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Abstract: The field of materials science has experienced a transformative shift with the emergence of
high-entropy materials (HEMs), which possess a unique combination of properties that traditional
single-phase materials lack. Among these, high-entropy nitrides (HENs) stand out for their excep-
tional mechanical strength, thermal stability, and resistance to extreme environments, making them
highly sought after for applications in aerospace, defense, and energy sectors. Central to the design
of these materials is their entropy forming ability (EFA), a measure of a material’s propensity to form
a single-phase, disordered structure. This study introduces the application of the sure independence
screening and sparsifying operator (SISSO), a machine learning technique, to predict the EFA of HEN
ceramics. By utilizing a rich dataset curated from theoretical computational data, SISSO has been
trained to identify the most critical features contributing to EFA. The model’s strong interpretability
allows for the extraction of complex mathematical expressions, providing deep insights into the
material’s composition and its impact on EFA. The predictive performance of the SISSO model is
meticulously validated against theoretical benchmarks and compared with other machine learning
methodologies, demonstrating its superior accuracy and reliability. This research not only contributes
to the growing body of knowledge on HEMs but also paves the way for the efficient discovery and
development of new HEN materials with tailored properties for advanced technological applications.

Keywords: high-entropy materials; high-entropy nitride ceramics; entropy forming ability; machine
learning; sure independence screening and sparsifying operator; material stability

1. Introduction

The emergence of HEMs has marked a paradigm shift in materials science, introducing
a novel class of materials with a unique combination of properties that are not typically
found in traditional single-phase materials [1–6]. These materials, characterized by the
presence of four or more principal elements in equiatomic or near-equiatomic ratios, have
been shown to exhibit exceptional mechanical strength, thermal stability, and resistance
to extreme environments [7–9]. HENs, in particular, have garnered significant interest
due to their potential for high-temperature applications and their ability to withstand
harsh conditions, such as radiation and corrosive environments [10,11]. Moskovskikh
et al. introduced a significant advancement in the fabrication of bulk HENs, achieving
exceptional mechanical properties with hardness up to 33 GPa and fracture toughness
up to 5.2 MPa·m1/2 [12]. The design and development of HENs are crucial to advancing
technologies in aerospace, defense, and energy sectors, where materials with superior
performance are in high demand. Comparing high-entropy alloys (HEAs) with HENs,
HEAs typically form single-phase solid solutions due to high entropy, while nitrogen
introduction in HENs may encourage diverse phase development, including nitride phases.
To harness the full potential of HENs, enhancing their stability becomes imperative. A
critical concept in the rational design of HEAs is the EFA [13], which serves as a measure of
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the material’s ability to form a single-phase, disordered structure. The EFA is intrinsically
linked to the configurational entropy of a material, which is a key factor in stabilizing the
single-phase structure and enhancing the material’s overall performance [14]. A high EFA
value indicates a lower energy penalty for the formation of a disordered phase, suggesting
a greater likelihood of achieving a stable, homogeneous material. This descriptor has
become an essential tool for predicting the formation of single-phase HEMs and has
been instrumental in guiding the search for new materials with desired properties and
performance characteristics [15–17].

The traditional approach to discovering and characterizing new materials has been
largely empirical and iterative, involving extensive experimental trials and characteriza-
tions. Computational methods, such as first-principles calculations and phase diagram
analyses, have been crucial in predicting the material’s various properties [18–20], thereby
accelerating the development of new materials. However, these traditional computational
techniques can be computationally intensive and time-consuming, particularly for the vast
compositional space of HEMs when calculating the EFA. With the advent of machine learn-
ing (ML) techniques, the field of materials science has witnessed a significant shift towards
a more data-driven and predictive approach [21–23]. ML algorithms have been successfully
applied to model complex relationships between material compositions, structures, and
properties, enabling the rapid identification of promising materials and the optimization
of their properties [24]. In the context of HEMs, ML has been particularly impactful, with
studies demonstrating the ability to predict phase stability, mechanical properties, and
other critical characteristics with high accuracy [25–27].

Building on the transformative impact of ML in the realm of HEMs, it is important to
note that the versatility of ML extends beyond the domain of high-entropy ceramics. For
instance, Schlenz et al. [28] have recently employed machine learning to identify suitable
chemical compositions for new perovskite-type oxygen transport membranes, highlight-
ing the power of data-driven methods in materials science. In the specific context of
HEMs, Kaufmann et al. [17] and Zhang et al. [16] have pioneeringly applied ML techniques
to predict the properties of high-entropy carbide ceramics, showcasing the potential of
data-driven methods in accelerating the discovery of new HEMs. While their work has
emphasized the importance of integrating chemical descriptors and thermodynamic fea-
tures into ML models for accurate predictions of phase stability and material properties,
there is room to enhance the interpretability of these models. The ability to understand
the relationships between material composition and predicted properties is crucial for the
rational design of new materials.

