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Abstract: With the rapid development of the emerging intelligent, flexible, transparent, and wearable
electronic devices, such as quantum-dot-based micro light-emitting diodes (micro-LEDs), thin-film
transistors (TFTs), and flexible sensors, numerous pixel-level printing technologies have emerged.
Among them, inkjet printing has proven to be a useful and effective tool for consistently printing
micron-level ink droplets, for instance, smaller than 50 µm, onto wearable electronic devices. How-
ever, quickly and accurately determining the printing quality, which is significant for the electronic
device performance, is challenging due to the large quantity and micron size of ink droplets. There-
fore, leveraging existing image processing algorithms, we have developed an effective method and
software for quickly detecting the morphology of printed inks served in inkjet printing. This method
is based on the edge detection technology. We believe this method can greatly meet the increasing
demands for quick evaluation of print quality in inkjet printing.

Keywords: printed electronic devices; inkjet printing; image processing; edge detection; pixel level

1. Introduction

With the fast development of fifth-generation (5G) mobile communication technology,
the demand for flexible, transparent, and wearable electronic devices has increased. These
devices include micron-size light-emitting diode (micro-LED) displays, flexible sensors, and
other flexible electronic devices [1,2]. Micro-LEDs, with their dimensions less than 50 µm,
possess numerous well-known advantages such as long lifespan, fast response, low power
consumption, and high brightness, making them more suitable for a variety of electronic
products. These products range from smartphones and smartwatches to televisions (TVs)
and extend to applications in the visible light communication (VLC), augmented reality
(AR), and virtual reality (VR) among others [3,4].

The fabrication of micro-LED displays primarily follows two approaches. The first one
involves combining miniaturized InGaN-based blue (B) and green (G) LEDs with AlGaInP-
based red (R) LEDs to create RGB micro-LED displays [5]. The main challenge here is the
mass transfer of tens of thousands of miniaturized LED chips onto target substrates, a
process fraught with complexity. The second approach utilizes the color converters such as
quantum dots (QDs), which are synthesized and then uniformly coated on miniaturized
GaN-based blue or violet micro-LED arrays [6]. This method introduces its own set of
challenges, particularly in the uniform application and patterning of QDs on the LEDs.

Recent advancements in various printing techniques, including photolithography,
inkjet printing (IJP), and transfer printing (TP), have significantly contributed to the de-
velopment of high-resolution electronic devices, such as QD-based micro-LEDs [6,7]. In
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particular, IJP technology has gained prominence for its role in producing low-cost, large-
scale, lightweight, optically transparent, and scalable electronic devices, encompassing a
broad range of applications from thin-film transistors (TFTs) to supercapacitors [2,6].

Despite its advantages, IJP still faces several issues like the coffee-ring effect, non-
uniform films, challenges in large-scale fabrication, and surface roughness [8]. The impor-
tance of effective tools and methods for rapidly assessing the physical size, morphology of
deposited droplets, and the overall printing quality of IJP is becoming increasingly crucial,
especially given its widespread future applications. Uniformity and high resolution in the
printed patterns are essential for enhancing the device stability. Recent studies, such as
those by S. Shi et al. using microscale fluorescence spectroscopy (MFS) for the uniformity
assessment of quantum-dot pixels [9] and by Behrman et al. through photoluminescence
(PL) and cathodoluminescence (CL) imaging for the defect identification in micro-LEDs [10],
highlight the ongoing efforts in this area. Additionally, H. Zhang et al.’s proposal of a
machine learning approach for optimizing aerosol jet printing (AJP) based on droplet
morphology underscores the innovative directions in addressing these challenges [11]. Yet,
this literature reveals a scarcity of fast and extensive techniques for the ink droplet detection
in the IJP, considering the imaging processing algorithms.

In response to this gap, our study aims to introduce a rapid and large-scale methodol-
ogy for detecting the morphology of ink droplets during the IJP process by using the image
processing algorithms. This approach is poised to significantly reduce the time required
for mass detection and quality assessment of inkjet printing, which is pivotal for practical
applications. To achieve high-resolution images of printed ink droplets, a metallographic
microscope equipped with a charge-coupled device (CCD) camera is employed, commonly
used in the optical inspection of LEDs [12].

