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Simple Summary: Sarcomas encompass a diverse range of cancers, resulting in intricate classification
that contributes to treatment delays. The aim of this pilot study, conducted within a specific subset
of sarcoma types, is to demonstrates the feasibility of methylation and copy-number variation data
obtained from low-coverage whole-genome sequencing using Oxford Nanopore for rapid point-of-
care sarcoma classification. Oxford Nanopore sequencers are relatively affordable for laboratories,
unlike other technologies used in previous studies for methylation-based sarcoma classification. Our
findings indicate that this method attained an overall correct classification rate of 78%. This study
could serve as the foundation for a rapid point-of-care sarcoma classification test, facilitating timely
and efficient care across diverse clinical settings.

Abstract: Sarcoma classification is challenging and can lead to treatment delays. Previous studies
used DNA aberrations and machine-learning classifiers based on methylation profiles for diagnosis.
We aimed to classify sarcomas by analyzing methylation signatures obtained from low-coverage
whole-genome sequencing, which also identifies copy-number alterations. DNA was extracted from
23 suspected sarcoma samples and sequenced on an Oxford Nanopore sequencer. The methylation-
based classifier, applied in the nanoDx pipeline, was customized using a reference set based on
processed Illumina-based methylation data. Classification analysis utilized the Random Forest
algorithm and t-distributed stochastic neighbor embedding, while copy-number alterations were
detected using a designated R package. Out of the 23 samples encompassing a restricted range of
sarcoma types, 20 were successfully sequenced, but two did not contain tumor tissue, according
to the pathologist. Among the 18 tumor samples, 14 were classified as reported in the pathology
results. Four classifications were discordant with the pathological report, with one compatible and
three showing discrepancies. Improving tissue handling, DNA extraction methods, and detecting
point mutations and translocations could enhance accuracy. We envision that rapid, accurate, point-
of-care sarcoma classification using nanopore sequencing could be achieved through additional
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validation in a diverse tumor cohort and the integration of methylation-based classification and other
DNA aberrations.

Keywords: sarcoma; nanopore; methylation; copy-number; classification; machine learning

1. Introduction

Sarcoma is a cancer that originates from connective tissue [1]. Sarcomas are classified
based on tissue and cell type and are typically divided into two major groups: bone
sarcomas and soft-tissue sarcomas (STS) [2].

Sarcoma often presents as a painless mass that grows over months or years. Some
types are more likely to affect children, while others affect mainly adults. Sarcomas can
occur anywhere in the body, but the most common types occur in the arms, legs, and
abdomen [3]. Generally, the cancer grade refers to its aggressiveness and the likelihood of
spreading to other body parts. Low-grade sarcomas have a better prognosis than higher-
grade sarcomas and are usually treated surgically, although sometimes radiation therapy
or chemotherapy are used. Intermediate- and high-grade sarcomas are more frequently
treated with surgery, chemotherapy, and radiation therapy. The treatment varies according
to the exact type of sarcoma [4].

Diagnosis of bone sarcomas and soft-tissue sarcomas begins with a history, physical
examination, and imaging studies [5]. Definitive diagnosis requires a tumor biopsy with
extensive pathological review [4]. There is high inter-observer variability among patholo-
gists. Using current pathological methods, up to 80–85% of sarcoma cases are classified,
while the remaining cases remain unclassified [6]. Institutions with access to fluorescence
in situ hybridization (FISH), Sanger sequencing, massively parallel DNA sequencing, and
methylation-based arrays can gain a more accurate diagnosis by detecting point mutations,
translocations, copy-number alterations [6,7], and methylation patterns [8].

Copy-number alterations in sarcomas are relatively uncommon, except for MDM2
amplification. The MDM2 gene is located on chromosome 12q13-15 and encodes the MDM2
protein. MDM2 amplification involves the presence of multiple copies of the MDM2 gene,
which leads to elevated levels of MDM2 protein expression [9,10]. This amplification has
been associated with heightened MDM2 protein expression and is linked to the process
of de-differentiation in liposarcomas [11]. In de-differentiated liposarcoma, MDM2 is
amplified in all tumors while in other tumors such as extraskeletal osteosarcoma MDM2
amplification is found in about 40% of the tumors.

