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Simple Summary: Robot-assisted surgery facilitates the examination and improvement of artificial
intelligence (AI) integration in surgical processes through the provision of comprehensive telemetry
data and an advanced viewing interface. Machine learning (ML) techniques enhance the feedback
on the development of surgical abilities, the efficacy of the surgical operation, surgical guiding, and
predicted results. By incorporating tension sensors on the robotic arms and employing augmented
reality techniques, the surgical experience can be greatly improved. This enables the continuous
monitoring of organ movements in real time, resulting in enhanced precision and accuracy. The
integration of artificial intelligence (AI) into robotic surgery is anticipated to have a substantial
influence on the education of upcoming surgeons and improve the entire surgical process. Both
endeavours strive for ultimate accuracy in order to enhance the quality of surgical care.

Abstract: With the rapid increase in computer processing capacity over the past two decades, machine
learning techniques have been applied in many sectors of daily life. Machine learning in therapeutic
settings is also gaining popularity. We analysed current studies on machine learning in robotic
urologic surgery. We searched PubMed/Medline and Google Scholar up to December 2023. Search
terms included “urologic surgery”, “artificial intelligence”, “machine learning”, “neural network”,
“automation”, and “robotic surgery”. Automatic preoperative imaging, intraoperative anatomy
matching, and bleeding prediction has been a major focus. Early artificial intelligence (AI) therapeutic
outcomes are promising. Robot-assisted surgery provides precise telemetry data and a cutting-edge
viewing console to analyse and improve AI integration in surgery. Machine learning enhances
surgical skill feedback, procedure effectiveness, surgical guidance, and postoperative prediction.
Tension-sensors on robotic arms and augmented reality can improve surgery. This provides real-time
organ motion monitoring, improving precision and accuracy. As datasets develop and electronic
health records are used more and more, these technologies will become more effective and useful.
AI in robotic surgery is intended to improve surgical training and experience. Both seek precision
to improve surgical care. AI in ‘’master–slave” robotic surgery offers the detailed, step-by-step
examination of autonomous robotic treatments.
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1. Introduction

There has been a growing trend in the use of minimally invasive robotic surgery
for significant uro-oncological procedures [1]. The implementation of this technology
has resulted in a substantial revolution in the realm of surgery, signifying a remarkable
progression in the pursuit of the most effective and least invasive treatment alternatives
for patients. Currently, robotic surgery employs sophisticated platforms that operate on a
“master–slave” model. In this configuration, the surgeon operates the robotic arms from a
distant site, while situated behind an advanced panel. The collaboration between humans
and machines enables precise monitoring of the robot’s actions and the utilisation of this
data to enhance the surgeon’s input through the assistance of artificial intelligence (AI) [1].

Enhancing surgical precision through the assistance of robotics requires a heightened
level of technological intricacy. In order to attain surgical expertise, one must undergo exten-
sive training and develop advanced models [1]. Cutting-edge technological advancements,
such as artificial intelligence (AI), have the potential to greatly transform the educational
experience in this specific field. Moreover, these cutting-edge technologies can be utilised
as invaluable tools by experienced surgeons, augmenting their understanding of the sur-
gical area [1]. As demonstrated, the utilisation of augmented reality has the potential to
significantly improve surgical guidance by seamlessly integrating virtual components into
the surgical procedure [1].

This study aims to examine the advancements made by artificial intelligence in the
field of urology, specifically in the realm of robotic surgery. This article aims to provide
valuable insights for urologists in their clinical practice, allowing them to stay updated
and potentially incorporate these findings into their daily work. This article begins by
examining the concept of machine learning. It then explores the use of artificial intelligence
in the training and evaluation of surgeons. Finally, it discusses how artificial intelligence
can address the challenge of haptic feedback deficiency. Subsequently, the article delves into
the impact of this phenomenon on the field of logistics and the surgical procedures. Lastly,
it delves into the potential of artificial intelligence in predicting postoperative outcomes.
The concluding section of this article outlines the potential future paths and constraints of
artificial intelligence.

2. Methods

In order to conduct a thorough review, we conducted extensive searches in reputable
databases such as PubMed/MEDLINE and Google Scholar. Our search covered a period
from 1990 to December of 2023. The study incorporated the use of “urologic surgery” in
conjunction with cutting-edge technologies such as “artificial intelligence”, “machine learn-
ing”, “neural network”, “automation”, and “robotic surgery”. The terms were reviewed by
two authors. Any disagreements were resolved through the involvement of a third author.

Eligible studies were original articles conducted in humans, while animal studies,
conference abstracts, and reviews have been excluded. Only studies published in English
language were considered eligible for inclusion.

3. Main Text
3.1. Machine Learning and Deep Learning in Artificial Intelligence

AI systems are composed of computer systems that have been trained to address
problems by emulating human intelligence. Machine learning (ML) and deep learning (DL)
are highly specialised domains of study within the realm of artificial intelligence (AI) that
empower computers to make accurate predictions through the analysis of intricate data
patterns [2].

The precise evaluation and analysis of clinical information are crucial for providing
individualised patient care. Physicians frequently encounter the task of analysing intricate
information to diagnose and treat urologic diseases, given the wealth of comprehensive and
reliable data available. Through the utilisation of cutting-edge computational techniques,
the optimisation of data mining and interpretation can be achieved, leading to a notable
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improvement in the quality of patient care [2]. Artificial intelligence (AI) is widely used
in many areas of daily life for the quick analysis of complex datasets using advanced
algorithms and statistical models [3]. Machine learning (ML) has become a prominent and
fascinating area within the field of AI. It involves the development of algorithms that are
capable of accurately identifying intricate patterns and making predictions. The precision
of these algorithms increases with the addition of more data inputs. The incorporation of
machine learning (ML) in urologic surgery has demonstrated significant enhancements
in the precision and effectiveness of personalised patient care [4]. Through the analysis
of complex and interconnected patient health data, which includes a range of factors and
non-linear relationships, machine learning has the potential to significantly enhance the
quality of care [4].