Inspired by this, in this study, we aim to further advance the application of ML
in the field of HEMs by employing the SISSO [29] method to predict the EFA of HEN
ceramics. Recognized as a “white-box model,” SISSO offers strong interpretability, enabling
it to output complex mathematical expressions similar to symbolic regression [30]. This
feature highlights the impact of each feature or descriptor on the prediction, providing
insights into the material’s essence and facilitating the rapid design and synthesis of new
materials, such as the discovery of new perovskite tolerance factors to predict whether
ABO3 type compounds possess the perovskite structure [31]. SISSO’s expertise lies in
extracting the most critical features and their combinations from a massive feature space,
which is crucial for regression and classification tasks in data mining. This method is
particularly adept at handling large and correlated feature spaces, a common challenge
in the intricate compositional landscape of HEMs. By harnessing SISSO’s capabilities, we
aimed to develop a predictive model that not only identified materials with high EFA
values but also shed light on the factors contributing to the formation and stability of
single-phase HENs, thereby enhancing our understanding of these complex materials.

Our research adopted a data-driven approach by constructing a SISSO model, which
was informed by an extensive dataset of HENs [32]. The performance of our SISSO
model was meticulously validated against theoretical benchmarks documented in the
literature and benchmarked against existing ML methodologies. This rigorous evaluation
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demonstrated the SISSO model’s proficiency in predicting the EFA of HENs, underscoring
its effectiveness as a predictive tool. Besides leveraging the “white-box” nature of our
chosen machine learning method, we provide interpretable mathematical expressions that
offer deep insights into the material’s composition and its impact on EFA, which is a novel
contribution to the understanding of HENs. Through this research, we aimed to contribute
to the burgeoning understanding of HEMs and their diverse applications. Our predictive
model is envisioned to become an invaluable asset for materials researchers, enhancing
the efficiency of discovering new HEN materials with tailored properties, potentially
accelerating the innovation cycle in materials science.

2. Materials and Methods
2.1. Data Collection and Integration

The accuracy and robustness of our predictive models hinge on a well-curated dataset
that captures the complexity and diversity of HEN ceramics. The compounds in this dataset
contained eight elements: Al, Ti, V, Cr, Zr, Nb, Mo, and Si. The dataset was strategic and
grounded in the existing literature on HENs. These elements were chosen for their diverse
physical and chemical properties, including varying electronegativity, atomic size, and
crystal structure preferences, which are known to significantly influence the formation
and properties of nitrides. The propensity of these elements is to form rock-salt structure
B1 nitrides with nitrogen (except for Si) [33,34]. Si was specifically included due to its
unique role in forming single-phase HEN ceramics when combined with other elements,
adding an extra layer of complexity and potential for novel material discovery [35]. Overall,
these selections are particularly relevant as they encompass elements that are among the
most commonly and successfully used to create high-entropy ceramics with improved
mechanical properties, thermal stability, and resistance to extreme environments.

For the initial prediction phase, we compiled a dataset of 56 samples, each with its
corresponding EFA value as the target property. These EFA values were sourced from
the theoretical computational data based on bulk HEN ceramic materials featuring face-
centered cubic structures [32]. The EFA values are shown in Table A1. In the subsequent
prediction phase, we expanded our compositional scope by introducing Hf, Ta, and W into
the mix with the previously selected elements, resulting in 210 novel HEN ceramics. The
EFA values for these HEN ceramics had not been previously calculated by DFT. We utilized
the trained model to rapidly compute the EFA values for these 210 novel HEN ceramics
without the need for DFT calculations and identify compounds with high EFA values.

The EFA equation in our study is as follows [32]:

Hmix =
∑n

i=1 gi Hi

∑n
i=1 gi

(1)

EFA =

√∑n
i=1 gi(Hi − Hmix)

2

(∑n
i=1 gi)− 1

−1

(2)

where n denotes the overall count of distinct geometric configurations that were sampled,
with gi referring to the degeneracy and Hi representing formation enthalpy associated
with each configuration. Consequently, Hmix is estimated by calculating the average of the
formation enthalpy across the whole distinct supercell configurations.