The identification of MDM2 amplification employs techniques such as fluorescence in
situ hybridization (FISH) and immunohistochemistry (IHC) to detect MDM2 overexpres-
sion, serving as the gold standard methods [12].

The DNA of normal and tumor cell types in the body carries unique methylation
marks correlating with its gene-expression profile, representing a fundamental aspect of
tissue identity [13]. Numerous independent studies have shown that most central nervous
system tumor types can be reliably identified based on their epigenetic DNA methylation.
This layer of molecular information in neuropathological practice has increased accuracy
and reduced the error rate in classifying CNS tumors [14]. A similar tool was developed
for 54 histological types of sarcomas [8]. Most studies have used Illumina-based arrays for
DNA methylation analysis, more specifically, the HumanMethylation450 with 485K CpGs
or the MethylationEPIC with 850K CpGs. These arrays are based on DNA that undergoes
bisulfite treatment that introduces specific changes in the DNA sequence that depend on
the methylation status of individual cytosine residues and thus yield single-nucleotide
resolution information about the methylation status [15].

The Oxford Nanopore sequencer can directly detect methylated base pairs (bp) with-
out bisulfite modification. The sequencing of methylated bp is achieved by differentiating
between the ionic current changes produced by unmethylated cytosine vs. 5-methylated cy-
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tosine [16]. Bisulfite-converted sequencing, which is the basis for Illumina Array, is a widely
used method for detecting DNA methylation. Nonetheless, this approach has drawbacks
including DNA degradation, limited specificity, and the production of short reads with
low sequence diversity. In comparison, nanopore sequencing technology enables the direct
detection of base modifications in native DNA, without requiring harsh chemical treatment
as in bisulfite sequencing [17]. Moreover, nanopore technology allows the sequencing of
longer DNA fragments up to about 100 kbp, allowing tumor classification based on methy-
lation patterns and chromosomal aberrations [18]. It has been demonstrated that accurate
and reliable CNS tumor classification can be performed based on methylation signatures
gained by nanopore sequencing. Studies have shown that nanopore sequencing of low-
coverage whole-genome sequencing (lcWGS) yielding a minimum set of 1000 random CpG
sites chosen from the 450K sites, is sufficient for reliable brain tumor classification [19,20].

In this study, we investigated the utility of nanopore sequencing in classifying sarco-
mas. We successfully implemented and customized a nanopore-based nanoDx pipeline [19]
to classify a restricted range of sarcoma types. The pipeline employs machine-learning algo-
rithms for methylation-based classification. In addition, we utilize copy-number alteration
to validate the classification of specific sarcoma types.

2. Materials and Methods
2.1. Patients and DNA Isolation

23 Patients diagnosed with sarcoma between 2018 to 2023 who signed an informed
consent form (0346-12) participated in this study. Surgically resected masses were freshly
frozen, and a pathological report is available for all tumors with a molecular profile using
Oncomine comprehensive panel (Thermo Fisher Scientific, Waltham, MA, USA) for some
samples. Per the manufacturer’s protocol, we extracted tumor DNA using a DNeasy blood
and tissue kit (Qiagen, Hilden, Germany). DNA was quantified by Qubit (Thermo Fisher
Scientific) or QuantiFluor (Promega, Madison, WI, USA) assays and quality controlled
(260/280 ratio) (NanoDrop, Thermo Fisher Scientific).

2.2. Nanopore WGS

Between 200 and 400 ng of genomic tumor DNA of each sample is used for library
preparation with barcode labeling using the Rapid Barcoding Kit (SQK-RBK004, Oxford
Nanopore Technologies, Oxford, UK) according to the manufacturer’s instructions. Low-
coverage whole-genome sequencing (lcWGS) is performed on a Minion Mk1C device (OS
ubuntu 18.04) using an R9.4.1 flow cell (FLO-MIN106D, Oxford Nanopore Technologies).
Sequencing was performed until the recommended 100M bps (per correspondence with
the nanoDx pipeline developer [19]). Output FAST5 files containing the raw signal data
were generated by the manufacturer’s software MinKNOW (v.22.12.5) and the equivalent
FASTQ files. They were all transferred to high-performance computing (HPC) clusters for
further analysis.