Machine learning has found extensive applications in various medical fields, en-
hancing the accuracy of disease diagnosis, aiding in therapy selection, facilitating patient
monitoring, and assisting in risk assessment for primary prevention [3,5]. In order to
improve surgical systems, the use of machine learning techniques is essential [4]. The
automated analysis of patient imaging and precise tracking of surgical anatomy and in-
struments in the operating area during the perioperative period are crucial aspects to
consider [4]. While there is currently no surgical system capable of performing these
operations independently, a number of robots have demonstrated encouraging outcomes
in tasks such as anatomic tracking, suturing, and biopsy sampling [6]. In the realm of
urology, there has been a rise in the adoption of semi-autonomous surgical systems, such
as Aquablation™. Previous research has demonstrated the efficacy of incorporating robotic
assistance in therapeutic procedures [7]. Advancements in surgical candidate selection and
the emergence of automated surgical robotic systems have the potential to greatly improve
surgical precision and enhance patient outcomes. Throughout history, the field of urology
has consistently been a pioneer in embracing cutting-edge technology, setting itself apart
from other surgical specialties. However, despite the progress made in enhancing the safety,
efficiency, and design of robotic technology in urology, the integration of automation has
not had a substantial impact on urological practice or other surgical specialties.

Developing precise machine learning algorithms is of utmost importance in order
to enhance the evaluation and treatment of urologic conditions [4]. Within the field of
autonomous surgery, progress can be achieved through enhancements in machine learning
algorithms and their integration into current surgical systems. This novel approach show-
cases promising possibilities for future advancements, although no current systems of this
nature exist.

Machine learning (ML) is a field that utilises artificial intelligence methods to cre-
ate computational systems capable of emulating cognitive processes (Figure 1). Machine
learning has the capacity to perform complex tasks, such as logical reasoning, knowledge
acquisition, and problem-solving, using advanced nonlinear modelling techniques. Specif-
ically, it allows for the creation of computer algorithms that are not programmed with
predetermined rules. Through exposure to sample data, the computational algorithm
is able to identify and adjust to distinct patterns within the dataset. Consequently, this
technique can be employed to analyse unfamiliar data [8]. Machine learning systems have
demonstrated immense value in various domains, showcasing their ability to perform
diverse tasks such as predicting traffic patterns, identifying spam, generating text, and
enhancing online marketing strategies [8]. Furthermore, the capacity to create non-linear
algorithms is of great importance in the analysis of medical data, which frequently exhibits
complex patterns and subtle details [8]. Accessing reliable and comprehensive datasets is
crucial for effectively training any machine learning system [8]. Through the utilisation
of extensive datasets, sophisticated algorithms can be trained to effectively process inputs
with inconsistencies and provide precise outcomes [8]. Similarly to statistical models, com-
prehensive retrospective datasets may sometimes have missing data points, confounding
factors, and biases that may impact the training of algorithms. Using a validated dataset
enables the assessment of method accuracy [8].
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Machine learning encompasses a broad array of subfields that are dedicated to the
analysis and understanding of various forms of data [10]. Research in various subfields
has shown that machines have the ability to operate and make decisions without relying
on explicit executable instructions [10]. Instead, individuals can acquire knowledge and
make predictions by recognising patterns and drawing conclusions [8,10]. For instance, the
field of natural language processing (NLP) is dedicated to the study of how computers can
effectively analyse and understand human language [10]. Computer vision (CV) encom-
passes the automated analysis of images or videos, including radiographic or endoscopic
images [10]. In the field of medicine, a significant amount of research has been dedicated to
the study of artificial neural networks (ANN) [10]. The ANN is composed of processing
nodes that bear resemblance to biological neurons, organised in a layered structure [10].
This architecture enables computer systems to acquire knowledge and discern patterns
from intricate inputs [10]. The layers are composed of an input layer containing input
nodes, a hidden layer containing hidden nodes, and an output layer containing output
nodes [8]. The properties of these layers, with regard to their depth and width, play a
crucial role in determining the functionality of the artificial neural network (ANN) [10]
(Figure 1). Expanding the dimensions of a system can improve its processing and learning
abilities [10].

The utilisation of advanced computational tools can greatly assist in analysing complex
medical data, leading to improvements in clinical and surgical procedures. The integration
of different subfields of machine learning is essential for the advancement of autonomous
surgical systems. This facilitates the examination and integration of various forms of data.
The potential of these technologies is found in their capacity to assist in image interpretation,
monitor and strategize operations, administer medical treatments, and forecast outcomes.

3.2. Evaluating Surgical Expertise

In light of the rising public apprehension regarding the skill level of surgeons, along
with the surge in robotic surgery utilisation, there is an amplified demand for efficient
training models and dependable assessment tools to evaluate clinical competency [1].
Different strategies have been developed to improve traditional training methods, as
advancements in surgical techniques require specialised training in both technical and
non-technical skills [1].

In a study by Fard et al. the competence of robotic surgery abilities was objectively
evaluated using three distinct machine learning algorithms, which were chosen for their
suitability in analysing complex surgical performance data [11]. The methods employed
included k-nearest neighbours (k-NN), logistic regression, and support vector machines
(SVMs) [11]. Each method offers unique advantages and potential drawbacks. k-NN is
intuitive and effective, particularly when there is no clear assumption about the underlying
data distribution, but it can be computationally intensive and sensitive to the scale of the
dataset and the choice of k. Logistic regression, while providing a probabilistic output
and being less prone to overfitting through regularisation, assumes a linear relationship
between the independent variables and the log odds, potentially underperforming with
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non-linear decision boundaries [11]. SVM is highly effective in high-dimensional spaces
and in cases where there is a clear margin of separation; however, it requires careful tuning
of hyperparameters and kernel choice and can become computationally demanding with
large datasets [11]. In their findings, Fard et al. achieved high classification accuracies, with
SVM performing best in scenarios demanding robustness against overfitting, particularly
with nonlinear data patterns [11]. The classification accuracies reached up to 89.9% for
certain surgical tasks, highlighting the potential of these machine learning approaches
to significantly enhance the objective assessment of surgical skills based on quantitative
analysis of movement trajectories during surgery [11]. According to the data, the authors
have successfully shown a significant level of precision in the automated ML algorithm’s
capacity to distinguish between novice and experienced surgeons [11]. This differentiation
can be established in a matter of seconds upon finishing tasks [11]. However, in order to
ensure the accuracy of this model on a larger sample size, further research is required due
to the limited number of participants [11].