To obtain a comprehensive set of features for each composition, we employed the
Magpie [36], which utilizes a high-throughput approach to generate a rich set of descriptors
based on the basic chemical and physical properties of the constituent elements. These de-
scriptors include atomic radii, electronegativities, ionization energies, and crystal structure
preferences, among others, providing a multifaceted view of the elemental combinations
and their potential impact on the material properties. The 124-dimensional feature vec-
tors obtained from Magpie were subjected to a rigorous preprocessing regimen to ensure
the quality and relevance of the data for the SISSO analysis. This process involved the
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imputation of any missing values, ensuring that the dataset was complete and consistent.
Specifically, we integrated the use of matminer’s IonProperty module [37] to estimate
some missing ionic properties, such as the mean ionic character, which were not directly
available from the Magpie-generated dataset. This step was crucial to the comprehensive
analysis of the material’s composition and its impact on EFA. Additionally, we performed
feature selection to remove any redundant or irrelevant variables that could potentially
skew the analysis or reduce the model’s predictive power. This careful curation of the
feature space was essential for the success of the SISSO method in identifying the most
relevant descriptors and building accurate predictive models.

The final, preprocessed dataset was then integrated with the EFA target values to form
the complete dataset used for both the training and prediction phases of our study. This
integrated dataset served as the backbone of our analysis, allowing us to probe the intricate
relationships between the elemental composition and the resulting EFA, ultimately leading
to the discovery of new HEN ceramics with promising characteristics.

2.2. Machine Learning

In this study, we employed SISSO, a compressed-sensing-based dimensionality re-
duction method, to identify the optimal low-dimensional descriptors for the materials
science data. The SISSO method, as detailed in Ouyang et al. [29], is designed to tackle
immense and potentially correlated feature spaces. A key advantage of SISSO is its ability
to distill a complex, high-dimensional dataset into a smaller set of descriptors that are
not only relevant but also interpretable. By leveraging domain knowledge or intuition,
SISSO can propose a select few key features that capture the essence of the data, leading to
models with strong interpretability. This feature-based approach ensures that the resulting
solutions are not only accurate but also provide insights into the underlying mechanisms
and relationships within the materials science data, converging to the best solution by
meticulously selecting a relevant subset of features from a vast array of candidates.

2.2.1. Feature Space Construction

The cornerstone of the SISSO method is the construction of an extensive feature
space, Φ0, which is initiated with a set of primary features that are hypothesized to capture
the essential characteristics of the material property under investigation. These primary
features encompass a range of atomic-scale properties. The method of obtaining these
features in this work is detailed in Section 2.1. The feature space was then expanded
through the recursive application of a comprehensive set of algebraic and functional
operations, including addition, subtraction, multiplication, division, exponentiation, and
logarithms, etc. This recursive process generated a rich set of derived features, which were
hypothesized to capture the complex relationships between the atomic-scale properties and
the macroscopic material behavior. In this work, we applied

Θ = (+,−,×,÷, exp, ln) (3)

to Φ0 two times to generate the descriptor spaces Φ1 and Φ2. If applied too many times,
the formula is prone to overfitting [38].

2.2.2. Sure Independence Screening (SIS)

The SISSO algorithm leverages sure independence screening (SIS) to effectively reduce
the dimensionality of the feature space. SIS scores each feature based on its correlation
with the target property, retaining only the top-ranked features that exhibit the strongest
relationship with the property of interest. This step is crucial in managing the computational
complexity of the subsequent analysis, because it filters out the less informative features
and focuses on those that are most likely to contribute to the predictive model.
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2.2.3. Sparsifying Operator (SO)

Following the dimensionality reduction via SIS, the sparsifying operator (SO) was
employed to identify the optimal descriptor from the selected subset of features. The
SO operates by solving an underdetermined system of linear equations, seeking a sparse
solution that minimizes the reconstruction error while maintaining sparsity. This approach
ensures that the final descriptor is not only accurate but also computationally efficient, as it
avoids overfitting by retaining only the most significant features.

2.2.4. Model Building and Validation

The SISSO method iteratively explores higher-dimensional solutions, incrementally
adding features to the descriptor until the residual error between the predicted and actual
property values falls within predefined acceptable limits. The resulting descriptor is an
analytical function that succinctly captures the relationship between the selected features
and the EFA. This function serves as the basis for a predictive model that can be used to
classify or predict properties of unseen materials.