2.3. Data Analysis Pipeline

FAST5 and FASTQ files of the assigned barcode were processed on the HPC using
the nanoDx pipeline (v.5.0.1) that uses snakemake [19] v5.4.0 workflow [19,20]. This
pipeline was initially developed for nanopore methylation-based classification and used
the Heidelberg reference cohort of brain tumor methylation profiles of CpG sites probed
by Illumina BeadChip 450K array (Illumina, Cambridge, UK) [14]. The nanoDx pipeline
for brain tumor classification converts the methylation data from the 450K CpG sites to
match the nanopore methylation data type for analysis. We adapted the pipeline to use
sarcoma tumor methylation profiles obtained by the same Illumina platform from the
cohort of 1077 sarcomas tumors [8]. We downloaded the beta-value processed data from
GEO (GSE140686) and adapted it to the requirement of the pipeline code as a sarcoma
reference set.
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2.3.1. Classification

1. Methylation-based Random Forest Classification

The processing of the FAST5 files calls the methylation status of genome-wide CpG
sites of each sample using nanopolish software (v.0.13.2) [18]. The nanopolish software
assigns a binary value of 1 or 0 to each detected CpG site, indicating methylation or
unmethylation, respectively. This assignment is made through statistical analysis of the
methylation detection algorithm [18]. The methylation frequency per site is then calculated
by the fraction of reads classified as methylated. Given the fundamental differences between
the Illumina Array-based methylation beta values and the nanopore methylation frequency
values of the CpG sites, both data sources are subjected to binarization using a cutoff value
of 0.6, consistent with previous nanoDx implementations [19,20] and are compatible with
the nanopore methylation data type format. This enables the classification of each CpG site
as either methylated (>0.6) or unmethylated. Subsequently, an ad-hoc Random Forest [20]
classifier is trained using the most variable maximum of 100,000 overlapping sites within
the sarcoma reference set.

The Random Forest classifier is built in Python using the RandomForestClassifier function
from the scikit-learn package v.1.0.2 [21]. The classifier is then used to predict the methylation
class of each sample. The Random Forest-estimated class probabilities are rescaled to be more
accurately interpreted as confidence levels or “confidence scores” by the CalibratedClassi-
fierCV function from the scikit-learn package in Python, as previously described [20]. Based
on previous research conducted on CNS tumors, a confidence score greater than the threshold
value of 0.15 is regarded as a reliable classification (see Discussion Section 4) [20] (Figure 1B,C).
The sarcoma reference set was generated in the ‘HDF5’ binary data format, adhering to the
pipeline’s specifications, using R/Bioconductor and the rhdf5 package [22].

2. Unsupervised Clustering

Additional unsupervised clustering analysis using t-SNE (t-distributed stochastic
neighbor embedding) was performed on the 50,000 most variable CpG sites, and a final plot
was generated using the R package Rtsne [23] (Figure 1D). Yet, t-SNE plots are meant for
visual quality control, not classification. It can help validate the Random Forest classification
results but must be interpreted carefully (per correspondence with the nanoDx pipeline
developer [19]).

2.3.2. Copy-Number Analysis

Briefly (as of [19,20]), FASTQ files are aligned to the hg19 human reference genome (min-
imap2 v2.15) [24] for the generation of copy-number profile (Figure 1A) which is generated
from the same sequencing run using R/Bioconductor and the QDNAseq package [21]. Reads
with a minimum mapping quality of 20 were sorted into 1000 kbp bins and analyzed using
public data from a single flow cell sequencing run (FAF04090) generated with NA12878 refer-
ence DNA [22] for pseudo-germline subtraction. The circular binary segmentation method,
implemented in the PSCBS R package, was utilized for the analysis. Change points were ac-
cepted based on an alpha value < 0.05. Arm-level copy-number calls were made by calculating
the segment length weighted mean log ratio per chromosome arm.