Extensive research has been conducted on the application of machine learning in the
monitoring and analysis of surgical techniques. As an illustration, Ghani et al. analysed
recordings of bladder neck anastomosis performed by 11 surgeons [12]. The aim of their
study was to provide comprehensive and step-by-step education to a computer vision
algorithm on recognising the speed, trajectory, and smoothness of instrument movement,
as well as the instrument’s positioning in relation to the opposite side [12]. The surgeons
were later classified according to their level of expertise, distinguishing between those
with exceptional talent and those with limited skill [12]. The system underwent several
validations using a final video, and the results were averaged [12]. The evaluations were
compared to a blinded review conducted by 25 peer surgeons using the global evaluative
assessment of robotic abilities (GEARS) instrument [12]. The programme demonstrated a re-
markable accuracy rate of 83% in skill categorisation when analysing individual instrument
points, which rose to 92% when considering joint movement as well. By incorporating the
contralateral instrument, the categorisation of binary skill levels was significantly improved
to a remarkable 100% accuracy [12]. According to the study, the researchers discovered a
strong correlation between specific parameters and expertise [12]. The study examined the
correlation between needle driver forceps and joint position, along with variables such as
acceleration and velocity [12].

Wang et al. further advanced their research by creating a sophisticated deep learning
model that incorporates an artificial neural network, a highly intricate machine learning
technique [13]. This model is based on the inter-neuronal connections observed in biological
nervous systems. It employs a variety of machine learning techniques to effectively analyse
data and extract insights from incoming information [13]. The primary utilisation of DL
algorithms was observed to be pattern recognition [13]. Consequently, their approach was
employed to ascertain the motion characteristics during the training of robotic surgery [13].
A total of eight surgeons underwent evaluation in a series of five trials involving various
activities, including suturing, knot-tying, and needle passage [13]. The precision rate of
the artificial neural network model was found to be over 90% in evaluating the proficiency
of robotic surgical skills. The evaluation was conducted within a time frame of 1 to 3 s, as
stated in the study [13]. This feedback was given without the requirement of segmenting
gestures or observing the entire trial [13].

A novel method for evaluating machine learning skills was introduced by Ershad
et al. in a recent study [14]. The researchers conducted a thorough analysis of the surgeon’s
“movement style” in order to evaluate their performance [14]. One key factor in this
approach is the recognition that a skilled surgeon can execute manoeuvres with expertise
and effectiveness, displaying a composed and coordinated demeanour, which sets them
apart from less experienced surgeons [14]. Information regarding surgical movements
was collected from a cohort of 14 surgeons with varying degrees of proficiency in robotic
surgery [14]. A framework based on sparse coding was utilised to automatically identify
stylistic behaviour within short time intervals [14]. This framework is built upon the
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acquisition of position data from various parts of the upper limb, including the hands,
wrist, elbow, and shoulder [14]. A codebook was generated for each stylistic term by
utilising the positive and negative labels obtained for each trial through crowd sourcing [14].
Each surgeon performed two procedures (ring and rail and suture) three times [14]. The
movement was tracked using state-of-the-art three-dimensional electromagnetic technology,
which allowed for the precise monitoring of the surgeon’s shoulder, wrist, and hand
positions during virtual simulator training [14]. The classification of instructional videos
was accomplished through crowdsourcing, employing various adjectives to characterise the
behavioural approach [14]. Subsequently, this was employed to train a classifier model [14].
According to the authors, there was a significant improvement of 68.5% in the accuracy
of skill level classification when compared to the raw kinematic data collection [14]. One
benefit of this technique is that it eliminates the need for extensive surgical expertise when
evaluating surgical proficiency [14]. Instead, it considers the qualitative aspects of motion
that are specific to the surgeon, such as smoothness, calmness, and coordination, rather
than solely concentrating on the task at hand [14].

A study conducted by Youssef et al. introduced an algorithm that integrated videola-
belling into 25 robot-assisted radical prostatectomy (RARP) surgeries [15]. The videos were
integrated into Proximie, an augmented reality platform, and provided to a novice surgeon
for the purpose of annotating the 12 steps of the procedure [15]. Of the 25 films analysed,
17 were deemed appropriate for categorisation, while 8 were excluded due to their subpar
quality and time-consuming nature [15]. The accuracy of temporal tagging ranged from
85.6% to 100%, with an average accuracy of 93.1% [15]. Studies used in evaluating surgical
expertise are listed in Table 1.

Table 1. Studies used in evaluating surgical expertise.

Authors (Ref) Outcome Data Source Type of AI Findings

Fard et al. [11] Tool for evaluating and
measuring skills

Characteristics of the robotic arms on a global scale:
duration of task completion, length of the path,

perception of depth, velocity, fluidity of
movement, curvature

angular displacement, tortuosity

Three classification
methods: k-nearest
neighbours, logistic

regression, and support
vector machines

Differentiating between
skilled and inexperienced

robotic surgeons using
automated methods

Ghani et al. [12] Tool for evaluating and
measuring skills

Videos of 11 surgeons performing the bladder neck
anastomosis, while the algorithm measured the
speed, trajectory, and smoothness of instrument

movement, along with the instrument’s positioning
in relation to the opposite side, in a comprehensive

and step-by-step manner

Computer vision
algorithm

Certain parameters were
closely linked to expertise, like

the relationship between
needle driver forceps and

joint position

Wang et al. [13] Tool for evaluating and
measuring skills

Data regarding the movement of the master tool
manipulator and the patient side manipulator Artificial neural network

Automated evaluation and
feedback of surgical

proficiency utilising artificial
neural network

Ershad et al. [14] Tool for evaluating and
measuring skills

Installed position sensors on the surgeon’s limbs
Metrics for measuring stylistic behaviour:

liquid/viscous, polished/coarse, sharp/unsteady,
rapid/lethargic, tranquil/distressed, calm/anxious

indecisive, organised/disorganised

Sparse coding framework

Assessment of surgical
expertise through the

evaluation of the proficiency
in stylistic conduct

Youssef et al. [15] Tool for evaluating and
measuring skills

25 videos of RARP used for videolabelling by
a beginner surgeon Proximie

17 suitable for videolabelling,
average tagging accuracy of

the steps of 93.1%

3.3. Addressing the Issue of Haptic Feedback

Robotic surgery utilises advanced 3D visualisation to enhance the surgeon’s skill
and precision. Nevertheless, the actions required for dissection, the amount of pressure
exerted, and the assessment of tissue responses are all reliant on visual cues. In the absence
of haptic feedback, the results of surgical procedures may be adversely affected. This
is due to the potential danger of exerting excessive force on delicate tissues, disrupting
anatomical structures, and compromising the integrity of sutures. Excessive force used
during robotic radical prostatectomy (RARP) can have detrimental effects on the neuro-
vascular bundles, resulting in neuropraxia and potentially causing a delay in the recovery
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of sexual function [1]. On the other hand, if the force applied during the knot-tying process
is not enough, it may lead to poor suture retention.

