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Simple Summary: NPM1-mutated acute myeloid leukemia (AML) is one of the most common
subtypes of AML in patients with a normal karyotype. In the recently introduced International
Consensus Classification, detection of gene mutations typically associated with myelodysplastic
syndrome (MDS) is considered an adverse biomarker in AML patients. However, the impact of
these gene mutations occurring in the setting of AML with NPM1 mutation and without FLT3-ITD
mutation, a favorable subtype, is unclear. Furthermore, correlation between minimal measurable
disease (MMD) with survival in the context of these co-mutations also remains unclear. This study
aims to address these issues. We found that patients with or without MDS-related gene mutations
treated intensively had a similar MMD rate; however, the former group had a higher relapse rate and
shorter progression-free survival (PFS).

Abstract: Background: The impact of gene mutations typically associated with myelodysplastic
syndrome (MDS) in acute myeloid leukemia (AML) with NPM1 mutation is unclear. Methods: Using
a cohort of 107 patients with NPM1-mutated AML treated with risk-adapted therapy, we compared
survival outcomes of patients without MDS-related gene mutations (group A) with those carrying
concurrent FLT3-ITD (group B) or with MDS-related gene mutations (group C). Minimal measurable
disease (MMD) status assessed by multiparameter flow cytometry (MFC), polymerase chain reaction
(PCR), and/or next-generation sequencing (NGS) were reviewed. Results: Among the 69 patients
treated intensively, group C showed significantly inferior progression-free survival (PFS, p < 0.0001)
but not overall survival (OS, p = 0.055) compared to group A. Though groups A and C had a similar
MMD rate, group C patients had a higher relapse rate (p = 0.016). Relapse correlated with MMD
status at the end of cycle 2 induction (p = 0.023). Survival of group C patients was similar to that
of group B. Conclusion: MDS-related gene mutations are associated with an inferior survival in
NPM1-mutated AML.
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1. Introduction

Acute myeloid leukemia (AML) with NPM1 mutation and a normal karyotype com-
prises 30% of AML and is one of the most common subtypes [1–3]. This group is clinically
heterogeneous with variable responses to therapy and outcomes likely attributable, at least
in part, to coexisting mutations of other genes. While cases with concurrent FLT3-ITDhigh

(allelic ratio (AR) > 0.5) were previously designated as “intermediate-risk” based on the
European LeukemiaNet (ELN) risk stratification [4,5], the newly updated ELN classifica-
tion now categorizes all cases with NPM1-mutated AML with FLT3-ITD co-mutation as
intermediate-risk group regardless of AR [6].

Historically, patients who developed AML preceded by a history of myelodysplas-
tic syndrome (MDS) or with cytogenetic aberrations associated with MDS (-7/7q-, com-
plex, etc.) were designated as AML with myelodysplasia-related changes (AML-MRC)
rather than AML with NPM1 mutation even if the mutation was detected [7]. The recently
introduced International Consensus Classifications (ICC) and ELN risk stratification pro-
posed to include cases with gene mutations typically associated with MDS as the third
pathway to the category of AML-MRC, designated as AML with myelodysplasia-related
gene mutations [6,8]. A pathological variant of any of ASXL1, BCOR, EZH2, RUNX1, SF3B1,
SRSF2, STAG2, U2AF1, or ZRSR2 genes denotes MDS-related gene mutations. Studies have
shown their prevalence in secondary AML [9]. However, both ICC and ELN acknowledged
that the impact of these mutations in NPM1-mutated AML is less clear. Additionally, AML
with TP53 mutation and WT1 mutation has been shown to be aggressive [3], and yet, its role
in NPM1-mutated AML is also unclear. To address this issue, we designed and performed
the current study comparing survival of three subgroups of NPM1 mutated AML: group A,
without MDS-related gene mutations; group B, with FLT3-ITD mutation regardless of AR;
and group C, with MDS-related gene mutations. For this study, TP53-mutated cases were
included in group C, as it is also commonly seen in secondary AML [3,9–11]. Cases with
co-mutation of WT1 but without FLT3-ITD were excluded from group C and designated as
group D.

Pretreatment variables such as age, performance status, white blood cell (WBC) count,
and molecular genetic data currently represent the best-established, albeit imperfect, pre-
dictors of response to therapy [12]. Increasingly, post-treatment factors such as MMD
have been evaluated as a surrogate of treatment efficacy [13]. MMD can be assessed by
multi-color flow cytometry (MFC) or molecular genetic methods such as reverse tran-
scriptase polymerase chain reaction (RT-PCR) methods or next-generation sequencing
(NGS) [14]. The relationship between mutation profile, MMD status, and outcome are not
fully described in AML with mutations of NPM1- and MDS-related genes.