2.3.3. Reporting

All the analysis and classification results are reported in a PDF file. Extracts from a typical
PDF report are depicted in Figure 1. The full report format of all cases is shown in File S1.
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Figure 1. Extracts from an example of the final nanoDx analysis report for sample SARC-09 of a female
patient with retroperitoneal MDM2 amplified well-differentiated liposarcoma. (A): Copy-number
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profile. The x-axis is the chromosomal location, and the y-axis is the read counts (log2 transforma-
tion). The MDM2 amplification is shown in chromosome 12. (B): Bar plot of the Random Forest
classification voting results. The category (y) axis shows this sample’s 10 most frequent methylation
classification votes and the percentage voting rate in the x-axis. (C): Bar plot of the confidence score
of the voted Random Forest classification (in B). The most confident classification of this sample is
“well/dedifferentiated liposarcoma” (WDLS/DDLS), with a confidence score of 0.45. This confidence
score validates the top classification in the voting results (B) as a correct one. (D): t-SNE plot shows
the clustering of the methylation pattern of the specific sample (circled cross sign) among the other
methylation patterns of the sarcomas in the reference set. It shows that the sample clusters very close
to the WDLS/DDLS group (dark yellow), as classified by the Random Forest classifier. Abbreviation:
AFH, angiomatoid fibrous histiocytoma; AFX/PDS, atypical fibroxanthoma/pleomorphic dermal
sarcoma; ALMO/MPC, angioleiomyoma/myopericytoma; AS, angiosarcoma; ASPS, alveolar soft
part sarcoma; CB, chondroblastoma; CCS, clear cell sarcoma of soft parts; CCSK, clear cell sarcoma of
the kidney; CHORD, chordoma; CHORD (DD), chordoma (dedifferentiated); CSA (A), chondrosar-
coma (group A); CSA (B), chondrosarcoma (group B); CSA (CC), chondrosarcoma (clear cell); CSA
(IDH A), chondrosarcoma (IDH group A); CSA (IDH B), chondrosarcoma (IDH group B); CSA [25],
chondrosarcoma (mesenchymal); CTRL (BLOOD), control (blood); CTRL [26], control (muscle tissue);
CTRL (REA), control (reactive tissue); DFSP, dermatofibrosarcoma protuberans; DSRCT, desmoplastic
small round cell tumor; DTFM, desmoid-type fibromatosis; EHE, epithelioid hemangioendothelioma;
EMCS, extraskeletal myxoid chondrosarcoma; ES, epithelioid sarcoma; ESS (HG), endometrial stro-
mal sarcoma (high grade); ESS [27], endometrial stromal sarcoma (low grade); EWS, Ewing’s sarcoma;
FDY, fibrous dysplasia; GCTB, giant cell tumor of bone; GIST, gastrointestinal stromal tumor; IFS,
infantile fibrosarcoma; IMT, inflammatory myofibroblastic tumor; Kaposi, Kaposi sarcoma; LCH,
Langerhans cell histiocytosis; LGFMS, low-grade fibromyxoid sarcoma; LIPO, lipoma; LMO, leiomy-
oma; LMS, leiomyosarcoma; MEL (CUT), melanoma (cutaneous); MLS, myxoid liposarcoma; MO,
myositis ossificans; MP, myositis proliferans; MPNST, malignant peripheral nerve sheath tumor;
MRT, malignant rhabdoid tumor; NFA, nodular fasciitis; NFB, neurofibroma; NFB (PLEX), neurofi-
broma (plexiform); OB, osteoblastoma; OFMT, ossifying fibromyxoid tumor; OS (HG), osteosarcoma
(high grade); RMS [4], rhabdomyosarcoma (alveolar); RMS [28], rhabdomyosarcoma (embryonal);
RMS (MYOD1), rhabdomyosarcoma (MYOD1); SARC (MPNST-like), sarcoma (MPNST-like); SARC
(RMS-like), sarcoma (RMS-like); SBRCT (BCOR), small blue round cell tumor with BCOR alteration;
SBRCT [29], small blue round cell tumor with CIC alteration; SCC (CUT), squamous cell carcinoma
(cutaneous); SEF, sclerosing epithelioid fibrosarcoma; SFT, solitary fibrous tumor; SWN, schwannoma;
SYSA, synovial sarcoma; USARC, undifferentiated sarcoma; WDLS/DDLS, well/dedifferentiated
liposarcoma; t-SNE, t-distributed stochastic neighbor embedding.