In addition to SISSO, we also utilized random forest (RF), k-nearest neighbors (KNN),
and support vector regression (SVR) algorithms to establish a benchmark for comparison.
These established machine learning techniques were applied to the same dataset and under-
went a k-fold cross-validation process, which is a widely accepted method for assessing the
generalization performance of a model. The process involved partitioning the dataset into
‘k’ equally sized subsets (or folds), where each fold was used as a validation set while the
remaining ‘k−1’ folds were used for training. This procedure was repeated ‘k’ times, with
each fold serving as the validation set once, ensuring a robust evaluation of the model’s
predictive capabilities. Figure 1, which illustrates the k-fold cross-validation process, is pro-
vided to offer a visual representation of how the data were divided and utilized across the
different folds. Ultimately, we chose to implement a 5-fold cross-validation for our models,
as it struck a balance between thorough evaluation and computational efficiency, allowing
for a direct comparison of predictive performance across different modeling approaches.
To assess the performance of our models, we employed four statistical methods: (a) mean
squared error (MSE), (b) mean absolute error (MAE), (c) root mean squared error (RMSE),
and (d) R-squared (R2). These metrics provided a comprehensive evaluation of the models’
accuracy and reliability in making predictions.
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Figure 1. Schematic of the k-fold cross-validation.

The main parameters for these algorithms are detailed in Table 1. By employing this
comparative analysis, we aimed to evaluate the effectiveness of SISSO in the context of HEN
ceramics and to ensure that our models were not overfitting the training data, but were
well-equipped to make accurate predictions on new, unseen materials, thereby enhancing
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the reliability and applicability of our models. The flowchart for predicting the EFA of
HEN ceramics using SISSO is shown in Figure 2.

Table 1. Main parameters for the machine learning models in this work.

Model Tuning Parameters

KNN n_neighbors = 3
SVR Kernel = ‘rbf’, Gamma = 0.001, C = 100
RF Random_state = 1050, Max_depth = 6, N_estimators = 100

SISSO ops = ‘(+)(−)(*)(/)(exp)(exp-)’, nf_sis = 20
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3. Results and Discussion
3.1. Performance of SISSO Model for Predictions of EFA

Utilizing the 5-fold cross-validation approach, the SISSO model derived a function
that best predicted the EFA values of HEN ceramics on testing set. The resulting function,
which was a product of the SISSO model’s feature selection and sparsification process, is
as follows:

EFA = 27896.18 ×
(

MMADNV
MMGSV

APVE
AIC

)
− 0.90 ×

(
ADVE − APVE

MMN − MRGSV

)
− 63.15 (4)

Table 2 provides a comprehensive explanation of the feature descriptors in Equation (4)
that were identified by the SISSO model as being significant in predicting the EFA values.
Each descriptor is detailed with its specific meaning. This equation serves as a quantitative
tool that captures the complex relationships between the elemental composition and EFA
values, providing a basis for predicting the stability of HEN ceramics.

The predictive performance of the SISSO model is evidenced in Figure 3a, where
the model’s predictions are compared with the actual EFA values obtained from DFT
simulations for the training set, which consisted of 45 samples in each fold of the 5-fold
cross-validation process. The data points are distributed around the diagonal line, which
represents perfect prediction accuracy. The close proximity of the points to the line indicates
that the SISSO model effectively captured the intrinsic relationships between the elemental
compositions and their respective EFA values within the training dataset.
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Table 2. The meaning of each feature descriptor in the function form obtained by SISSO.

Feature Descriptors Descriptions

MADNV Average deviation of number of filled p orbitals
MMGSV Maximum DFT-computed volume of elemental solid

APVE Fraction-weighted average of the total valence electrons in the p orbital
AIC The mean ionic character for the composition

ADVE Fraction-weighted average of the total valence electrons in the d orbital
MMN Mode atomic number

MRGSV Range DFT-computed volume of elemental solid
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Figure 3. Predictions of EFA for (a) the training set of 45 samples and (b) testing set of 11 samples
using the SISSO model against real values from DFT simulations in [32].

Building upon the performance demonstrated in the training set, Figure 3b evaluates
the SISSO model’s predictive capabilities on the testing set with 11 samples, which com-
prised new, unseen compositions compared to the training set. Similar to the training set
analysis, the model’s predictions were plotted against the actual EFA values from DFT
simulations. The scatter plot shows that the model maintained a high level of accuracy,
with a slight increase in the scatter, reflected in the marginally lower R2 value compared to
the training set. This was an expected outcome, as the model was generalizing from the
training data to new compositions. Nonetheless, the results confirmed the robustness of the
SISSO model in predicting EFA for HEN ceramics, even in the absence of prior data. The
distribution of residuals for the training and testing sets, illustrated in Figure A1, provided
further insight into the model’s predictive accuracy. The uniform distribution of residuals
indicated that the model’s predictions were generally unbiased and reliable across the
range of compositions evaluated.