In the current study, we evaluated 107 consecutive patients of de novo AML with
NPM1 mutation. MMD status assessed by various combinations of MFC, PCR, and NGS
was correlated with mutation profiles as well as survival.

2. Materials and Methods
2.1. Patients

We searched databases in MD Anderson Cancer Center and Northwestern University
Feinberg School of Medicine from 1 January 2012 through 31 December 2018 for patients
diagnosed with de novo AML associated with mutated NPM1. AML with other recurrent
genetic aberrations or secondary/transformed AML was excluded [15]. All patients had a
normal karyotype except for 5 patients who had abnormalities commonly associated with
NPM1 mutation. These abnormalities have not been shown to affect prognosis [5,7,16,17],
including one patient with –Y, one with del(9q), one with +8, one with -16q, and one patient
with +8, +8, and dup(13) [18,19]. Clinical and laboratory data were obtained by review of the
medical records in accordance with the institutional internal review-board-approved protocols.
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2.2. Treatment and Follow-Up

Patients were treated based on clinical assessment and institutional protocols. Patients
who were treated intensively received either Fludarabine + Ara-C + G-CSF + Idarubicin
(FLAG-IDA), Cladribine combined with Idarubicin and Ara-C (CLIA) with or without vene-
toclax, or standard “3 + 7”. Alternatively, non-intensive regimens included hypomethylat-
ing agents (HMA) with or without venetoclax or Cladribine or low-dose Ara-C alternating
with decitabine. FLT3 or IDH inhibitors were added in the appropriate context. All patients
with FLT3-ITD mutation were treated with FLT3 inhibitor. A subset of intensively treated
patients received allogeneic hematopoietic stem cell transplantation (HSCT).

2.3. Multiparameter Flow Cytometric (MFC) Immunophenotyping

Initial and post-treatment bone marrow aspirate samples were processed using stan-
dard methods and analyzed using FACS Canto II 8-color instruments (BD Biosciences,
San Diego, CA, USA). Details of the assay have been previously described [20,21]. The
detection sensitivity is generally 0.1–1% in an adequate sample.

2.4. Polymerase Chain Reaction (PCR) and Next-Generation Sequencing (NGS)

FLT3-ITD and tyrosine kinase domain (TKD) mutations and NPM1 mutations were
identified using PCR-based methods followed by capillary electrophoresis on Genetic
Analyzer (Applied Biosystems, Foster City, CA, USA), as described previously [22,23]. The
sensitivity level of these PCR assays is 1% and can detect most common (A, B, and D)
types of NPM1 mutations. High-throughput sequencing was performed using a MiSeq
sequencer (Illumina Inc., San Diego, CA, USA), and data were analyzed using MiSeq
Reporter Software. A 28-gene NGS-panel assessed full exons for mutations in the following
genes: ABL, EGFR, GATA2, IKZF2, MDM2, NOTCH1, RUNX1, ASXL1, EZH2, HRAS,
JAK2, MLL, NPM1, TET2, BRAF, FLT3, IDH1, KIT, MPL, NRAS, TP53, DNMT3A, GATA1,
IDH2, KRAS, MYD88, PTPN11, and WT1. In a subset of cases, an 81-gene panel was also
performed (Table S1). Adequate coverage was defined as ≥ 250 reads for each exon. The
analytical sensitivity of the platform is variable for different genes but is generally 2.5% for
most genes; the sensitivity of the NPM1 p.W288 locus with manual review of IGV reads is
0.01–0.1% [21].

2.5. Mutational Profile and Assignment of Molecular Risk Groups

NGS analysis was performed on the initial diagnostic and post-treatment samples.
Results of FLT3-ITD and NPM1 analyzed by PCR were used in conjunction with NGS to
stratify patients into four risk groups using published models as guidelines (Table S2) [2,11,24].
Specifically, group A consisted of patients without mutations of ASXL1, BCOR, EZH2,
RUNX1, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2, MLL, TP53, WT1, or FLT3-ITD [25]; group B:
concurrent FLT3-ITD regardless of AR level; and group C: concurrent mutations of any
of the MDS-related genes listed above. Cases with WT1 mutation but without FLT3-ITD
were designated as group D [26–28]. Due to the limited size of group D (N = 4), no further
survival comparison was performed.