3. Results
3.1. DNA Extracted from Sarcoma Surgical Samples Are Successfully Utilized for Nanopore Sequencing

Out of the 23 samples, 20 were successfully run using nanopore and met the minimum
sequencing coverage required to be processed by the nanoDx pipeline (see Methods). These
include 18 tumors representing a limited range of 11 pathologically identified sarcoma
types and 2 masses with no tumor; hence, we included in the statistical analysis the
18 tumor samples (Table 1). The included samples had a mean read length of 3966 bp (range
1310–7078), the mean number of CpG sites covered is 27594 (range 6539–100,000, Table S1),
and the mean coverage is 0.53X (range 0.03X–6.4X).

The 2 non-tumor samples (not shown in Table 1) were analyzed in the pipeline. They
have a mean read length of 1262 and 5769 bp, several CpG sites covered 7436 and 20,895,
and coverage of 0.04X and 0.08X, respectively (Table S1).
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Table 1. Results of the comparisons conducted between the nanoDx methylation-based classification and pathology diagnosis for the study samples (n = 18). See
Table S1 for more details.

Sample
Max

Calibrated
Meth. Class

Pathology
Pathology

Meth.
Class

Concordance
Max

Confidence
Score

Mean
Read

Length

Mean
Coverage

MDM2
Ampl.

t-SNE
Agreed
Cluster

SARC-01 WDLS/DDLS Well differentiated liposarcoma WDLS/DDLS C 0.09 5192 0.43 Y Y

SARC-02 MLS myxoid liposarcoma MLS C 0.30 5038 6.4 Y

SARC-03 LMS leiomyosarcoma LMS C 0.21 5679 1.78 Y

SARC-04 USARC Undifferentiated small round
spindle cell sarcoma USARC C 0.08 1957 0.08

SARC-05 EMCS Extraskeletal myxoid
chondrosarcoma EMCS C 0.88 4537 0.11 Y

SARC-06 WDLS/DDLS Dedifferentiated liposarcoma WDLS/DDLS C 0.08 1310 0.05 Y Y

SARC-08 WDLS/DDLS Well differentiated liposarcoma WDLS/DDLS C 0.10 5121 0.03

SARC-09 WDLS/DDLS Highly suspicious for well
differentiated liposarcoma WDLS/DDLS C 0.45 5564 0.07 Y Y