Figure 4 provides a comparative analysis of the performance of the SISSO model along-
side other machine learning models, including KNN, SVR, and RF, on the training set. The
figure is divided into four parts, each corresponding to a different performance metric: MSE,
MAE, RMSE, and R2. Each bar chart represents the average performance of the models based
on the 5-fold cross-validation process. The SISSO model outperformed the others, with the
shortest bars in the MSE, MAE, and RMSE charts, indicating lower prediction errors. The
highest bars in the R2 chart demonstrate SISSO’s superior ability to explain variance in the
training data, suggesting a better fit and predictive accuracy. Figure 5 shows the performance
of the same models on the testing set. The SISSO model maintained its lead, with the lowest
error bars and the highest R2 values, confirming its robust generalization capabilities. The con-
sistent outperformance of SISSO across both datasets underscores its reliability and potential
for practical application in materials science.
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3.2. Applications of SISSO Model for New HEN Ceramics

The predictive capabilities of the SISSO model were extended to explore novel HEN ce-
ramics by incorporating additional elements such as Hf, Ta, and W. The resultant 210 novel
HENs had not been previously calculated using DFT. These predictions signified an exten-
sion of our model’s utility in exploring new materials with potentially superior attributes.
The model’s predictions, as detailed in Table 3, revealed a range of new compositions with
EFA values exceeding 60 (eV/atom)−1, which indicated their potential to form stable single-
phase structures. The more comprehensive data can be found in Table A2 of Appendix A.
In the predicted new HEN ceramics, the systems AlTiCrNbTaN5, TiVNbMoTaN5, and
AlVCrNbTaN5 exhibited notably high EFA values of 93.52, 84.01, and 81.89 (eV/atom)−1,
respectively. These high EFA values suggested a strong propensity for these compounds
to form stable single-phase structures, which is crucial for their potential as advanced
materials with superior properties for high-performance applications.

Table 3. New HEN ceramics with EFA greater than 60 predicted by SISSO.

Formula EFA (eV/atom)−1 Formula EFA (eV/atom)−1

TiVCrZrHfN5 73.81 AlTiCrMoTaN5 66.19
TiVCrNbHfN5 72.37 AlTiNbMoTaN5 66.36
TiVCrMoHfN5 62.62 AlVCrNbTaN5 81.89
TiVZrNbHfN5 75.07 AlVCrMoTaN5 61.98
TiVZrMoHfN5 66.71 AlVNbMoTaN5 63.48
TiVNbMoHfN5 64.26 TiVCrZrTaN5 68.14
TiCrZrNbHfN5 74.49 TiVCrNbTaN5 76.59
TiCrZrMoHfN5 66.03 TiVCrMoTaN5 78.62
TiCrNbMoHfN5 63.48 TiVZrNbTaN5 69.48
TiZrNbMoHfN5 67.48 TiVZrMoTaN5 60.56
VCrZrNbHfN5 72.43 TiVNbMoTaN5 84.01
VCrZrMoHfN5 63.69 TiCrZrNbTaN5 68.86
VCrNbMoHfN5 60.89 TiZrNbMoTaN5 61.41
VZrNbMoHfN5 65.18 VCrZrNbTaN5 66.69
CrZrNbMoHfN5 64.47 AlTiVCrWN5 69.82

AlTiVCrTaN5 78.96 AlTiVNbWN5 60.90
AlTiVNbTaN5 76.47 AlTiCrNbWN5 68.83
AlTiVMoTaN5 65.95 TiVCrMoWN5 71.32
AlTiCrNbTaN5 93.52 TiVNbMoWN5 62.83

The SISSO model’s predictive capabilities were further substantiated by the successful
experimental synthesis of several compositions reported previously with high EFA values.
Notably, the systems (TiVZrNbHf)Nx, (TiCrZrNbHf)Nx, (TiVCrNbTa)Nx, (AlTiVZrTa)Nx, and
(AlTiCrZrTa)Nx, which were predicted by the SISSO model to have EFA values of 75.07, 74.49,
76.59, 52.55, and 52.06 (eV/atom)−1, respectively, were realized in the experiment [39–45].
Some researchers experimentally suggest that Ti, Zr, Nb, and Ta elements have stronger
nitride formation abilities. In line with this, our machine learning predictions for HEN
ceramics containing these elements, such as TiVZrNbTaN5 and TiCrZrNbTaN5, also in-
dicated high EFA values of up to 69.48 and 68.86 (eV/atom)−1, respectively [46]. These
experimental validations not only confirmed the model’s accuracy but also showcased its
potential for guiding the discovery of new HEN ceramics with promising properties. The
successful synthesis of these materials opens up new avenues for exploring their potential
applications in areas requiring materials with high thermal stability, excellent mechanical
strength, and resistance to extreme environmental conditions.