2.6. Statistical Analysis

Survival distributions were estimated by the Kaplan–Meier method (Log-rank test)
using Graph-Pad software (Prism, San Diego, CA, USA); unpaired t-test, Fisher’s exact
test, and chi-square test were performed to assess the clinical characteristics and treatment
response of each molecular risk group. Cox proportional hazards models were estimated
with regards to various parameters by R software version 4.0.3 (Vienna, Austria).

Complete remission (CR) and CR with incomplete blood count recovery (CRi) are
defined according to the standard criteria [29,30]. For the purpose of this study, we classified
those that failed to achieve CR by the end of first cycle of induction (EOC1) (day 28–35)
as delayed CR. The best response achieved was noted for each patient. MMD status was
determined once the patients met the criteria for morphologically free of leukemia state
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(MLFS) (<5% blasts by morphology) or CR/CRi, which was usually assessed at EOC1 and
EOC2. DNMT3A, IDH1/2, ASXL1, TET2, or SRSF2 were considered as underlying clonal
hematopoiesis of undetermined significance (CHIP). Survival was determined from the
date of diagnosis to date of death from any cause or last follow-up.

Statistical analyses were performed by two biostatisticians independently.

3. Results

The mutation profiles of all 107 cases are summarized in Table S2 and illustrated in
Figure 1. Sixty-nine patients were treated with intensive chemotherapy, whereas thirty-
eight patients were treated with less-intensive regimens. The demographic and hematologic
features of the two groups are summarized in Table 1. The median follow-up for the entire
cohort was 30.1 months (range, 2.1–84.8 months).

Table 1. Summary of clinicopathological features of the total study cohort.

Intensively Treated Not Intensively
Treated p-Value

Number 69 38 N/A
Age (years) median and range 53, (17–69) 72, (23–87) <0.0001
Sex:
-Men
-Women

35 (50.72%)
34 (49.28%)

18 (47.37%)
20 (52.63%) 0.84

BM blasts (%) median and range 64, (1–95) 59.5, (6–90) 0.96
WBC (k/µL) median and range 12.25, (0.1–378.4) 18.55, (0.9–140) 0.70
Response:
-CR/CRi 56/68 (82.35%) 33/37 (89.19%) 0.06
-MLFS 10/68 (14.71%) 1/37 (2.70%)
-Refractory 2/68 (2.94%) 3/37 (8.11%)
MMD (EOC1) 22/66 (33.33%) 26/34 (76.47%) <0.0001
Relapse 27 (39.13%) 20 (52.63%) 0.22
HSCT 43 (62.32%) 3 (7.89%) <0.0001
Mutation profiles:
-Group A 25 (36.23%) 21 (55.26%)
-Group B 30 (43.48%) 15 (39.47%)
-Group C 10 (14.49%) 2 (5.26%)

TP53 2 0
RUNX1/ASXL1/SRSF2/EZH2 2/2/3/1 0/2/0/0

-Group D 4 (5.80%) 0 (0.00%)
BM, bone marrow; WBC, white blood cell; CR, complete remission; CRi, CR with incomplete blood count recovery;
MLFS, morphologic leukemia-free state; MMD, minimal measurable disease; EOC1, end of cycle 1 induction;
HSCT, hematopoietic stem cell transplantation; Group A, without MDS-related gene mutations; Group B, with
FLT3-ITD; Group C, with MDS-related gene mutations; Group D, with WT1 mutation. p-values in bold are of
statistical significance.

Compared with the intensively treated group, the not-intensively treated group was
older (median age 72, range 23–87 years) (p < 0.0001) and MMD was more frequently
detected in 26/34 (76.47%) patients (p < 0.0001) (Table 1). At last follow-up, 31 (81.58%)
patients had died, and the median OS was 18.1 months (range, 2.8–79.4 months). In contrast,
the median age of the intensively treated group of patients was 53 years (range, 17–69 years).
This group was then the main focus of MMD study and survival comparison among the
three subgroups are detailed in Table 2.
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Table 2. Comparison between different risk groups of patients treated with intensive chemotherapy.

