWHM) of 90◦. By substituting the formula of f (φ) into Equation (4)
and combining it with the positions of each channel, the light intensity distribution of
OPA at various angles in the far field can be calculated. SLSR is used to measure the
ability to distinguish between the main beam and the sidelobes. The objective function of
the PSO algorithm is the product of the maximum and the minimum of SLSR within the
predetermined scanning range. The larger the value of the product, the stronger the ability
to distinguish the main beam within the global range of the predetermined scanning range.

The algorithm proposed above was used to optimize a 128-channel OPA within ±70◦

with the channel spacing of 10–25 µm. The optimized OPA has a transversal aperture of
2.17 mm with an average spacing of 17.11 µm. Figure 9a shows the intensity distribution
of the OPA when the main beam deviates. The maximum SLSR is 13.5 dB at 0◦ and the
divergence angle of the main beam is 0.036◦, as shown in Figure 9b. The SLSR is better than
4.5 dB in the whole FOV of 140◦. Figure 9c shows the channel spacing for 128 channels.
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Figure 9. (a) Far-field simulation result with the main beam at different angles (0◦, ±15◦, ±30◦,
±45◦, ±60◦, ±70◦) in φ-dimension. (b) With the main beam at φ = 0◦, the light intensity distri-
bution is within ±0.1◦. The divergence angle of the main beam is 0.036◦. (c) Pitch distribution of
127 channel spacings.

3.3. Unidirectionality of WGA and OPA Chips

To satisfy the requirement of long-distance detection, OPA needs to have a high
output optical power [79]. One of the key factors affecting the output optical power is the
unidirectionality D of the emission array. The higher the proportion of upward radiation
optical power in the WGA, the greater is the output optical power of the OPA. To enhance
the unidirectionality of the WGA, the refractive index of the material in the vertical direction
can be changed to increase the proportion of upward radiation [79–81]. On the other hand,
utilizing the phase interference of radiated light in the upper and lower directions can
achieve a higher proportion of upward radiation [39,41,43,56,82]. In 2017, Raval et al.
proposed a dual-layer WGA with displacement. By utilizing constructive interference and
destructive interference of light in the WGA as shown in Figure 10a,b, unidirectionality
over 90% could be achieved [56]. A unidirectionality over 92% was obtained by testing the
output power of the OPA [43]. In 2021, a dual-level chain WGA and a dual-level fishbone
WGA by etching on both the upper and lower surfaces with an offset on a single Si3N4
layer [41], as shown in Figure 10c,d, achieved the unidirectional of 95%.
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Compared to changing the index in the vertical direction of the material system to
enhance the proportion of upward radiation, obtaining higher unidirectionality by utilizing
the phase interference of radiated light in the upper and lower directions can maintain
the perturbation intensity of WGA and will not decrease the effective emission length. In
addition, Si3N4 can withstand higher input optical power compared to Si [83]. Compared
to Si3N4, Si has a higher refractive index contrast and a great potential in preparing longer
gratings. Fabricating OPA on Si-Si3N4 integrated platforms is a major trend. Table 3 lists
the research results on the unidirectionality of WGA in recent years.

Table 3. Research on unidirectionality of OPA.

Ref Platform Scheme Unidirectionality

Simulation

[79] Si Etching upper SiO2 cladding >70%
[39] Si-Si3N4 Shallow etching Si3N4 grating >89%
[59] Si-poly-Si High contrast grating 93.94%
[82] Si-Si3N4 Interleaved etching of Si3N4 grating 97%

Fabrication
and testing

[56] Si3N4 Dual-layer Si3N4 grating with offset >90%

[41] Si3N4
Etching dual-level Si3N4 grating

with offset ~80–90%

[43] Si3N4 Dual-layer Si3N4 grating with offset >92%

4. Conclusions

PIC OPA has great potential in achieving solid-state LiDAR due to its compatibility
with mature CMOS processes. This article summarizes the schemes to improve the beam
quality and device performance of the OPA conducted in recent years. To improve the
resolution of the beam, it is necessary to design a longer WGA and larger lateral apertures.
The advantage of high input power affordability, low transmission loss of Si3N4, and
small-spacing dense integration of Si can be combined on an Si-Si3N4 integration platform.
The Si-Si3N4 dual-layer WGA, which transmits light by Si waveguides and radiates light
outward by Si3N4 gratings, can effectively extend the emission length. At the same time,
due to the higher refractive index and smaller cross-sectional dimensions of Si waveguides,
smaller spacing and larger scale OPA arrays can be achieved. Therefore, developing an
OPA on the Si-Si3N4 platform is an effective way to achieve large-aperture OPA.

When the period spacing of a periodic OPA is larger than half-wavelength, the scan-
ning range will be limited. Designing an OPA with a half wavelength periodic distribution
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can achieve 180◦ aliasing free scanning. In order to reduce the divergence angle and
improve the resolution, it is necessary to expand the lateral aperture and increase the
number of channels. When integrating on a large scale, reasonable layout phase shifters
and other devices as well as reducing chip size become the major challenges for fabrication
in the future. Non-periodic OPA is an effective solution for achieving a large aperture and
large scanning range. An optimization scheme for channel spacing of aperiodic OPA has
been proposed. Non-periodic OPA with large spacing cannot eliminate the presence of
grating lobes, resulting in the dispersion of optical power into various side lobes. How
to further reduce the SLSR and increase the energy proportion of the main beam warrant
further research.

Utilizing the interference effect of the phase of light in the channels to achieve high
unidirectionality and output optical power is an effective solution. Coherent light ranging
and frequency modulated continuous wave ranging by OPA remains a current research
hotspot. With the small size, light weight, and high-quality beam scanning, OPA will
have great prospects in the fields of all-solid-state LiDAR, wireless optical communication,
and imaging.
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