It is worth noting that HEN ceramics with an EFA greater than 60 typically do not
include Si, as observed in Table 3. Figure 6 provides a histogram intuitively comparing the
distribution of predicted EFA values for new HEN ceramics with and without the inclusion
of Si. The histogram reveals that the presence of Si tends to result in lower EFA values,
which may be associated with the significant lattice distortion known to be induced by Si.
Such distortion affects the material’s propensity to form a stable single-phase structure, as
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a uniform distribution of atoms is generally favored for higher EFA values. Our findings
align with those of an existing study [32], which also reported that the incorporation of Si
led to a compacting of the crystal lattice and consequently, a reduction in the EFA.
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4. Conclusions

This study represents a significant advance in the application of machine learning
techniques for the prediction of EFA in HENs. The SISSO model, with its “white-box”
interpretability, was successfully applied to predict EFA values, offering a deeper under-
standing of the factors that contribute to the formation and stability of single-phase HENs.
The model’s predictions were validated against theoretical benchmarks, showcasing its
effectiveness as a predictive tool in materials science. This not only enhances the accuracy
of EFA prediction but also provides a transparent framework for interpreting the complex
interactions between elemental composition and material properties.

In the predicted new HEN ceramics, the study identified several systems with no-
tably high EFA values, indicating their potential to form stable single-phase structures.
Specifically, the systems AlTiCrNbTaN5, TiVNbMoTaN5, and AlVCrNbTaN5 stood out with
EFA values of 93.52, 84.01, and 81.89 (eV/atom)−1, respectively. These high EFA values
are indicative of the strong propensity of these compounds to form stable single-phase
structures, which is crucial to their potential as advanced materials with superior properties
for high-performance applications. The identification of these compositions through the
SISSO model not only demonstrates the predictive power of the model but also highlights
the potential of these specific HEN systems in further research and development. This
discovery underscores the capability of the SISSO model to guide experimental efforts
towards the synthesis of new materials with tailored properties, expediting the process of
material innovation and advancement.

Furthermore, the successful experimental synthesis of several compositions predicted
by the SISSO model with high EFA values confirmed the model’s accuracy and its potential
for guiding the discovery of new HEN ceramics with promising properties. This research
underscores the transformative impact of data-driven approaches in materials science,
paving the way for the accelerated development of next-generation materials with superior
performance characteristics. The ability to predict and validate the EFA of new materials
will likely revolutionize the field, enabling the design of materials that can withstand
extreme conditions and perform beyond the capabilities of current materials. Additionally,
while this work has mainly focused on the bulk phase materials of HEN ceramics, thin
films of HEN ceramics are also worthy of study due to their significant applications. For the
EFA prediction of HEN ceramic thin films, to ensure accuracy, EFA values related to thin
films are also required. The structural features and polymorphic transformations of nitride
ceramics were not incorporated into our model. We will expand on these in our future
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research. This study is a testament to the power of combining computational modeling
with experimental validation, forging a path for the rapid advancement of materials science
in the era of data-driven research.
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Table A1. EFA values from DFT simulations in [32].

Formula EFA (eV/atom)−1

AlCrNbTiVN5 93
CrNbTiVZrN5 80
AlCrMoTiVN5 75
AlMoNbTiVN5 65
MoNbTiVZrN5 60
AlCrMoNbTiN5 58
AlCrMoTiZrN5 57
CrMoTiVZrN5 53
AlNbTiVZrN5 52
AlCrNbVZrN5 50
AlCrMoNbVN5 49
CrMoNbTiZrN5 48
AlMoNbVZrN5 45
CrMoNbTiVN5 44
AlCrTiVZrN5 44

AlMoNbTiZrN5 43
AlCrNbTiZrN5 42
CrMoNbVZrN5 41
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Table A1. Cont.

Formula EFA (eV/atom)−1

AlCrMoNbZrN5 39
AlCrMoVZrN5 39
CrNbSiTiVN5 39
NbSiTiVZrN5 38
AlMoTiVZrN5 37
CrNbSiTiZrN5 36
CrMoSiTiVN5 35

CrMoNbSiVN5 35
MoNbSiTiVN5 34
CrSiTiVZrN5 34

CrNbSiVZrN5 29
MoSiTiVZrN5 29

CrMoNbSiTiN5 29
MoNbSiTiZrN5 28
MoNbSiVZrN5 28
CrMoSiTiZrN5 28
CrMoSiVZrN5 27
AlCrSiTiVN5 23

CrMoNbSiZrN5 22
AlSiTiVZrN5 21
AlCrSiTiZrN5 21
AlCrSiVZrN5 21

AlCrNbSiZrN5 21
AlNbSiTiZrN5 20
AlCrNbSiTiN5 20
AlNbSiVZrN5 20
AlNbSiTiVN5 19
AlCrMoSiVN5 19
AlCrMoSiTiN5 19
AlCrNbSiVN5 19
AlCrMoSiZrN5 18
AlMoSiVZrN5 18

AlCrMoNbSiN5 18
AlMoSiTiVN5 17
AlMoSiTiZrN5 17
AlMoNbSiVN5 17
AlMoNbSiZrN5 17
AlMoNbSiTiN5 17

Table A2. The EFA of new HEN ceramics predicted by SISSO.