Group A Group B Group C p-Value

Number 25 30 10 N/A
Age (years)
median and
range

57, (17–69) 51.5, (19–67) 59, (33–68) 0.58

Age > 65 years 4 (16.00%) 5 (16.67%) 3 (30%) 0.59
Sex:
-Men
-Women

13 (52.00%)
12 (48.00%)

14 (46.67%)
16 (53.33%)

6 (60.00%)
4 (40.00%) 0.76

BM blasts (%)
median and
range

51.5, (4–94) 68, (1–95) 67, (19–86) 0.48

WBC (k/µL)
median and
range

11.2, (0.5–378.4) 14.9, (1–160.4) 17.95, (1–44.1) 0.37

PB blasts (%)
median and
range

23.5, (0–97) 35.5, (0–98) 16, (0–83) 0.43

Hb (g/dL)
median and
range

8.95, (5.1–12.4) 9.35, (7.7–15.5) 9.15, (8.5–14.4) 0.17

platelets (k/µL)
median and
range

53, (11–385) 57.5, (9–553) 29.5, (7–87) 0.18

Response:
-CR/CRi 23/25 (92.00%) 22/29 (75.86%) 7/10 (70.00%) 0.028
-MLFS 2/25 (8.00%) 7/29 (24.14%) 1/10 (10.00%)
-Refractory 0 (0.00%) 0 (0.00%) 2/10 (20.00%)
MMD (EOC1) 6/25 (24.00%) 11/29 (37.93%) 5/8 (62.50%) 0.13
MMD (EOC2) 4/25 (16.00%) 7/29 (24.14%) 2/8 (25.00%) 0.68
Relapse 3 (12.00%) 15 (50.00%) 7 (70.00%) 0.0009
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Table 2. Cont.

Median OS
(months) NR 56.90 50.80 0.045

Median OS
(months)
(HSCT censored)

NR NR NR 0.14

Median PFS
(months) NR 62.10 14.60 0.0006

Median PFS
(months)
(HSCT censored)

NR NR 24.3 0.0014

All values taken at diagnosis; normal range, WBC, 4.0–11.0 k/µL; hemoglobin, 14–18 g/dL; platelets,
140–440 k/µL; Group A, without MDS-related gene mutations; Group B, with FLT3-ITD; Group C, with MDS-
related gene mutations; BM, bone marrow; WBC, white blood cell; PB, peripheral blood; Hb, hemoglobin; CR,
complete remission; CRi, CR with incomplete blood count recovery; MLFS, morphologic leukemia-free state;
MMD, minimal measurable disease; EOC1, end of cycle 1 induction; EOC2, end of cycle 2 induction; OS, overall
survival; HSCT, hematopoietic stem cell transplantation; PFS, progression-free survival; NR, median survival not
reached. p-values in bold are of statistical significance.

3.1. Correlation between MMD and Relapse and Survival

We identified MMD in 22 (22/66, 33.33%) and 13 (13/66, 19.70%) patients at EOC1 and
EOC2, respectively, seen across all the three subgroups (A, B, C) at a similar rate (Table 2).
However, group B and C patients had a higher relapse rate (p = 0.0009) (Table 2). Among
the 27 patients who eventually had relapsed AML, 12 (12/25, 48%) patients had detectable
MMD at EOC1, and 9 (9/25, 36.00%) had MMD at EOC2. Only MMD at EOC2 correlated
with relapse (p = 0.023) (Figure 2).
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disease; EOC1, end of cycle 1 induction; EOC2, end of cycle 2 induction.

Kaplan–Meier survival analysis showed a significant survival difference among group
A, B, and C (Table 2). The median OS and PFS of the patients in group A were not yet
reached. The median OS and PFS of the patients in group B are 56.90 and 62.10 months,
respectively. The median OS and PFS of the patients in group C are 50.80 and 14.60 months,
respectively (Table 2). Consistent with previous studies, the subgroup with FLT3-ITD
showed significantly higher relapse rate and worse survival than patients of group A (Table
S3). Most notably, group C showed worse PFS (Figure 3a, p < 0.0001) but not OS (Figure 3b,
p = 0.055) than group A (Table 3). Comparison of patients in group B and C found no
significant differences in relapse rate (p = 0.46), PFS (Figure 3c, p = 0.28), or OS (Figure 3d,
p = 0.89) (Table S4). In addition, among the 69 patients treated intensively, no PFS or OS
differences were noted among patients who were treated with HSCT (N = 43) vs. those
without (N = 26) (p = 0.95 and p = 0.32, respectively). Survival curves were censored for
patients who received HSCT from the date of transplantation (Table 2).
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Table 3. Comparison between patients without (Group A) versus with (Group C) MDS-related gene
mutations treated with intensive chemotherapy.