2. Experimental
2.1. Intrinsic Factors

Several important intrinsic factors would affect the morphology of ink droplets during
the inkjet printing process. For instance, the viscosity, density, and surface tension of the ink
all contribute to a Z value, which is the inverse of the dimensionless Ohnesorge Number
(Oh), like [9]

Z =
1

Oh
(1)

For stable droplet jetting, it is advisable, based on experience, to maintain the Z value
within the range of (1, 14). Additionally, external factors such as the electrical waveform
parameters, including bias voltage, pulse width, and voltage amplitude, can influence the
physical size and morphology of ink droplets. The diameter and height of the nozzle to the
substrates also play significant roles in the jetting of ink droplets. Effective control over
these mentioned conditions can lead to the generation of relatively regular and uniform
ink droplets, minimizing the occurrence of satellite droplets during the printing process.

2.2. Experimental Conditions

Figure 1A shows the schematic diagram of this inkjet printing as electrohydrodynami-
cally (EHD) printing. The inkjet printing experiment is carried out by using the ultra-high
resolution material deposition printer, denoted as SIJ-350, which is manufactured by SIJ
Technology (Tsukuba, Japan). The printer is equipped with a nozzle diameter of 5 µm,
allowing for the precise deposition of ink droplets with feature sizes of less than 20 µm,
which is notably finer than the capabilities of standard inkjet printer nozzles. The first
inks used in this study consist of red perovskite quantum dots (QDs) and a UV-curable
polymer, suitable for the fabrication of full-color QD-based micro-LEDs; the second ink
used in this study is Ag inks. The substrate for printing is a standard transparent glass
substrate, with the dimension of 5 cm in both length and width and a thickness of 1 mm.
The high-resolution images of the printed ink droplets are captured by using a metallo-
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graphic microscope (RX50M, Ningbo Sunny Instruments Co., Ltd., Ningbo, China) with
magnification ranging from 10× to 1000×, coupled with a CCD camera.
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Figure 1. (A) The schematic diagram of inkjet printing. The image of printed QD ink droplets and Ag
ink droplets, arranged in a 4 × 4 array. (B) The flow chart of edge detection in this work.

During the configuration of the SIJ-350 software v1.0, the electrical waveform used
to drive the jetting is set to a 75% square wave, with a frequency of 1000 Hz. The split
amplitude is set at 150 V and the split bias at 100 V, with a split speed of 0.2 mm/s.
Figure 1A also displays the printed red perovskite QD ink droplets alongside Ag ink
droplets, arranged in a 4 × 4 array. It is evident that the coffee-ring phenomenon is
observable in the QD ink droplets, whereas this effect is absent in the Ag ink droplets,
which maintain a regular and uniform circular shape.

2.3. Image Edge Detection Algorithms

The image detection algorithms often involve edge detection techniques, where pixel
values in an image undergo abrupt changes. These techniques are widely employed
in image segmentation tasks. The realm of image processing features numerous edge
detection (or gradient) operators, including first-order edge operators such as the Sobel,
Scharr, Roberts, Prewitt, and Kirsch operators, as well as second-order edge operators like
the Laplacian and Canny operators.

The expression for the Laplacian operator is as follows:

∇2 f (x, y) = f (x + 1, y) + f (x − 1, y) + f (x, y − 1) + f (x, y + 1)− 4 f (x, y) (2)

The expression for the Laplacian enhancement operator is as follows:

g(x, y) = f (x, y)−∇2 f (x, y)
= 5 f (x, y)− [ f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1)]

(3)

Figure 1B presents a flow chart illustrating the edge detection process utilized in
this study.