In a recent study, the researchers Dai et al. successfully developed an advanced
warning system designed to detect suture breakage [16]. A novel system was developed
and validated by the authors, which integrates a grasper with biaxial shear detection and
haptic feedback [16]. The purpose of this system is to notify the operator in advance of a
potential suture rupture [16]. In addition, the design enables the convenient manipulation
of sutures without compromising their effectiveness, as assessed by evaluating the tightness
of the resulting suture knots [16]. The Da Vinci robotic surgical system was fitted with
biaxial shear sensors [16]. This system offers vibrotactile feedback as the tension on the
suture nears its maximum limit [16]. A recent study has unveiled notable advancements
in surgical outcomes following the implementation of a haptic feedback system [16]. The
results revealed a significant 59% decrease in suture breakage, a 3.8% reduction in knot
slippage, and improved consistency in repeated tasks for inexperienced surgeons [16]. In
addition, the surgeons were able to achieve significantly lower rates of suture rupture. The
initial four knots had a rate of 17%, while the subsequent six knots had a rate of 2% (p 0.05).
This improvement was attributed to the utilisation of the tactile feedback system during
practice [16]. However, the absence of haptic feedback during surgical training resulted in
a significant occurrence of suture breakdown, as reported in a study [17].

Piana et al. used three-dimensional augmented reality guidance during kidney trans-
plantation (KT), which could help surgeons navigate the surgery, enhancing safety for
patients with atheromatic vascular disease. This technology removes the need for hap-
tic input, which is not present in robotic consoles. Utilising high-accuracy computed
tomography scan imaging, three-dimensional virtual models were generated. The models
were subsequently overlaid onto the vasculature in the context of robot-assisted kidney
transplantation (RAKT) using the Da Vinci console software program [18].

An assessment was conducted to determine the correlation between virtual models
and the real anatomical structures of patients. This involved a comparison of measurements
pertaining to arteries and plaques. The assessment centred on the structure of the iliac
plaques and the precision of the virtual models in representing them. The assessment of the
virtual model’s effectiveness in overlaying the actual blood arteries involved examining
the presence of plaques in individuals who underwent RAKT with living donor grafts.
One of the main limitations lies in the need for proper training to ensure precise alignment
of virtual models with the real environment. The implementation of three-dimensional
augmented reality (3D AR) allowed surgeons to address a key limitation of RAKT, paving
the way for expanding its potential uses to individuals with advanced atheromatic vascular
disease [18]. Studies used in haptic feedback research are listed in Table 2.

Table 2. Studies used in haptic feedback research.

Authors (Ref) Outcome Data Source Type of AI Findings

Dai et al. [16] Haptic feedback
surrogate

Robotic tools equipped
with sensors Not mentioned

A haptic feedback system is
designed to enhance the

prevention of suture breakage,
increase the quality of knots, and

facilitate learning

Piana et al. [18] Haptic feedback
surrogate

High-accuracy CT
scanning creating

3D images

3D augmented reality
guidance during KT,

with ML using the Da
Vinci console software

Eliminates the need for tactile
sensation (haptic feedback) during

KT, and facilitates iliac
vessels plaques

Abbreviations: ML = machine Learning; KT = kidney transplantation; CT = computed tomography.

3.4. Exploring the Intersection of Artificial Intelligence and Logistics

Zhao et al. revealed that the accuracy of time estimation for robotic procedures can
be greatly improved by employing a machine learning approach [19]. A recent study
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conducted by researchers has resulted in the development of a predictive model for esti-
mating the duration of robotic surgeries [19]. The researchers took into account a range
of factors, such as patient characteristics such as age, obesity, malignancy, tumour loca-
tion, and comorbidities [19]. The researchers also considered factors such as the type of
procedure, the specific model of the robotic system used, and the level of expertise of
the tableside assistant, which varied from resident to attending [19]. A machine learning
model was created by analysing data from 424 surgical procedures in the areas of robotic
urology, gynaecology, and general surgery [19]. The implementation of this predictive
model resulted in a notable enhancement in the accuracy of predicting OT, with a 16.8%
increase [19]. This finding indicates that utilising the model has the potential to improve
the daily schedule of operative time, resulting in a significant optimisation of operating
room resources [19]. Studies used in surgical logistics are listed in Table 3.

Table 3. Studies used in surgical logistics.

Authors (Ref) Outcome Data Source Type of AI Findings

Zhao et al. [19] Intraoperative
outcomes

Variables employed in the construction
of the model:

prearranged surgical procedure, group
of procedures,

age, obesity, sex, combined case, robotic
prototype, cancer, location of the tumour,

hypertension, tobacco usage, atrial fibrillation,
obstructive sleep apnoea, coronary artery

disease, diabetes mellitus, cirrhosis, chronic
obstructive pulmonary disease (COPD), renal

insufficiency, ASA classification,
calendar month, time of day, anaesthesiologist,

operating room aide

ML
Improved precision in

forecasting case
duration

3.5. Preoperative Identification of Exact Anatomy

To improve surgical procedures, the first step is to create programmes that can con-
sistently and accurately identify patient anatomy. In the field of surgical treatment, the
interpretation of radiologic imaging holds great significance. As a result, there have
been numerous endeavours to integrate machine learning techniques into the analysis
of imaging.

Computer vision (CV) is a subfield of machine learning that focuses on analysing
images. It has the potential to improve the identification and diagnosis of urologic con-
ditions. For example, in the realm of stone disease, several studies have demonstrated
that employing cardiovascular algorithms on CT abdominal imaging data can precisely
identify the precise location of the stones [20]. The effectiveness of these solutions is based
on the advanced processing of image signals, which allows for the development of more
robust algorithms [21]. By employing this technique, algorithms are able to precisely iden-
tify even the most minute visual distinctions between abnormal and healthy anatomical
structures [21].

In addition, through the use of segmentation techniques, computational algorithms
can autonomously detect and delineate the precise surgical anatomy of interest by utilising
anatomical localisation in the imaging data. Presently, this procedure is conducted through
manual means and entails the utilisation of various surgical techniques that employ image
guidance. However, the procedure of physically isolating the desired anatomy and blood
vessels can be quite arduous and time-consuming. Automating this process necessitates the
utilisation of computer vision algorithms to swiftly analyse medical images and precisely
interpret anatomical details. Recent studies have shown that the use of multi-atlas segmen-
tation has resulted in better identification of anatomical variations and increased accuracy
in segmenting structures [22]. This method entails examining a patient’s anatomy through
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the utilisation of an algorithm that has been extensively trained on a large dataset of other
imaging information [22]. This technique has been extensively studied to aid in the process
of surgical planning [22]. In two recent studies, multi-atlas segmentation was employed
to examine the pyelocaliceal anatomy of patients [23,24]. A CT urography technique was
employed to automatically analyse the 3D anatomy, obviating the need for manual mea-
surement assessment. The segmentation process was effectively performed on 8 out of
11 pyelocaliceal systems to quantify the infundibulopelvic angle (IPA) [23,24]. In the image
labelling process, a few errors were identified. However, the work effectively demonstrates
the potential of utilising multi-atlas segmentation for anatomical characterisation [23,24].