Group A Group C p-Value

Number 25 10 N/A
Age (years) median
and range 57, (17–69) 59, (33–68) 0.90

Age > 65 years 4 (16.00%) 3 (30%) 0.38
Sex:
-Men
-Women

13 (52.00%)
12 (48.00%)

6 (60.00%)
4 (40.00%) 0.72

BM blasts (%) median
and range 51.5, (4–94) 67, (19–86) 0.87

WBC (k/µL) median
and range 11.2, (0.5–378.4) 17.95, (1–44.1) 0.25

PB blasts (%) median
and range 23.5, (0–97) 16, (0–83) 0.42

Hb (g/dL) median
and range 8.95, (5.1–12.4) 9.15, (8.5–14.4) 0.09

platelets (k/µL)
median and range 53, (11–385) 29.5, (7–87) 0.13

Response:
-CR/CRi 23/25 (92.00%) 7/10 (70.00%) 0.09
-MLFS 2/25 (8.00%) 1/10 (10.00%)
-Refractory 0 (0.00%) 2/10 (20.00%)
MMD (EOC1) 6/25 (24.00%) 5/8 (62.50%) 0.08
MMD (EOC2) 4/25 (16.00%) 2/8 (25.00%) 0.62
Relapse 3 (12.00%) 7 (70.00%) 0.0016
Median OS (months) NR 50.80 0.055
Median OS (months)
(HSCT censored) NR NR 0.051

Median PFS (months) NR 14.60 <0.0001
Median PFS (months)
(HSCT censored) NR 24.3 <0.0001

All values taken at diagnosis; normal range, WBC, 4.0–11.0 k/µL; hemoglobin, 14–18 g/dL; platelets,
140–440 k/µL; Group A, without MDS-related gene mutations; Group C, with MDS-related gene mutations;
BM, bone marrow; WBC, white blood cell; PB, peripheral blood; Hb, hemoglobin; CR, complete remission; CRi,
CR with incomplete blood count recovery; MLFS, morphologic leukemia-free state; MMD, minimal measurable
disease; EOC1, end of cycle 1 induction; EOC2, end of cycle 2 induction; OS, overall survival; HSCT, hematopoietic
stem cell transplantation; PFS, progression-free survival; NR, median survival not reached. p-values in bold are of
statistical significance.

At relapse, all patients retained NPM1 mutation, and eight patients acquired additional
mutations not seen at initial diagnosis, including FLT3-ITD in five, FLT3-TKD in two, and
WT1 in two. Additionally, six patients who initially had a normal karyotype developed
an abnormal karyotype, and 5/6 died within 12 months (Table S5). Multivariate Cox
proportional hazard analysis showed that both FLT3-ITD- and MDS-related gene mutations
were independent prognostic markers (Table 4).

3.2. Comparison of MFC to Molecular Testing

A total of 151, 459, and 559 post-therapy samples were analyzed by NGS, MFC, and
PCR, respectively. Discordant results between MFC and molecular testing were observed
in 30 samples, and the discordance was predominantly due to a negative or indeterminate
MFC result compared with a positive molecular result; in particular, NPM1 or FLT3-ITD
were most commonly detected by PCR or rarely by NGS.
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Figure 3. Kaplan–Meier curves comparing groups A and C show significant difference in PFS (a) but
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Table 4. Multivariate Cox proportional hazards model for overall survival (OS) and progression free
survival (PFS) in patients treated with intensive chemotherapy.

Variable Hazard Ratio 95% CI p-Value

Overall Survival
(OS)
-WBC count (>100
k/µL) 3.73 (1.14, 12.14) 0.029

-BM blast (%) 0.98 (0.97, 1.00) 0.11
-Age (>65 years) 0.83 (0.22, 3.20) 0.79
-MMD (EOC2) 1.49 (0.58, 3.84) 0.41
-Group (A as
reference)

B 2.77 (1.05, 7.32) 0.040
C 3.18 (0.86, 11.80) 0.08

Progression-Free
Survival (PFS)
-WBC count (>100
k/µL) 0.93 (0.23, 3.73) 0.91

-BM blast (%) 1.01 (0.99, 1.03) 0.31
-Age (>65 years) 1.78 (0.51, 6.25) 0.37
-MMD (EOC2) 2.34 (0.88, 6.23) 0.09
-Group (A as
reference)

B 5.16 (1.42, 18.69) 0.013
C 7.65 (1.70, 34.48) 0.0080

WBC stratified as below: <50, 50–100, >100 K; WBC, white blood cell; BM, bone marrow; MMD, minimal
measurable disease; EOC2, end of cycle 2 induction; Group A, without MDS-related gene mutations; Group B,
with FLT3-ITD; Group C, with MDS-related gene mutations. p-values in bold are of statistical significance.