1. Initially, an image captured by a high-precision camera is input;
2. The image then undergoes grayscale processing to simplify analysis;
3. Subsequently, the Gaussian fitting is applied to mitigate noise in the image;
4. Importantly, threshold processing is essential to enhance the clarity of the edges

in the image. Without this step, there would be a lot of noise, characterized by rough,
indistinct, and discontinuous edges, leading to inaccurate positioning;
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5. Finally, edge processing is performed on the images using an edge operator to
highlight and delineate the edges within the images.

The edge detection algorithms employed in this study are particularly tailored for
high-contrast and noise-minimal imaging conditions which are typical of inkjet printing
assessments. The adaptive thresholding technique is utilized to dynamically adjust edge
detection sensitivity, mitigating false edge recognition in varied lighting and background
conditions. While this methodology is optimized for the SIJ-350 printer system, the founda-
tional principles are applicable across different systems after minimal adjustments, ensuring
broad applicability in diverse imaging environments.

3. Results and Discussion

In this section, the outcomes of the proposed methods are analyzed. Figure 2A
presents the original Ag printed pattern, which is identified as a bimodal image due
to the two prominent peaks in its grayscale histogram, as clearly depicted in Figure 2B.
This characteristic makes the Otsu threshold method [13] as a binary image segmentation
algorithm, particularly apt for processing such types of images. The edge-delineated image,
as seen in Figure 2A, exhibits notable continuity and clarity.
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Figure 2. (A) The original Ag printed pattern and after the Otsu image processing. (B) The histogram
of grayscale values of R, G, and B. Two prominent peaks in its grayscale histogram can be found. (C)
The Laplacian operator.

In order to objectively evaluate the detection performance, three image quality assess-
ment indicators, Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM),
and Mean Squared Error (MSE), are used to verify the detection accuracy of the algorithm,
as follows:

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

[g(i, j)− f (i, j)]2 (4)

where M and N are the number of pixels in the length and width of the image, respectively,
and g(i, j) and f (i, j) are the grayscale values at that point before and after processing. And

PSNR = 20 log10(
MAXI√

MSE
) (5)

where MAXI represents the maximum pixel value of the image, which is 255, and MSE
represents the mean squared error between the original image and the detection image.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)
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where x and y represent the pixel values of two images, µx and µy represent their average
luminance, σx

2 and σy
2 are the variances of x and y, respectively, σxy is the covariance

between x and y, and C1 and C2 are small constants introduced to avoid division by zero,
typically depending on the dynamic range of the image data.

To ensure a fair and unbiased evaluation, we randomly selected 10 images from
our dataset and analyzed them by using our method, calculating the PSNR, MSE, and
SSIM metrics accordingly. For comparison, images processed solely with the Laplacian
operator for edge detection show an average PSNR of 28.2436, a higher MSE of 97.4352,
and a significantly lower SSIM of 0.0170, indicating lesser image reconstruction quality and
higher error levels. In contrast, our method achieves a PSNR of 30.4700, MSE at 58.3545,
and SSIM at 0.1339. These results not only demonstrate an improvement over the basic
Laplacian approach in terms of noise resilience and error reduction but also highlight the
enhanced structural fidelity that our method offers, as reflected in higher SSIM values.

This analysis underscores the good consistency and stability of our evaluation met-
rics across the randomly selected image samples, providing a comprehensive view of the
method’s performance. The comparison confirms the accuracy and output consistency of
our method, significantly outperforming the Laplacian operator in crucial aspects. Our find-
ings support the efficacy of the method and indicate substantial potential for improvement,
particularly in areas of structural fidelity as evidenced by the SSIM metric.

In this study, we evaluate the Laplacian operator (Figure 2C) performance against
other operators in terms of processing time, with the findings presented in Figure 3. The
Laplacian operator demonstrates the most efficient processing time at 3.95 s, marked with
a five-pointed star. Consequently, in this work, we employ a combination of the Otsu
threshold method and the Laplacian operator for processing images obtained from the
inkjet printing.
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Here, we first use the Hough circle detection algorithm to identify the center of circular
edge of ink droplets and obtain the position of edge pixels in the circle. Then, we calculate
the distance between each edge pixel and the center of circle separately and take the average
value to obtain average diameter of each circle. However, since the diameter is measured
in pixels, we need to select the suitable scaling factor (SF) to convert the pixel unit in the
image to the actual unit (µm) as