Ongoing progress in the methodology will facilitate the production of accurate anatom-
ical features and improve the depiction of complex patient anatomy that is difficult to
capture using current techniques [25].

Precise monitoring of the patient’s anatomy during surgery requires careful considera-
tion of various factors that can potentially obstruct the visual field. These factors include
equipment, blood, smoke, and adipose tissue. Furthermore, it is crucial to be able to antici-
pate the manner in which the tissues will undergo deformation throughout the dissection
procedure. Despite the challenges, researchers are making significant progress in improving
the automated recognition of patient anatomy. A recent study by Nosrati et al. introduced a
new technique for synchronising pre-operative data with intraoperative endoscopic images
in the context of partial nephrectomy [26]. The alignment technique employed subsurface
feature cues, including vessel pulsation patterns, in conjunction with colour and texture
data, to autonomously register the workspace with the preoperative imaging [26]. The
examination of colour and textural visual cues is conducted through the utilisation of
machine learning techniques [26]. This study showcases a groundbreaking endeavour in
utilising vascular pulsation cues to facilitate the preoperative to intraoperative registra-
tion process [26]. In addition, their framework incorporates a deformation model that is
customised for specific tissues, enabling the authors to effectively manage the non-rigid
deformation of structures that occurs during surgery [26]. A study conducted by Di Dio
et al. employed computer vision techniques to develop an exceptionally precise and thor-
ough three-dimensional representation of a kidney, utilising advanced artificial intelligence
algorithms [27]. Subsequently, this model was utilised to perform a partial nephrectomy
on a tumour measuring 35 × 25 cm situated on the anterior aspect of the upper renal
region [27]. Utilising this method, the surgeon intentionally exerted pressure on the artery
responsible for supplying blood to the tumour and conducted the surgical procedure [27].
A recent study conducted by Klen et al. focused on the development of a machine learning
model that aimed to analyse preoperative risk factors linked to postoperative mortality fol-
lowing radical cystectomy [28]. A total of 1099 patients who underwent radical cystectomy
(RC) surgery at 16 hospitals in Finland from 2005 to 2014 were included in the dataset [28].
The model achieved an area under the curve (AUC) value of a 0.73 [28]. Several notable
risk factors have been identified, including the American Society of Anesthesiologists
(ASA) physical status classification, congestive heart failure (CHF), age-adjusted Charlson
comorbidity index (ACCI), and chronic pulmonary conditions [28]. In accordance with
previous research findings [25], physicians can provide valuable guidance during surgical
consultations by identifying patients who may be more prone to experiencing complica-
tions from the procedure [28]. A recent study by Checcucci et al. introduced a model
that performed a comparative analysis of prostates using three-dimensional (3D) models.
The study compared patients who had undergone a robot-assisted radical prostatectomy
(RARP) procedure with those who had traditional non-3D models [29]. An assessment
was made on positive surgical margins (PSM) using multivariable linear regression (MLR)
models [29]. Based on the research results, individuals who utilised 3D models experienced
a reduced incidence of positive surgical margins in comparison to those who did not (25%
vs. 35.1%, p = 0.01) [29]. According to MLR models, the presence of a 3D model and the
absence of extracapsular extension on mpMRI were identified as independent factors that
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significantly decreased the chances of positive surgical margins (PSM) [29]. Studies with
preoperative applications are listed in Table 4.

Table 4. Studies with preoperative applications.

Authors (Ref) Outcome Data Source Type of AI Findings

Nosrati et al. [26] Intraoperative
outcomes

Subsurface cues such as
pulsation patterns, textures, and

colours within the operative
field and preoperative imaging

Machine learning
The framework has application in
non- visible and partially occluded

structures during PN

DiDio et al. [27] Intraoperative
outcomes Preoperative CT Pyelography Computer vision to create

HA3D model
The model used to selectively apply

pressure to the artery during PN

Klen et al. [28] Postoperative
outcomes

Data from 1099 operated
RARC patients Machine Learning

Identifying patients who are at high
risk for complications after RC, and
additional factors identified via ASA

score, CPD, ACCI, and CHF

Checcucci et al. [29] Postoperative
outcomes

3D and non 3D prostate models
from RARP and mpMRI

Multivariable linear
regression models

No extracapsular extension in
mpMRI and the use of 3D models

during RARP lowered the incidence
of positive margins

Abbreviations: PN = partial nephrectomy; CT = computed tomography; HA3D = hyper-accuracy 3D model;
RC = radical cystectomy; RARC = robotic-assisted radical cystectomy; ASA = American Society of Anesthesiolo-
gists; CPD = chronic pulmonary disease; ACCI = age-adjusted Charlson comorbidity index; CHF = chronic heart
failure; RARP = robotic-assisted radical prostatectomy; mpMRI = multiparametric MRI.

3.6. Intraoperative Application of Artificial Intelligence in Surgical Procedures

In order to accomplish real-time, automated, intraoperative interventions, it is essen-
tial to create a sophisticated artificial intelligence platform that efficiently utilises machine
learning. The platform must possess the capability to precisely detect patient anatomy
and monitor the equipment utilised, all the while adjusting to the dynamic conditions of
the surgical setting. This device has the potential to significantly assist doctors in mak-
ing crucial decisions during surgical procedures or provide instant feedback on surgical
techniques. Several studies have established a foundation for the future development
of automated machine learning (ML) systems designed for use in the operating room.
A recent study conducted by Baghdadi and colleagues utilised machine learning tech-
niques to analyse colour and texture in order to identify anatomical components during
pelvic lymph node dissection [30]. The study sought to make predictions regarding the
quality of the dissection based on these findings [30]. The findings of the automated
skills assessment model demonstrate a significant association with expert evaluations of
lymph node dissection quality, achieving an accuracy rate of 83.3% [30]. This presents
an opportunity for further evaluation of these training tools [30]. A study conducted by
Haifler et al. demonstrated the potential of machine learning analysis of short-wave Ramen
spectroscopy data in accurately distinguishing between renal cell cancer and benign renal
tissues [31]. The study was carried out in a controlled laboratory environment using a
specialised workstation [31]. The accuracy, sensitivity, and specificity achieved were 92.5%,
95.8%, and 88.8%, respectively [31]. This technique enables the immediate evaluation of
surgical margins during procedures, regardless of lighting conditions [31].