SARC-10 EWS Ewing´s sarcoma EWS C 0.14 3081 0.06 Y

SARC-11 WDLS/DDLS Well differentiated liposarcoma WDLS/DDLS C 0.15 5244 0.04 Y Y

SARC-17 MLS Myxoid liposarcoma MLS C 0.36 5900 0.06 Y

SARC-18 CSA (A) Chondrosarcoma CSA (A) C 0.53 2638 0.05 Y

SARC-19 WDLS/DDLS Well differentiated liposarcoma WDLS/DDLS C 0.14 7078 0.05 Y Y

SARC-21 SYSA synovial sarcoma SYSA C 0.23 2623 0.04 Y

SARC-13 MPNST chondrosarcoma CHORD D 0.04 1774 0.06

SARC-12 WDLS/DDLS Myxofibrosarcoma USARC D 0.07 3072 0.06 Y

SARC-22 AFH Myxofibrosarcoma USARC D 0.04 2749 0.04

SARC-07 EWS Unclassified spindle-round
cell sarcoma SRBCS D 0.91 2830 0.08 Y

Abbreviations: AFH, angiomatoid fibrous histiocytoma; CHORD, chordoma; CSA (A), chondrosarcoma (group A); EMCS, extraskeletal myxoid chondrosarcoma; EWS, Ewing’s sarcoma;
LMS, leiomyosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor; SFT, solitary fibrous tumor; SYSA, synovial sarcoma; USARC, undifferentiated
sarcoma; WDLS/DDLS, well/dedifferentiated liposarcoma; Meth, methylation; Ampl, amplification; Y, yes; C, concordant; D, discordant.
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3.2. Low-Overage DNA Methylation Successfully Classifies Sarcoma

The classification of sarcoma samples using the nanoDx Random Forest exhibited
a concordance rate of 78% (14/18) with the pathological report (Table 1; File S1). The median
confidence score of the Random Forest voting of the concordant classifications is 0.18 (range
0.08–0.88), with half above the threshold (0.15) considered the correct classification of
CNS tumors. The Random Forest mean voting rate of the most confident concordant
classifications is 11.23% (4.4–27.6%, Table 1).

Of the 18 samples analyzed, 4 (22%) exhibit discordant classification with the pathology
report. One (SARC-07) is classified as a Ewing sarcoma (EWS) with a confidence score of
0.91 and a Random Forest voting rate of 30%. According to the pathologist, it is a small
round blue cell tumor with no EWS translocation detected using FISH.

The two Myxofibrosarcomas samples (SARC-12, SARC-22) were not classified correctly,
as well as the chondrosarcoma sample (SARC-13). In these three samples, the confidence
score is 0.04 to 0.07.

The two non-tumor samples were discordantly classified as undifferentiated sarcoma
(USARC) and malignant peripheral nerve sheath tumor (MPNST) with confidence scores
of 0.03 and 0.05, respectively (Table S1; File S1).

3.3. t-SNE Unsupervised Clustering Matches Concordant Classifications

Based on the methylation fingerprint, out of the 14 cases that exhibited concordant
classification with the pathology report, 12 (86%) were also clustered by the t-SNE analysis
in agreement with the Random Forest classification (Table 1). Of the 4 discordant Ran-
dom Forest classifications, 2 were not clustered by t-SNE analysis in agreement with the
classification. They both had a low-confidence score of 0.04.

Notably, there is a discordant case (SARC-07) in which the final pathological report
disagreed with the Random Forest classification. Nevertheless, there is an agreement
between the t-SNE clustering and the Random Forest classification. This case achieved the
highest confidence score of 0.91 and the highest Random Forest voting rate of 30%.

All the cases in the cohort where the t-SNE clustering disagreed with the Random
Forest classification had low-confidence scores (range 0.04–0.10).

The t-SNE clustering also disagreed with the classification of the 2 non-tumor samples
(excluded from the cohort) that also achieved low-confidence scores (0.03, 0.05).

3.4. Copy-Number Analysis Detects Typical Sarcoma Alteration

In 5 samples (28%), copy-number analysis identified MDM2 amplification, as depicted
in Figure 1A and Table 1. All samples with MDM2 amplifications were classified under
the methylation class of ‘well/dedifferentiated liposarcoma’ (WDLS/DDLS), characterized
by MDM2 amplification [7]. In these instances, the MDM2 amplification validates the
classification results. In one well-differentiated liposarcoma sarcoma, MDM2 amplification
is not identified. The analysis of copy-number variations did not produce any particular
modifications linked to alternative subtypes of sarcoma.

4. Discussion

This pilot study presents several key findings. First, in a cohort of 23 surgically resected
sarcoma tumors, 20 were successfully sequenced using an Oxford Nanopore device with
low-coverage whole-genome sequencing (lcWGS). Out of the 20 samples, 2 did not contain
tumor tissue, and 18 tumors were included in the study. The 18 tumors included a limited
range of 11 pathologically identified sarcoma types. Among the 18 tumors, 14 were
classified in agreement with the pathological report based on their methylation fingerprints.
Copy-number alterations were also detected from the same sequencing data and were used
to validate the classification. Specifically, MDM2 amplification is successfully identified in
five out of six liposarcomas [7].