SF =
Lpixel

Lreal
(7)

The scaling factor is adjusted according to the magnification level of the microscope,
being set at 0.3 for 10×, 1.2 for 50×, and 3 for 100× magnification levels, respectively,
by experience. Figure 4A presents the edge detection outcomes obtained under the 10×
microscope magnification, where the edges resulting from the analysis are superimposed



Micromachines 2024, 15, 606 6 of 8

on the original image to provide a clear visualization of the detected boundaries. After
removing some bad points, a total of 437 pixels points are processed in the figure. Due to
the large number of pixel points and low resolution, the detection results are not precise
enough. Figure 4B also shows the statistical histogram of the detected average diameter
(d) of 437 pixels points. We can see that most pixel points have a diameter of about
d = 14–16 µm. Figure 5A shows the edge detection results obtained at a magnification
of 20× of the microscope, where the analyzed edges are superimposed on the original
image to provide a clear visualization of the detected boundaries. A total of 130 pixels are
processed in the figure. Due to the moderate number of pixels, more accurate detection
results can be obtained by processing fewer pixels at once. Figure 5B also shows the
statistical histogram of the average diameter (d) of 130 detected pixels. We can see that the
diameter of most pixels is approximately d = 12–13 µm, proving that this proposed method
is useful for quick detection of droplet morphology and physical size in inkjet printing.
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4. Software Design

In this project, we have chosen the Qt Creator as the development tool and C++ as the
programming language for implementing backend algorithms. For interface development,
the Qt Designer will be used to achieve the desired GUI design. To facilitate effective inte-
gration between the interface (frontend) and functionality (backend), we will encapsulate
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the functional routines written in C++ into dynamic-link libraries (DLLs), allowing them to
be called from C#.

The main interface of this software is shown in Figure 6A. In it, the top left corner
of the software contains the system’s menu bar and the central part is the original image
display area after the software has successfully imported the original images.
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The system menu bar includes five options: File, Set, Method, Report, and Help. The
File option allows users to import the original inkjet-printed image data that need to be
analyzed. The Set option helps users configure the scale, entering the conversion ratio
between pixel size and actual size into the system, thus achieving the conversion between
image pixels and actual dimensions to meet real production needs. The Method option
offers a variety of edge detection methods suitable for inkjet-printed images under different
conditions. Through the Report option, this software provides users with image analysis
results and statistical information, facilitating further use or processing by the users. The
Help section assists users in understanding how to operate the software and provides a
brief introduction to the system.

After drawing lines on the original image according to the scale, clicking the Set
button on the menu bar will prompt a scale setting dialog box, as shown in Figure 6B. Upon
entering the actual length and unit of the scale based on real data, the system backend will
automatically calculate the ratio between image pixels and actual dimensions. This ratio is
then used in subsequent analyses to convert sizes, facilitating the generation and export of
inspection reports.

Once the scale and detection method is set, clicking the Report button on the menu bar
will open the report window, as illustrated in Figure 6C. Within the inspection report dialog,
two report formats are available for the user to choose from, a txt file and a jpg file, as
depicted in Figure 6C, respectively. Users can export the inspection report file information
according to their needs.

5. Conclusions

In summary, based on the image processing algorithms related to edge detection
operators, via the metallographic microscope followed by a CCD camera and SIJ-350
devices, we carry out a study on the massive detection of morphology of printed ink
droplets in the inkjet printing. The combination of the Hough algorithm, Otsu, and
Laplacian operator is adopted to process the images of printing. Finally, a scaling factor
(SF) is used to convert the pixel unit in the image to the actual unit of printed ink droplets.
Finally, software related to the proposed method has been well designed for conveniently
processing the images from inkjet printing. We believe that this proposed method and
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related self-designing software are useful for the quick detection of morphology and size of
printed ink droplets in inkjet printing. Future works will focus on the coffee ring detection
of printed quantum dots and printed Ag lines.
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