4. Discussion

The ELN risk stratification for NPM1-mutated AML based solely on FLT3-ITD is now
presumed to represent an oversimplified model for risk assessment [5,7,13,28,31]. In recent
years, NGS studies have refined risk stratification among patients with intermediate-risk
AML [3,28,32]. Most recently, the ICC has introduced a new pathway to arrive at the
diagnosis of AML-MRC based on mutation of genes typically associated with MDS, desig-
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nated as AML with MDS-related gene mutations. The new category involves pathological
variants of ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2. AML
with TP53 mutation is also a new category in the ICC given its adverse effect on many
subtypes of AML and its common occurrence in secondary AML. An AML with NPM1
mutation and without FLT3-ITD is considered a favorable subtype; however, the impact
of MDS-related gene mutations on the specific subtype is unclear or controversial [32]. In
addition, the new classification recognizes all FLT3-ITD, regardless of AR, as an adverse
risk factor.

To further explore the issue, we stratified patients with NPM1-mutated AML as unfavor-
able risk, along with FLT3-ITD, based on presence of these MDS-associated gene mutations
and TP53 mutations using NGS profiling. WT1-mutated AML has been shown to adversely
impact survival and is proposed as a distinct molecular subgroup of AML [3,11,26–28]. Thus,
we designated WT1-mutated cases as group D, separate from the other subgroups.

Patients in the group C treated with intensive regimens showed a similar rate of
treatment response compared to group A. The MMD rate was also similar at ECO1 and
ECO2. However, group C patients suffered a higher rate of relapse as well as shorter PFS
compared to group A. The PFS and OS of the group C patients were comparable to those of
group B. These findings support incorporating these secondary (MDS)-related mutation
profiles into the risk stratification.

Detectable MMD at EOC2 but not EOC1 correlated with relapse. This finding supports
the notion that delayed blast clearance is an adverse risk factor [33] and the consensus
recommendation that MMD testing is most informative at EOC2 [14]. For patients who had
relapse, all had molecular evidence of disease. Because our PCR and NGS assays for NPM1
have a sensitivity level of 0.01–1%, it was significant whenever abnormal variants were
detected. However, samples obtained at EOC1 often and sometimes EOC2 are hypocellular,
potentially limiting MFC assay sensitivity. Thus, not unexpectedly, we observed discordant
results between MFC and molecular methods.

DNMT3A, ASXL1, TET2, IDH1/2, and SRSF2 are now recognized as CHIP-like muta-
tions that can persist during CR [34,35]. In contrast to CHIP, clonal hematopoiesis of onco-
genic potential (CHOP)-type mutations that persist after therapy are more ominous [36,37].
The high frequency of relapse in group C patients suggests that the MDS-related gene
mutations, like CHIP, may predispose the patients to secondary/relapsed AML. In fact,
concurrent DNMT3A mutation was shown to have no adverse impact on survival but more
likely correlated with MMD positivity and potentially increased the risk for relapse or
secondary AML [2]. Despite a similar rate of MMD compared to group A patients, group
C patients had a higher relapse rate, suggesting that the MDS-related gene mutations are
implicated in the inferior survival.

5. Conclusions

The mutation profiles of NPM1-mutated AML have implications in patient survival in
the current era of risk-adapted therapy. In addition to FLT3-ITD, concurrent MDS-related
gene mutations are associated with an inferior outcome, supporting their recognition in
NPM1-mutated AML. The mechanisms of this phenomenon remain to be explored, but
they are most likely related to persistence of underlying preleukemic clone and unremitted
risk for genetic alterations in affected patients despite achieving CR.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15010198/s1, Table S1: Eighty-one gene NGS panel; Table S2:
Mutational Profile and Risk Group Assignment; Table S3: Comparison between subgroups of patients
without MDS-related gene mutations (Group A) versus with FLT3-ITD (Group B) treated with
intensive chemotherapy. Table S4: Comparison between subgroups of patients with FLT3-ITD (Group
B) versus with MDS-related gene mutations (Group C) treated with intensive chemotherapy; Table S5:
Abnormal karyotype identified at or after relapse.
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