Our results were accomplished by tailoring the nanoDx classification pipeline specifi-
cally for sarcoma tumors [19,20]. We achieved a significant concordant classification rate
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of 78% (14/18) for the restricted sarcoma types by making a single effective adjustment
to the pipeline incorporating our in-house-built sarcoma reference set. This reference set
is generated using Illumina Array data [8]. Although Illumina Array has limitations, as
discussed in the Introduction section [17], it currently stands as our sole data source for
constructing the machine-learning sarcoma training set for methylation-based.

It’s worth noting that no changes were made to parameters related to the training of
the Random Forest, such as the minimum number of CpG sites required for training or
other hyperparameters [20]. The successful implementation of nanopore methylation-based
classification using the nanoDx pipeline in this study for sarcomas indicates its potential
applicability to other cancer types. It implies that low-pass methylation data obtained
through nanopore sequencing might be meaningful and adequate to achieve a satisfactory
classification rate using the Random Forest classification approach in other cancers. This
potentially can be achieved by making similar adaptations to the current pipeline. However,
as Koelsche and von Deimling pointed out, applying a methylation-based approach in
hematopoietic tumors may present greater challenges than CNS or mesenchymal-derived
tumors. This is primarily due to the already well-established classification system in
hematopoietic tumors, which heavily relies on specific mutational events. Since indi-
vidual mutations do not influence cellular methylation patterns in most cases, further
evidence is needed to demonstrate their contribution to the existing classification system of
hematopoietic tumors [30].

In CNS nanopore methylation-based classification, a confidence score is implemented.
A platform-specific threshold is determined to ensure a more precise interpretation of the
classifier results in a clinical context. The classification above a confidence score of 0.15 is
considered reliable [20]. This study’s median confidence score for the concordant cases is
0.18 (range 0.08–0.87), comparable to the confidence score observed in CNS classification.
However, a nanopore-specific confidence score threshold for accurate interpretation has not
yet been determined for sarcomas. Establishing such a threshold will help ensure a precise
interpretation of the nanopore methylation-based classification results in sarcoma cases.

Factors such as low tumor cell content and DNA quality can influence confidence score
values [20]. The current nanopore sequencing method is primarily optimized for fresh tissue
samples from biopsies or collected during surgical procedures [20,30]. Using only fresh
tissues is a limitation that restricts the ability to select sample regions with high tumor purity.
Consequently, this can result in a methylation pattern that significantly deviates from that of
cancerous tissue leading to a non-valid classification that is indicated by a low-confidence
score. Furthermore, the possibility that the sample belongs to unknown sarcoma entities or
different tumor types not represented in the Random Forest classifier training set [8,23] can
also contribute to lower confidence scores and potentially discordant classifications.

Genomic alterations detected by copy-number analysis can help achieve more reliable
classification, particularly in low-confidence score cases. In our results, six cases with
low-confidence scores (range 0.08–0.14) were also classified in agreement with the t-SNE
clustering analysis and the pathology report. In three of them, which are classified as
liposarcoma (WDLS/DDLS), we identified the MDM2 amplification. This emphasizes the
added value of the copy-number profile in validating the methylation-based classification
results, mainly when a low-confidence value is achieved. Thus, as pointed out in [8,30],
developing additional classifiers combining methylation patterns with other molecular
parameters such as sequencing data, proteomic signatures, and histology might increase
diagnostic accuracy.