Formula EFA (eV/atom)−1 Formula EFA (eV/atom)−1 Formula EFA (eV/atom)−1

AlSiTiVHfN5 26.22 AlSiTiVTaN5 27.40 AlSiTiVWN5 15.62
AlSiTiCrHfN5 25.95 AlSiTiCrTaN5 28.58 AlSiTiCrWN5 16.52
AlSiTiZrHfN5 27.83 AlSiTiZrTaN5 23.81 AlSiTiZrWN5 14.18
AlSiTiNbHfN5 25.13 AlSiTiNbTaN5 30.73 AlSiTiNbWN5 18.78
AlSiTiMoHfN5 18.08 AlSiTiMoTaN5 22.35 AlSiTiMoWN5 8.29
AlSiVCrHfN5 24.25 AlSiVCrTaN5 26.67 AlSiVCrWN5 14.30
AlSiVZrHfN5 26.76 AlSiVZrTaN5 22.63 AlSiVZrWN5 12.69
AlSiVNbHfN5 25.15 AlSiVNbTaN5 26.52 AlSiVNbWN5 14.53
AlSiVMoHfN5 17.74 AlSiVMoTaN5 18.20 AlSiVMoWN5 4.09
AlSiCrZrHfN5 26.42 AlSiCrZrTaN5 22.27 AlSiCrZrWN5 12.21
AlSiCrNbHfN5 24.83 AlSiCrNbTaN5 27.35 AlSiCrNbWN5 15.08
AlSiCrMoHfN5 17.33 AlSiCrMoTaN5 18.78 AlSiCrMoWN5 4.40
AlSiZrNbHfN5 26.93 AlSiZrNbTaN5 22.86 AlSiZrNbWN5 13.05
AlSiZrMoHfN5 20.46 AlSiZrMoTaN5 16.01 AlSiZrMoWN5 4.33
AlSiNbMoHfN5 17.22 AlSiNbMoTaN5 20.77 AlSiNbMoWN5 6.50
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Table A2. Cont.

Formula EFA (eV/atom)−1 Formula EFA (eV/atom)−1 Formula EFA (eV/atom)−1

AlTiVCrHfN5 55.10 AlTiVCrTaN5 78.96 AlTiVCrWN5 69.82
AlTiVZrHfN5 57.45 AlTiVZrTaN5 52.55 AlTiVZrWN5 41.40
AlTiVNbHfN5 56.26 AlTiVNbTaN5 76.47 AlTiVNbWN5 60.90
AlTiVMoHfN5 47.89 AlTiVMoTaN5 65.95 AlTiVMoWN5 56.72
AlTiCrZrHfN5 57.00 AlTiCrZrTaN5 52.06 AlTiCrZrWN5 40.78
AlTiCrNbHfN5 55.78 AlTiCrNbTaN5 93.52 AlTiCrNbWN5 68.83
AlTiCrMoHfN5 47.30 AlTiCrMoTaN5 66.19 AlTiCrMoWN5 55.51
AlTiZrNbHfN5 57.84 AlTiZrNbTaN5 53.00 AlTiZrNbWN5 42.01
AlTiZrMoHfN5 50.62 AlTiZrMoTaN5 45.30 AlTiZrMoWN5 31.94
AlTiNbMoHfN5 48.16 AlTiNbMoTaN5 66.36 AlTiNbMoWN5 47.95
AlVCrZrHfN5 55.20 AlVCrZrTaN5 50.16 AlVCrZrWN5 38.53
AlVCrNbHfN5 53.76 AlVCrNbTaN5 81.89 AlVCrNbWN5 56.74
AlVCrMoHfN5 45.03 AlVCrMoTaN5 61.98 AlVCrMoWN5 53.25
AlVZrNbHfN5 56.28 AlVZrNbTaN5 51.32 AlVZrNbWN5 39.94
AlVZrMoHfN5 48.78 AlVZrMoTaN5 43.33 AlVZrMoWN5 29.58
AlVNbMoHfN5 46.44 AlVNbMoTaN5 63.48 AlVNbMoWN5 44.59
AlCrZrNbHfN5 55.80 AlCrZrNbTaN5 50.80 AlCrZrNbWN5 39.29
AlCrZrMoHfN5 48.21 AlCrZrMoTaN5 42.73 AlCrZrMoWN5 28.84
AlCrNbMoHfN5 45.80 AlCrNbMoTaN5 53.49 AlCrNbMoWN5 25.47
AlZrNbMoHfN5 49.37 AlZrNbMoTaN5 43.99 AlZrNbMoWN5 30.39