Augmented reality (AR) holds promise in providing live assistance during surgical
procedures and could be beneficial in ensuring secure navigation on upcoming autonomous
robotic-assisted surgery (RAS) platforms. A recent study by Checcucci et al. introduced a
highly advanced artificial neural network model for predicting occurrences of bleeding dur-
ing robotic prostatectomy surgeries [32]. The programme analyses the footage captured by
the endoscope at regular intervals of 3 s and provides a confidence rating [29]. Confidence
ratings below 100% may indicate a potential risk of bleeding [32]. The model showcases a
remarkable true positive rate of 98% [32].

A study conducted by Porpiglia et al. utilised MRI to generate intricate prostate
models [30,31]. Surgeons were able to conduct a thorough examination of cancer character-
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istics during prostatectomy, particularly in cases where the cancer had extended beyond
the prostate capsule, also referred to as extracapsular extension or ECE [33,34]. In recent
advancements, researchers have made significant progress in integrating 3D models into
live surgeries through the da Vinci surgical console image. Building upon this success, they
have now devised a computer vision algorithm to enhance the alignment of virtual 3D
models with the real-time surgical view of the prostate [35]. As per established models,
metallic clips were strategically positioned on suspected areas of extracapsular extension
(ECE) prior to the removal of the neurovascular bundle [35]. The conclusive pathological
examination confirmed the existence of cancer in all examined regions among patients with
pT3 stage [32]. In a recent study, researchers conducted a comparison between surgical
teams utilising 3D AR guidance and those who did not [34]. The findings were highly
notable, as the implementation of the virtual reality model greatly improved the identi-
fication of extracapsular extension (ECE) [34]. There was a significant improvement, as
the rate of detection increased from 47.0% to a flawless 100% (p < 0.002) [34]. The authors
highlight the wide range of potential applications for this technique, extending beyond
prostate surgery to include robotic partial nephrectomy [34]. This is particularly significant
for tumours that are endophytic or situated towards the posterior region [34]. Additional
validation is necessary, but the use of 3D augmented reality (AR) has the potential to
enhance intraoperative navigation and optimise the delicate balance between minimising
positive surgical margins and maximising functional preservation [34].

In their study, DeBacker et al. employed augmented reality technology in the realm of
renal surgery [36]. A cutting-edge deep learning algorithm has been created to precisely
detect and identify different inorganic substances, such as surgical equipment, in real
time during surgical procedures [36]. The system has successfully acquired the ability to
extract valuable information from a dataset consisting of 65,927 meticulously annotated
instruments, as performed by human experts [36]. The instruments are distributed among
15,100 frames, offering a wide array of data [36]. Nevertheless, the author did come across
certain constraints with the model [36]. Alignment issues and the presence of motion
artefacts during the subject’s breathing were observed [36].

The effectiveness of augmented reality robot-assisted partial nephrectomy (AR-RAPN)
is hindered by the requirement for continuous manual alignment of the highly precise
3D virtual models with the actual anatomy. In a study by Amparore et al., the authors
presented their initial findings on the implementation of an automatic 3D virtual model
overlapping during AR-RAPN. In order to achieve a completely automated HA3D model
overlapping, their approach involved the implementation of computer vision techniques
that relied on the recognition of specific points of reference to establish connections within
the virtual model. Given the restricted visual scope of RAPN, the entire kidney was utilised
as a reference point. In addition, in order to address the challenge of colour similarity
between the kidney and its surrounding structures, the researchers utilised the NIRF Firefly
fluorescence imaging technology to greatly enhance the visibility of the organ. A software
called “IGNITE” was developed for the purpose of automatically anchoring the HA3D
model to the real organ. This software takes advantage of the enhanced view provided by
the NIRF technology. A total of ten automated AR-RAPN procedures were conducted. An
HA3D model was created and displayed as an augmented reality image within the robotic
console for all patients. Throughout the surgical procedures, the automatic ICG-guided
AR technology effectively connected the virtual model to the actual organ without any
manual assistance (average connection time: 7 s). This was achieved even when the camera
was moved around the operative field, and when the organ was zoomed in or moved.
Automatic AR technology successfully identified renal masses in seven patients with totally
endophytic or posterior lesions, allowing for a successful enucleoresection. There were no
complications of Clavien >2 during or after the surgery, and no positive surgical margins
were observed [37].

The same author has published a prospective study that examined two different ap-
proaches for automatically overlaying a model onto the actual kidney. The first method
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involved utilising computer vision technology, which utilised the enhanced images of the
kidney obtained through intraoperative indocyanine green injection. The second method
involved using convolutional neural network technology, which involved training the
network on frames from prerecorded surgery videos and then processing live endoscope
images. A team of experts in bioengineering, software development, and surgery col-
laborated to develop highly precise 3D models for autonomous 3D-AR-guided RAPN.
Demographic and clinical information was collected for each participant. Two separate
groups were established for the evaluation of different technologies. Group A consisted
of 12 patients, while group B included 8 patients. The preoperative and postoperative
characteristics exhibited similarities. The mean co-registration time for the initial technol-
ogy was 7 (3–11) seconds, while the second technology had an average time of 11 (6–13)
seconds. There were no significant complications during or after the surgery. The functional
outcomes exhibited no significant differences between the groups at any of the recorded
time points. The 3D model was securely attached to the kidney with minimal manual
adjustments. A novel method was employed to enhance the detection of kidneys without
the need for indocyanine injection, resulting in improved recognition of organ boundaries
during tests [38].

Augmented reality (AR) may automatically identify significant anatomical features
and integrate preoperative imaging, such as prostate multiparametric MRI. The findings
of this study hold promising implications for the future development of autonomous soft-
tissue surgery. Nevertheless, the progress of this technology is currently in its nascent
phase and will require a considerable amount of time before it can be incorporated into
forthcoming autonomous RAS platforms. Studies with postoperative applications are listed
in Table 5.

Table 5. Studies with postoperative applications.