In four cases (22%), the pathology report disagrees with the Random Forest classi-
fications. Three of these cases achieved the lowest confidence score in the cohort (range
0.04–0.07). Moreover, the two non-tumor samples excluded from the cohort achieved
a similar low-confidence score (0.03–0.05). Overall, all the cases that achieved a confidence
score below 0.08 disagreed with the Random Forest classifications. This might imply that
a confidence score lower than 0.08 indicates a non-valid classification in sarcoma. Still, this
hypothesis should be tested in further research.
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Particular attention should be focused on a specific instance of discordant classification
referred to as SARC-07. In this case, the EWS class obtained a confidence score of 0.91.
Notably, this class’s Random Forest voting rate was remarkably high, at 30%, the highest
among the entire cohort. Furthermore, the t-SNE clustering result also aligned with the
assigned classification. The pathology report for SARC-07 classifies it as a small round
blue cell sarcoma (SRBCS) without EWS translocations through FISH analysis. EWS, which
frequently manifests as SRBCS, typically involves the prototypical translocation of the
ESWR1 gene with genes from the ETS family [31]. An additional SRBCS type, based
on distinct pathology, molecular analysis, and clinical observations indicating a highly
aggressive clinical course [32,33], is a distinct entity termed “CIC rearranged sarcoma” [34].
Given these findings, we suspect SARC-07 might be a case of CIC rearranged sarcoma,
warranting molecular reassessment. Further investigation could potentially result in the
reclassification of this case, leading to its inclusion among the concordant cases.

The findings of this pilot study should be interpreted with caution, considering the
following limitations:

First, the hyperparameters of the Random Forest machine-learning algorithm, such as the
minimum number of CpG sites required for model training and confidence score threshold,
were determined based on the analysis of CNS tumor methylation data obtained by nanopore
sequencing [19,20]. These hyperparameters were not adjusted or explicitly recalibrated to
analyze sarcoma nanopore methylation data. Consequently, there is potential to enhance the
classification process by rescaling these parameters specifically for sarcoma data.

Second, this study’s limited size and diversity of the sarcoma cohort do not adequately
represent the wide range of sarcoma types. Therefore, it is impossible to definitively claim
that this customized classification pipeline is suitable for reliably classifying all sarcoma
subtypes based on nanopore lcWGS methylation data.

Last, it is essential to note that the current reference set used in this study comprised
62 sarcoma methylation classes [8]. The analysis of additional sarcoma samples will
contribute to further improvement of this tool [30].

However, it is essential to underscore that achieving a more accurate sarcoma classifi-
cation can be facilitated by integrating supplementary layers of sarcoma-related data into
the statistical analysis. These layers involve transcriptomic and proteomic analyses and
consider pathological features and metabolic characteristics. Additionally, incorporating
supplementary genomic and molecular data, such as copy-number alterations and point
mutations, should be explored in conjunction with the current methylation data.

Despite these limitations, the classification concordance rate is significant, relying only
on nanopore methylation data and minimal pipeline adaptations for sarcomas.

5. Conclusions

Previous studies have established the validity of methylation-based classification using
Illumina Array methylation data, particularly in sarcomas and CNS tumors [8,14]. Illumina
Array has limitations such as GC bias, time-consuming procedures, and reliance on central
high-volume laboratories. In contrast, nanopore sequencing devices offer compact, rapid, and
accessible technology that detects methylation patterns, point mutations, translocations, and
copy-number alterations [16,18]. In the future, we expect that upcoming studies involving
nanopore methylation data could provide more suitable and accurate information, potentially
presenting an alternative to the currently employed Illumina-based methylation data.

In this study, we successfully customized the nanopore methylation-based classifica-
tion pipeline for a restricted range of 11 pathologically identified sarcoma tumor types.
This highlights its potential for aiding in the timely diagnosis of sarcoma. However, further
validation is necessary across a broader range of tumors and in different centers, along with
appropriate statistical refinement tailored for sarcomas. A more elaborate classifier that
combines methylation patterns with sarcoma-specific CNA, translocations, point mutations,
and additional multi-omic data layers is expected to increase accuracy further.
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With these advancements, this method can potentially add to sarcoma diagnosis,
providing accurate classification in a faster, point-of-care manner. Furthermore, rapid
detection of methylation patterns, copy-number alterations, and translocation might be
used in the future to plan patient-specific cell-free DNA biomarkers and shed light on
sarcoma biology.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15164168/s1, File S1: Final nanoDx reports of all 23 cases, including
an extract of the pathology microscopic report; Table S1: Supplemental data including additional
sequencing and classification information.
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