SiTiVCrHfN5 40.02 SiTiVCrTaN5 43.11 SiTiVCrWN5 29.01
SiTiVZrHfN5 42.79 SiTiVZrTaN5 38.06 SiTiVZrWN5 26.76
SiTiVNbHfN5 41.13 SiTiVNbTaN5 43.64 SiTiVNbWN5 29.97
SiTiVMoHfN5 32.70 SiTiVMoTaN5 34.14 SiTiVMoWN5 18.01
SiTiCrZrHfN5 42.36 SiTiCrZrTaN5 37.59 SiTiCrZrWN5 26.17
SiTiCrNbHfN5 40.68 SiTiCrNbTaN5 43.87 SiTiCrNbWN5 29.90
SiTiCrMoHfN5 32.14 SiTiCrMoTaN5 34.12 SiTiCrMoWN5 17.69
SiTiZrNbHfN5 43.13 SiTiZrNbTaN5 38.47 SiTiZrNbWN5 27.31
SiTiZrMoHfN5 35.78 SiTiZrMoTaN5 30.68 SiTiZrMoWN5 17.35
SiTiNbMoHfN5 32.77 SiTiNbMoTaN5 35.98 SiTiNbMoWN5 19.70
SiVCrZrHfN5 40.59 SiVCrZrTaN5 35.73 SiVCrZrWN5 23.99
SiVCrNbHfN5 38.71 SiVCrNbTaN5 41.65 SiVCrNbWN5 27.32
SiVCrMoHfN5 29.94 SiVCrMoTaN5 31.65 SiVCrMoWN5 14.85
SiVZrNbHfN5 41.64 SiVZrNbTaN5 36.86 SiVZrNbWN5 25.34
SiVZrMoHfN5 34.03 SiVZrMoTaN5 28.81 SiVZrMoWN5 15.12
SiVNbMoHfN5 31.29 SiVNbMoTaN5 32.88 SiVNbMoWN5 16.50
SiCrZrNbHfN5 41.18 SiCrZrNbTaN5 36.36 SiCrZrNbWN5 24.72
SiCrZrMoHfN5 33.49 SiCrZrMoTaN5 28.23 SiCrZrMoWN5 14.42
SiCrNbMoHfN5 30.69 SiCrNbMoTaN5 32.51 SiCrNbMoWN5 15.84
SiZrNbMoHfN5 34.57 SiZrNbMoTaN5 29.41 SiZrNbMoWN5 15.87

TiVCrZrHfN5 73.81 TiVCrZrTaN5 68.14 TiVCrZrWN5 55.16
TiVCrNbHfN5 72.37 TiVCrNbTaN5 76.59 TiVCrNbWN5 49.54
TiVCrMoHfN5 62.62 TiVCrMoTaN5 78.62 TiVCrMoWN5 71.32
TiVZrNbHfN5 75.07 TiVZrNbTaN5 69.48 TiVZrNbWN5 56.78
TiVZrMoHfN5 66.71 TiVZrMoTaN5 60.56 TiVZrMoWN5 45.16
TiVNbMoHfN5 64.26 TiVNbMoTaN5 84.01 TiVNbMoWN5 62.83
TiCrZrNbHfN5 74.49 TiCrZrNbTaN5 68.86 TiCrZrNbWN5 56.01
TiCrZrMoHfN5 66.03 TiCrZrMoTaN5 59.84 TiCrZrMoWN5 44.29
TiCrNbMoHfN5 63.48 TiCrNbMoTaN5 46.97 TiCrNbMoWN5 16.64
TiZrNbMoHfN5 67.48 TiZrNbMoTaN5 61.41 TiZrNbMoWN5 46.18
VCrZrNbHfN5 72.43 VCrZrNbTaN5 66.69 VCrZrNbWN5 53.44
VCrZrMoHfN5 63.69 VCrZrMoTaN5 57.39 VCrZrMoWN5 41.43
VCrNbMoHfN5 60.89 VCrNbMoTaN5 34.62 VCrNbMoWN5 3.77
VZrNbMoHfN5 65.18 VZrNbMoTaN5 58.97 VZrNbMoWN5 43.30
CrZrNbMoHfN5 64.47 CrZrNbMoTaN5 58.21 CrZrNbMoWN5 42.39
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