Authors (Ref) Outcome Data Source Type of AI Findings

Bagdadi et al. [30] Intraoperative
assessment 20 PLD videos Machine learning

The machine learning model may
accurately generate prostatectomy

assessment and competence
evaluation (PACE) scores

Haifler et al. [31] Intraoperative
assessment

Shortwave Raman
spectroscopy data Machine learning Differentiation between malignant

and benign renal tissue

Checcucci et al. [32] Intraoperative
assessment

Footage captured by the
endoscope during RARP at

3-s intervals
Artificial neural network Can predict bleeding

Porpiglia et al. [33,34] Intraoperative
assessment

HA3D models of the
prostate from mpMRI used

during RARP
Virtual augmented reality Increased recognition of ECE

De Backer et al. [36] Intraoperative
assessment Da Vinci recordings Virtual augmented reality

and deep learning

Detection of tools during renal
surgery; motion and alignment

artefacts during patient’s breathing

Amparore et al. [37] Intraoperative
assessment

HA3D model, NIRF firefly
to enhance kidney visibility

which was used as a
reference point

Computer vision technology,
Ignite for image anchoring

Overlapping the 3D model without
manual assistance during AR-RAPN

Amparore et al. [38] Intraoperative
assessment Prerecorded surgery videos

Convolutional neural
network technology vs.

indocyanine green injection

Overlapping the 3D model without
manual assistance during RAPN

even without indocyanine injection

Abbreviations: PLD = pelvic lymph node dissection; PACE = prostatectomy assessment and competence evalu-
ation; RARP = robotic-assisted radical prostatectomy; HA3D = hyper-accuracy 3D; mpMRI = multiparametric
MRI; ECE = extracapsular extension; AR-RAPN = augmented reality robotic-assisted partial nephrectomy;
RAPN = robotic-assisted partial nephrectomy.

3.7. Postoperative Outcomes Prediction in Surgical Procedures

A recent study conducted by Chen et al. has demonstrated the superior effectiveness
of AI systems trained on clinical, pathologic, imaging, and genomic data in predicting
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treatment outcomes compared to the traditional D’Amico risk stratification [39]. This
discovery signifies a noteworthy progress in tailoring patient care based on their individual
needs. Aside from patient-related factors, there are also factors related to the surgeon that
can have an impact on the outcome of patients after surgery [39].

Furthermore, the information gathered during the surgical procedure can be linked
to the patient’s overall clinical results. In a recent study, Hung et al. conducted re-
search to explore the potential of algorithms in predicting surgical outcomes for a specific
procedure [40]. In their study, Hung et al. conducted an investigation into automated
performance indicators obtained from the data of the “dVLogger”, a recording device
connected to the robotic system used in 78 full-length robot-assisted radical prostatectomy
(RARP) procedures [40]. The dVLogger is a device that captures video and movement
data, and it is manufactured by Intuitive Surgical [40]. Three machine learning algorithms
were utilised in this study, using data from robot system and hospital length of stay [40].
The analysis encompassed 25 distinct factors pertaining to the kinematic data of both the
overall/dominant and non-dominant instruments [40]. The study examined various factors
such as travel time, path length, movement, velocity, and system events such as frequency
of clutch use, camera movement, third arm, and energy use [40]. The aim was to assess the
accuracy of these features in predicting surgical outcomes [40]. The algorithms underwent
training using training material and training labels, specifically focusing on cases with a
length of stay of 2 days or less, as well as cases with a length of stay exceeding 2 days [40].
The algorithm with the highest performance was selected. The algorithm utilised in this
study classified the cases into two categories: “Predicted as expected LOS (pExp-LOS)”
and “Predicted as extended LOS (pExt-LOS)” [40]. A machine learning model achieved a
remarkable accuracy rate of 87.2% in predicting the duration of hospital stays [40]. They
successfully predicted a hospital stay of over 2 days with an 87% accuracy rate [40]. In addi-
tion, a strong correlation was found between the expected patient outcomes, specifically the
duration of OT and Foley catheter usage, and the actual results (r = 0.73, p < 0.001 for OT;
r = 0.45, p < 0.001 for Foley catheter duration) [40]. The manipulation of the camera during
surgery has been shown to have a significant impact on surgical performance measures [40].
Factors such as the frequency of adjustments, the amount of idle time, and the positioning
of the camera all play a crucial role in this regard. Manipulating the camera during robotic
surgery has emerged as a promising method for assessing a surgeon’s level of expertise [40].
This study aims to enhance logistics by potentially enabling cost-effective personalised
catheter removal timing [40].

In a separate research study, the researchers showcased the effectiveness of their ap-
plication of automated performance indicators and deep learning models in predicting
urine continence (UC) in a group of 100 patients who had undergone robot-assisted radical
prostatectomy (RARP) [41]. Specifically, data were collected from 100 RARPs to gather
measures of robotic surgical automated performance (APMs), along with patient clinico-
pathological and continence data [41]. Utilising a DL model known as DeepSurv, they
were able to predict the extent of urine continence following surgery [41]. The significance
of model features in prediction was assessed through a ranking process [41]. The eight
surgeons were categorised into distinct groups, taking into account their top five highest
rated attributes [41]. The top four surgeons were categorised as ‘Group 1/APMs’, while
the remaining four were classified as ‘Group 2/APMs’ [41]. Another cohort of RARPs
performed by these two surgical teams was later used for comparison [41]. Upon analysing
the relationship between kinematic data and clinical patient features, a noteworthy finding
emerged. The researchers observed that the most precise estimation of UC recovery follow-
ing RARP typically took place at an average of 4 months [41]. A study conducted to evaluate
the precision of this method was compared to solely relying on clinical features [41]. By
combining automated performance metrics with clinical features, a concordance index of
59.9% was achieved. However, when relying solely on automated performance metrics,
the concordance index dropped to 57.7% [41]. A study reported a concordance index of
56.2% when only clinical features were considered [41]. In this dataset, the performance
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measures used to evaluate apical dissection and vesicourethral anastomosis were identified
as the most significant [41]. In addition, patients who received surgery from surgeons
who used precise automated performance measurements experienced a notable increase in
continence rate [41]. After a period of 3 months, the patients observed a notable increase of
10.8% in their continence rate. This positive trend continued, with a further increase of 9.1%
after 6 months [41]. In contrast, patients who underwent surgery performed by surgeons
with less favourable metrics did not experience a similar degree of improvement [41]. The
following strategies will be utilised to effectively communicate the findings of our system
outcomes research and will have an impact on professional practice and policy making.
Moreover, the rapid progress in technology is set to have a substantial influence on the
authentication of credentials and the delivery of surgical training. Studies associated with
postoperative outcomes prediction are listed in Table 6.

Table 6. Studies associated with postoperative outcomes prediction.

Authors (Ref) Outcome Data Source Type of AI Findings

Hung et al.
[40]

Postoperative
outcomes

Automated measures of performance:
overall duration, average period of inactivity, total
length of all instruments’ paths, length of the path
taken by the dominant/non-dominant instrument,
length of the path taken, the time taken to move,

the average velocity, and the amount of time spent
idle for both the dominant and

non-dominant instruments.
adjustment of camera position, frequency, length of

path, duration of movement, average velocity,
duration of inactivity, energy consumption,

exchange of a third arm
utilisation of the clutch, exit the console

Three machine learning
algorithms, using data
from robot system and
hospital length of stay

A machine learning
algorithm designed to

forecast the duration of
hospitalisation and the

duration of Foley
catheter utilisation.

Hung et al.
[41]

Postoperative
outcomes

Automated measures of performance:
Metrics pertaining to the measurement and analysis

of time
Measurements of the motion characteristics of an

instrument, Metrics for measuring
camera movement

Metrics for measuring the articulation of
the Endowrist

Metrics for system events
Characteristics of patients:

age, body mass index (BMI), PSA, Gleason score
prior to surgery, ASA classification, surgical

duration, lymphadenectomy scope, urethropexy,
nerve-sparing, median lobe, abnormal Gleason

score, pathological staging
size of the prostate gland, surgical

margins, radiotherapy

DL model (DeepSurv)

A predictive model
capable of determining
continence outcomes

following robotic radical
prostatectomy; the
emphasis lies on

performance indicators
rather than

patient characteristics.

Abbreviations: PSA = prostate-specific antigen; ASA = American Society of Anesthesiologists.

4. Current Limitations and Implications for Future Research

The effectiveness of machine learning algorithms is intricately linked to the quality of
the input data [42]. For optimal algorithm training, it is essential to conduct comprehensive
data pre-processing [36]. Accurate and reliable solutions tailored to individual patients
require extensive and varied datasets [42]. Furthermore, it is crucial for physicians to
possess a comprehensive comprehension of the data utilised in algorithm training in order
to precisely interpret findings, since not all machine learning technologies are intended
to be readily explicable [42]. The study discussed is limited by the scarcity of data and
the lack of external validation [42]. Nevertheless, the widespread utilisation of electronic
health records (EHRs) offers a hopeful prospect of collecting substantial data on a large
scale in the coming years. The incorporation of machine learning methods to improve
illness detection and treatment will occur in a gradual manner, similarly to the adoption of
previous revolutionary technologies. Human supervision is essential for this procedure,
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as emphasised in previous studies [17,42]. Further investigation is required to delve into
and validate the efficacy of machine learning methods in delivering individualised care
for patients undergoing urologic surgery. Nevertheless, the effective application of these
techniques in different areas of our everyday existence provides us with confidence that
these challenges will ultimately be surmounted. The level of autonomy exhibited by robots
is determined by three key factors: the intricacy of the task at hand, the specific operational
environment, and the intended interaction between humans and robots.

A recent study by Shademan et al. unveiled the Anastomosis Robot (STAR) system, a
revolutionary robot specifically engineered to independently perform end-to-end intestinal
anastomosis during open surgery [43]. The machine operates in conjunction with human
assistance for retraction. In a recent study, researchers have made significant progress in the
field of medical technology. They have enhanced the capabilities of STAR by integrating
a state-of-the-art 3D imaging endoscope and a meticulously precise suturing planning
technique. It has been shown to have a higher level of effectiveness in terms of the accuracy
of suture placement and the requirement for suture readjustment when compared to
manual suturing [44].

Before commencing clinical practice, it is essential to establish precise criteria for eval-
uating the efficacy of autonomous robotic surgery [1]. It is crucial to assess specific factors,
including the capacity to manage unforeseen situations, accuracy in surgical procedures,
and the ability to consistently reproduce them [1]. By integrating automation into their
practices, surgeons can attain outcomes that are more consistent and predictable [1].

Nevertheless, there are ethical and safety considerations that arise in the context of au-
tonomous robotic surgery. Obtaining patient consent is crucial prior to using a surgical robot.

Additionally, it is of utmost importance to assess the particular conditions under
which the robot has undergone training and the knowledge it has gained throughout
this process to prevent the retention of inappropriate information and ensure the welfare
of patients. Adapting to unforeseen circumstances or intricate situations is a significant
hurdle in the realm of autonomous surgery. Robotic systems often employ an unstructured
approach when faced with an unexpected event. Increasing the variety of training models
can improve the effectiveness of autonomous surgical robots in various situations.

Obtaining comprehensive informed consent from patients is a top priority for surgeons
prior to any surgical procedure. Will future consent forms incorporate a clause that releases
the surgeon from liability for technological malfunctions and subsequent complications
that may occur during surgery using an autonomous robotic system? The responsibility for
errors in autonomous robotic surgery requires a critical inquiry. Could doctors potentially
be held accountable for any adverse events that occur during the autonomous phase of a
procedure, along with the manufacturers? This would be akin to the shared responsibility
seen in semi-autonomous road automobile accidents. In the absence of a collective sense of
duty, the utilisation of cutting-edge autonomous robotic surgical systems may necessitate
physicians to depend on technology that they may not possess complete comprehension
of, yet are still held accountable for under the law. To ensure the seamless integration of
autonomous robotic-assisted surgery (RAS) into routine clinical practice, it is imperative
for surgeons to actively engage in collaboration with manufacturers. This collaboration
is crucial for establishing well-defined roles, especially in situations where patient safety
could be jeopardised by malfunctions in autonomous systems. Furthermore, the increasing
utilisation of automation in robotic-assisted surgery (RAS) raises questions regarding
the continued appropriateness of the ethical and regulatory parameters that surgeons
commonly discuss with their patients.

5. Conclusions

Utilising machine learning techniques can aid in facilitating patient-centred surgical
treatment and enhancing patient involvement in their decision-making processes. Despite
being in its early stages of development, the utilisation of comprehensive electronic health
record datasets to enhance algorithms exhibits potential in enhancing their efficacy and
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possible integration into clinical practice. Machine learning systems have the potential
to bring about a significant transformation in the field of urology. By efficiently handling
vast quantities of data, these systems can offer substantial advantages to both patients and
healthcare systems. Nevertheless, the advancement of more robust models will be essential
to facilitate the extensive utilisation of AI in training programmes and ultimately enhance
patient results.
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